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Abstract

Disjoint paths are useful in mobile networks for fault tolerance, increasing bandwidth, and
achieving better load balance. Communication over multiple disjoint paths is a less expensive
alternative to flooding the network. We present a distributed algorithm for finding k disjoint
paths, for any given k, between a source S and a destination T in mobile networks where the
links have uniform weight. Our algorithm runs in O(kn) time using O(km) messages where n
is the number of nodes and m is the number of links in the network, and k is the number of
paths to be found. We also present a resilient version of this algorithm that may be suitable for
networks whose topology changes frequently.

1 Introduction

In mobile ad hoc networks (MANETs), nodes assume the role of a router as there is no dedicated
routing infrastructure. Due to mobility, however, the network connectivity changes frequently. By
maintaining multiple disjoint paths, one can increase the probability that source can reach the des-
tination via one of the known paths as the network undergoes topological changes. Multiple paths
can also be employed to achieve better load balance and improve quality of service in bandwidth-
constrained MANETs. For fault tolerance and energy conservation, communication over multiple
disjoint paths is clearly a less expensive alternative to flooding the network.

For these and other important reasons, the problem of finding disjoint paths in communication
networks attracted a lot of attention. The obvious approach to pursue is to generalize the known
routing algorithms to multiple disjoint paths. The distance vector protocols, based on Bellman-Ford
algorithm, are distributed implementations of all-pairs shortest path algorithms. For details, refer
to [H00]. Protocols such as Routing Information Protocol (RIP) [H88] use the property that for
every pair of communicating hosts S and T , and intermediate node V , the shortest path between
S and T contains shortest paths between S and V , and V and T . This key property lends these
algorithms for simple and elegant distributed implementations. No such property exists for disjoint
paths and hence it is not possible to generalize Bellman-Ford type algorithms to multiple disjoint
paths in a straightforward manner.

In link state algorithms [C89], on the other hand, nodes collect snapshots of the state of the
network and run sequential algorithms to determine the best routes to use for communication. Such
an approach can be used in principle to find multiple disjoint paths, but the overhead in collecting
snapshots can be prohibitive in a network that is either large or under constant change.

In this paper, we consider the problem of finding k node-disjoint paths, for any given k, between
a source S and a destination T in mobile networks where the links have uniform weight. Sequential
algorithms for k disjoint path problem have been known for many years. At a high level, the
algorithms for the node disjoint case have these three key steps in common:
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1. a bidirectional network is constructed by replacing each undirected link by two oppositely
oriented directed links,

2. the split graph is obtained from the original by replacing each node V with two subnodes Vi

and Vo, adding the edge Vi → Vo, connecting all incoming (resp. outgoing) links to Vi (resp.
Vo), and deleting Si and To,

3. a weight of 1 is associated on each link and the maximum flow between So and Ti is found in
the resulting 0/1 directed network (denoted Gd).

This method (referred henceforth as the Augmenting Path Algorithm) can be generalized to net-
works with nonuniform link delays by attaching costs to links and running minimum-cost-maximum-
flow algorithm in Step 3. While minimum-cost-maximum-flow algorithms can be complicated for
practical implementation, finding maximum flow in 0/1 networks is rather simple and can be imple-
mented by an iterative augmenting path approach. An augmenting path can be found by performing
a breadth-first or depth-first search in what is known as the residual graph.

Even though the methods sketched above have been known for many years, they never found
their way to the domain of network protocols. We speculate the reason for this gap between theory
and practice to be the perceived difficulty of graph transformation involved in the known sequential
algorithms. We attempt to bridge this gap by providing simple, distributed implementation of the
Augmenting Path Algorithm. The data structures used by our algorithms are very elementary and
suitable for practical implementation. Our algorithm runs in O(kn) time where n is the number of
nodes in the network and k is the number of paths to be found. The message complexity is O(km)
where m is the number of links in the network. We also present a resilient version of this algorithm
that can compute disjoint paths as the underlying topology is changing.

This paper is organized as follows. After reviewing related work in the next section, we discuss
problem formulation, our assumptions, and a description of Augmenting Path Algorithm in Section
3. Section 4 presents our distributed implementation. The resilient version is given in Section 5.
We conclude the paper in Section 6.

2 Related Work

There has been considerable recent interest in the mobile computing community in the disjoint
path problem. Multipath and alternate path routing performance was the subject of investigation
in [NCD01, PHST00, VSR03, WH01]. Papadimitratos et al. introduce a heuristic to find k disjoint
paths that are reliable [PHS02]. Ye et al. propose a variation of Ad Hoc Distance Vector (AODV)
routing protocol that can withstand node failures. Disjoint routing was studied in [LG01, VG01].

Itai and Rodeh [IR84] introduced the notion of k-independent trees–k spanning trees rooted at
node r such that the k tree paths from any other node v to r are disjoint–and gave a distributed
algorithm to find such trees for k = 2 in 2-edge connected graphs. For k > 2, they further
conjectured that there exist k independent trees if and only if the underlying network is k connected.
For general k, this conjecture is still open. Ever since, several empirical algorithms have been
proposed to find k independent spanning trees. One such result is by Sidhu et al. [SNA91].
They give distributed algorithms that is a generalization of this approach. They show how to find
multiple trees to a given destination r with a guarantee that one of the trees is a shortest-path tree.
Furthermore, for every v, paths between v and r are disjoint. The addition of the requirement that
one of the trees be a shortest path tree changes the problem as the example in Figure 1 shows:
There are two disjoint paths between S and T : SABCT and SDEFT , each of length 4. However,
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Figure 1: Requiring one of the paths be a shortest path limits the number of disjoint paths

with the additional requirement that one of the paths be shortest, there is only one path SAFT ,
of length 3.

Chen et al. [CDS98] proposed a solution to the same problem, but without requiring that one
of the paths be a shortest path. Their algorithm finds multiple paths, if the flooded messages that
are used for finding paths arrive by disjoint paths. In other words, there are networks in which
their algorithm finds multiple paths, but not all available disjoint paths between a pair.

Cheng et al. [CKG90] suggested a distributed algorithm for finding k disjoint paths of least
weight between a pair of nodes in a given weighted network. Though more general than the
problem considered in this paper, finding shortest paths introduces the complications associated
with detecting termination and convergence. As a result, their algorithm is considerably more
complex than ours and may be unsuitable for implementation in MANETs.

Other relevant work [ORS93] includes algorithms for finding two disjoint paths of minimum
total cost from every node to a destination. Our work differs from theirs in two respects: first,
our algorithm works for any value of k; second, the graph transformation that is necessary here is
significantly simpler than the one presented in their paper.

3 Preliminaries

3.1 Notation and Assumptions

We model the mobile communication network as an undirected, unweighted graph. We assume that
there is at most one link between any pair of nodes, and each node is aware of only its neighbors.
We describe computing disjoint paths for one pair of nodes S and T , with the understanding that
several such computations could be taking place simultaneously.

For a (sub)graph G, E(G) denotes the set of edges in G. For two sets A and B, the symmetric
difference A⊕B = (A−B) ∪ (B −A).

In a directed graph G with source S and destination T and a given set of disjoint paths P from
S to T , the residual graph Gr is obtained by reversing the edges of P in G. Augmenting path in
Gr is any directed path from S to T . For these and other concepts related to network flows, the
reader is referred to [CLRS01].

In our description of algorithms for the node disjoint case, each node U , except for the source S
and the destination T can be conceptually viewed as a pair of neighboring subnodes - in subnode
Ui and out subnode Uo with a directed edge going initially from Ui to Uo. Each node runs two
instances of the algorithm, one for each subnode. The source S (resp. destination T ) runs only the
instance corresponding to the out (resp. in) subnode. In our notation, uppercase letter I represents
a node, whereas lowercase letter i represents either out subnode Io or in subnode Ii of I.

Flooding refers to each node sending a message to all its neighbors in the directed networks
that our algorithms construct during execution. On the other hand, we use the term broadcast in
the same way it is used in conventional networking literature, i.e. the operation is performed on
the original (undirected) communication network.
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Algorithm AugmentingPath
Input: A graph G, source S, destination T , and the desired number k of disjoint paths
Output: Available number of disjoint paths, up to k, between S and T
1 build the directed graph Gd corresponding to G as described in Section 1
2 Gr := Gd // initialize the residual graph Gr

3 i := 0; path exists := true; P := ∅
4 while (path exists & i < k) {
5 attempt to find a directed path Pd between S and T in Gr

6 if no such path exists assign path exists := false
7 else reverse the edges of Pd in Gr // update the residual graph
8 let P be the path in G that corresponds Pd

9 increase the number of disjoint paths by doing E(P) := E(P)⊕ E(P )
10 i := i+1
11 }

(e)

So

A o

B i B o

Ti

iA

(c)

A

T

B

S

(f)

(b)

So

A o

B i B o

Ti

iAA

T

B
(a)

S

So

A o

B i B o

Ti

iA

(d)

So

A o

B i B o

Ti

iA

Figure 2: AugmentingPath algorithm and its execution

3.2 The Sequential Algorithm

In this section we present AugmentingPath, a sequential algorithm based on augmenting paths,
and illustrate an example execution of it. The distributed algorithm which we present in the next
section simulates the sequential algorithm by use of some auxiliary data structures.

Figure 2 presents the pseudocode of AugmentingPath algorithm and an execution of it. The
graph in (a) is the original graph. The split graph Gd is shown in (b). Gr is initialized to Gd in
line 2 of the algorithm. The dotted line in (b) represents the first directed path (SoAiAoBiBoTi)
found by line 5 of the algorithm. By reversing the path (line 7) we get the updated Gr in (c).
In the next iteration of while loop, the second path (SoBiAoTi) is found, which is represented as
the dotted line in (d). In (e), the second path is reversed, and now we can see that there are no
more outgoing edges from the source node, which means that there are no more paths to be found.
Finally we have found two disjoint paths: SAT and SBT as shown in (f).

4 The Algorithm

In this section we present a distributed algorithm to find k disjoint paths between a pair of nodes,
which is a distributed version of the AugmentingPath Algorithm. For now, we assume the topology
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to be static and the network to be reliable. We relax this assumption in the following section,
where we present the resilient version of the algorithm presented in this section. We refer to the
algorithm in this section as the basic algorithm.

The goal of our algorithm is, given a pair of nodes, to find as many as possible, up to k, disjoint
paths, for any given k. The algorithm works as follows. The source node S initiates the path
discovery by sending the path discovery token (PDT) message to its neighbor(s). When a node,
other than the destination, receives a PDT message, it starts participating in the path discovery,
by creating the data structures needed in the algorithm (described below). Then the intermediate
node forwards the PDT message to its neighbor(s). Forwarding the PDT to the neighbor(s) is
accomplished in the function Explore(). We present two implementations of Explore(): Explore-
DepthFirst() and ExploreBreadthFirst(). The former is easier conceptually, while the latter is more
time efficient.

The Explore() function searches the graph much the same way a graph would be explored
while building a distributed depth-first or breadth-first spanning tree with source as the root. The
difference here is that once the destination node is found (i.e. when a PDT reaches the destination),
the search is concluded, and the destination sends a path marker token (PMT) to mark the tree
path from the destination to the source. When an intermediate node receives the PMT, it makes
appropriate changes in its data structures to reflect the link reversals on this tree path. When the
PMT reaches the source, the source starts next iteration by sending out another PDT. The path
exploration proceeds in rounds and continues until all k (or all existing) paths are found. Finally,
the source sends out the DONE message along the paths, letting the intermediate nodes record
the next hop information in their routing table entry for the source and destination pair. The
pseudocode of the algorithm is presented below.

To summarize, the algorithm uses three types of messages as follows:

• PDT (Path Discovery Token): When a node (source) S wants to find a path to another node
(destination) T , it starts the path discovery by sending out a PDT to its neighbor(s) which
in turn forward(s) it to their neighbor(s). A PDT contains the following information: source,
destination, backtrack flag. If a node cannot find a path to T , it returns PDT with backtrack
flag set to true. We denote a PDT with backtrack flag set to true as PDTB.

• PMT (Path Marker Token): When the destination receives a PDT, it sends out a PMT along
the newly discovered path. A PMT contains 〈S, T 〉

• DONE: After finding the last path, the source sends out a DONE message on all paths with
the information of 〈S, T 〉. Every node that receives DONE message makes a routing table
entry indicating the next hop for a path from S to T .

Every node (except destination) starts the algorithm by creating the list L of it neighbors. In
list L, the entry for neighbor v, L[v] has a direction field. The direction field can have a value either
in or out. We denote the direction of neighbor v in L as L[v].direction, where the direction in (resp.
out) means the directed edge from (resp. to) v is incoming (resp. outgoing) in the residual graph.

For the source node So, initially every neighbor’s direction is out (note that after splitting, the
subnode Si is deleted). Analogously, for the destination node Ti, initially every neighbor’s direction
is in. In the list L of an intermediate node Vi (resp. Vo), the direction of all entries is initially in
(resp. out), except the one for Vo (resp. Vi).

Function ExploreDepthFirst(L)
Input: A list of neighbors in L
Output: If a path can be found to T , return the successor on that path; otherwise 0
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1 initially all neighbors are unvisited
2 while (there is an unvisited neighbor q) {
3 send PDT to q
4 wait for either PDTB or PMT from q
5 meanwhile if any other message arrives return it to the sender with backtrack flag set
6 if the message from q is PMT return q
7 else mark q as visited
8 }
9 return 0

Function ExploreBreadthFirst(L)
Input: A list of neighbors in L
Output: If a path can be found to T , return the successor on that path; otherwise 0
1 for each neighbor q, send a copy of PDT to q
2 for each neighbor q, wait for either PDTB or PMT from q
3 meanwhile if any other message arrives return it to the sender with backtrack flag set
4 if one of the neighbors, q, sent PMT return q
5 else return 0

Algorithm for the source node S

Input: A list of neighbors in L and the desired number k of disjoint paths
Output: Up to k routing table entries corresponding k disjoint paths from S to T
1 r := 1; path exists := true
2 while (path exists & r ≤ k) {
3 h := Explore (L)
4 if (h = 0) path exists := false
5 else L[h].direction := in //reverse edge (S,h)
6 r := r+1
7 }
8 for each neighbor h such that L[h].direction = in
9 add H to the list of next hops in the routing table for 〈S, T 〉 entry
10 send DONE to h

Algorithm for the destination node T

Input: A list of neighbors in L
1 when a PDT is received from p
2 L[p].direction := out //reverse edge (p,T )
3 send PMT to p

Algorithm for an intermediate node i
Input: A list of neighbors in L
Output: Next hop entry in the routing table for 〈S, T 〉
1 when a PDT is received from p
2 h := Explore(L)
3 if (h = 0) send PDTB to p
4 else L[h].direction := in //reverse edge (i,h)
5 L[p].direction := out //reverse edge (p,i)
6 send PMT to p
7 when DONE is received from p
8 if i is a in subnode of node I, pass it to the corresponding out subnode
9 else find the unique h such that L[h].direction = in
10 put H as the next hop in I’s routing table for 〈S, T 〉 entry
11 pass DONE to h
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The correctness of the basic algorithm and its complexity can be proved by the correctness and
the complexity of the sequential algorithm [CLRS01]. The details are deferred to the full paper.

Theorem 1 Given source s and destination t, if there exist k disjoint paths between s and t, the
basic algorithm finds k such paths.

Given that we explore the network k times, each time using a breadth-first or a depth-first
search, the theorem below follows. Notice that even though the complexity of a breadth-first
search is O(D) time where D is the diameter of the network, the diameter of the residual graphs
could increase to n.

Theorem 2 Given source s and destination t, the basic algorithm finds k disjoint paths between s
and t in O(kn) time using O(km) messages where n is the number of nodes and m is the number
of links in the network.

Quality of Discovered Paths Obviously, it is preferable to find k disjoint paths in weighted
networks where the weights represent latencies or some sort of reliability measure. However, this
complicates the distributed algorithms significantly to a point where they are not practical. For
this reason, we deliberately chose a network in which the link weights are uniform. But, using
breadth-first search and choosing the first path discovered between a source and destination as we
have done in our algorithm, we conjecture that the quality of the paths would be competitive to
the ones that take the edge weights into account.

5 Disjoint-Path Computation Under Topological Changes

The basic algorithm in the previous section assumed that the network topology was static while the
k disjoint paths were discovered. In this section, we generalize this approach to a network that is
undergoing constant topological changes. For instance, a mobile node can simply walk away from
the communication network. We model such changes by link failures. Note that node failures can
be modeled as a special case of a certain set of link failures. That is, if node v were to fail, this
event can be modeled as the failure of all links adjacent to v.

When new nodes come in to the network, they are added to the list L of their neighbors and
hence they automatically start participating in the path discovery process. The path discovery
proceeds in rounds. In the absence of link failures on discovered paths, there would be k rounds
and one new path would be discovered in each round. But if there are link failures on discovered
paths causing f ≤ k paths to be lost, there would be f rounds to erase those failed paths and f
additional rounds to find paths to make up for the lost ones, for a total of k + 2f rounds. Each of
these k + 2f rounds has a unique sequence number. Any PDT, PDTAck, PMT or PATH ERASE
message sent in round j has sequence number j. Since all these messages are either broadcast or
flooded, a node responds only to the first message it receives (of each kind) with any given sequence
number.

The algorithm uses five types of messages as follows:

• LINK FAIL: Whenever a node detects one of its links to be inactive, it broadcasts a
LINK FAIL message containing the corresponding node information. Source node S has
an array LF to store LINK FAIL broadcasts; no other node stores LINK FAIL broadcasts.

• PATH ERASE: contains the path to be erased and the sequence number.
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• PDT: contains the path traversed by this PDT, destination T, and the sequence number.
Source S begins each round, either by flooding a PDT to all neighbors in residual graph Gr

or by broadcasting a PATH ERASE message, if it has any unprocessed LINK FAIL messages
resulting in path failures.

• PDTAck: contains the path traversed by the corresponding PDT and the sequence number.
Upon receiving a PDT, Ti broadcasts a PDTAck with the same sequence number as the PDT.
Upon receiving a PDTAck, So broadcasts a PMT with the same sequence number as the
PDTAck.

• PMT: contains the path traversed by the corresponding PDT and the sequence number. After
sending the PMT or PATH ERASE broadcast, So computes the new set of paths, updates
the variables seq and path, updates its routing table entries to reflect the newly discovered
path and reverses the direction, in Gr, of edges which are on the new path. After a delay,
that is sufficient for the PMT broadcast to reach all nodes, S proceeds to a new round.

Every node maintains the sequence number of the last PMT or PATH ERASE broadcast it has
seen in an integer variable seq and the set of all discovered paths in variable path. It also maintains
the sequence number of the last PDT it has seen in an integer variable seqPDT . If any node fails
and later comes back up, it requests its neighbors to send path and seq ; it initializes seqPDT to 0.

An intermediate node responds to a PDT only if it has received all PMT and PATH ERASE
broadcasts of previous rounds. In other words, if a node has missed out on any broadcast messages,
it does not participate in path discovery until it is up-to-date with all the broadcasts from S. Upon
receiving a PDT, it updates its seqPDT variable, appends itself to PDT.path and floods a copy of
the modified PDT to all neighbors in Gr.

Upon receiving a PMT or a PATH ERASE message, if an intermediate node has not received
all PMT and PATH ERASE broadcasts of previous rounds, it stores this message for future use.
When it has received all PMT and PATH ERASE broadcasts of previous rounds, it computes the
new paths, updates the variables seq and path, updates its routing table entries to reflect the new
path and reverses the direction, in Gr, of edges which are on the new path.

Algorithm for the source node S
Parameters: A bound τ on the round-trip delay between source and destination, and a bound δ on the
end-to-end propogation delay of a broadcast message.
Input: A list of neighbors in L and the desired number k of disjoint paths
Output: Up to k routing table entries corresponding k disjoint paths from S to T
1 num paths known := 0; seq := 0; path := ∅
2 while (true) {
3 if (num paths known < k)
4 seqPDT := seq + 1
5 send a copy of PDT〈S, T, seqPDT 〉 to all neighbors in Gr

6 wait for PDTAck broadcast with PDTAck.seq = seqPDT from T for τ units of time
7 meanwhile ignore PDTs for 〈S, T 〉
8 if PDTAck with PDTAck.seq = seqPDT arrives
9 seq := seq + 1; broadcast PMT
10 num paths known := num paths known + 1
11 compute the new set of paths and update path
12 find successor h from PMT.path and put H as the next hop in the routing table entry 〈S, T 〉
13 else seq := seq + 1; broadcast PMT〈null, seq〉
14 wait for δ units of time so that the PMT broadcast has reached every node
15 if ((num paths known = k) and LF is empty) wait until there is an entry in LF
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16 for every entry in LF
17 if the link failure affects one of the current paths (stored in path)
18 seq := seq + 1; broadcast PATH ERASE
19 num paths known := num paths known− 1
20 remove the corresponding path from path
21 remove corresponding next hop in the routing table for 〈S, T 〉 entry
22 wait for δ units of time so that the PATH ERASE broadcast has reached every node
23 remove entry from LF
24 }

Algorithm for the destination node T
Input: A list of neighbors in L
1 when a PDT arrives with a sequence number seq
2 if T has already broadcast PDTAck for seq, then ignore the PDT
3 else broadcast PDTAck

Algorithm for the intermediate node i
Input: A list of neighbors in L
Output: Next hop entry in the routing table for 〈S, T 〉
1 initially, seq := 0; seqPDT := 0; path := ∅
2 when a PDT arrives
3 if PDT.seq > seqPDT and PDT.seq = seq +1
4 append i to the PDT.path and send a copy of the modified PDT to all neighbors in Gr

5 seqPDT := PDT.seq
6 else if PDT.seq > seqPDT store it in FUTURE array
7 else discard it
8 when a PMT arrives
9 if PMT.seq = seq + 1
10 seq := seq + 1; compute the new set of paths and update path
11 if i is on PMT.path
12 find successor h and predecessor p from the PMT.path
13 L[h].direction := in //reverse edge 〈i, h〉
14 L[p].direction := out //reverse edge 〈p, i〉
15 put H as the next hop in I’s routing table for 〈S, T 〉 entry
16 if there are any entries in the FUTURE array which can now be processed
17 process them and remove them from the array
18 else store it in FUTURE array and request neighbors for missing previous broadcasts
19 when a PATH ERASE arrives
20 if PATH ERASE.seq = seq + 1
21 seq := seq + 1; remove the corresponding path from path
22 if i is on PATH ERASE.path
23 find successor h and predecessor p from the PATH ERASE.path
24 L[h].direction := out //reverse edge 〈i, h〉
25 L[p].direction := in //reverse edge 〈p, i〉
26 remove H as the next hop in I’s routing table for 〈S, T 〉 entry
27 if there are any entries in the FUTURE array which can now be processed
28 process them and remove them from the array
29 else store it in FUTURE array and request neighbors for missing previous broadcasts
30 when a neighboring link failure is discovered broadcast a LINK FAIL message
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6 Conclusion

This paper presents simple, distributed algorithms for the well-studied problem of finding disjoint
paths in networks. This problem has taken on new importance in light of its potential application to
the problem of routing in mobile networks, where maintaining route information under topological
changes is challenging. Our next step is to experimentally evaluate the performance of the proposed
algorithms.

In contrast to much of the empirical work that was proposed in recent years, our algorithm is a
simple distributed implementation of a proven sequential method. Although, in theory, the set of
disjoint paths found might not contain the shortest path, in practice our breadth-first search based
algorithms will likely result in paths with small link delays.

The messages used in algorithms in Section 4 are of a small fixed length. In case of the resilient
version, the size of messages during path computation is proportional to the path length. However,
unlike in source routing, the data packets need not carry path information. Our algorithm discovers
paths one at a time. The paths that have been found can be used for communication while others
are being discovered.
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