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Abstract

Abstract: An efficient heuristic is presented for the problem of finding a minimum-size k-
connected spanning subgraph of an (undirected or directed) simple graph G = (V, E). There
are four versions of the problem, and the approximation guarantees are as follows:

1/k],

1/k],
2/(k+1)],
4/\Vk].

The heuristic is based on a subroutine for the degree-constrained subgraph (b-matching) prob-
lem. It is simple, deterministic, and runs in time O(k|E|?). The analyses of the heuristics for
minimum-size k-node connected spanning subgraphs hinge on theorems of Mader.

For undirected graphs and k& = 2, a (deterministic) parallel NC version of the heuristic finds
a 2-node connected (or 2-edge connected) spanning subgraph whose size is within a factor of
(1.5 + €) of minimum, where € > 0 is a constant.

minimum-size k-node connected spanning subgraph of an undirected graph
minimum-size k-node connected spanning subgraph of a directed graph
minimum-size k-edge connected spanning subgraph of an undirected graph

L+
L+
L+
L+]

and minimum-size k-edge connected spanning subgraph of a directed graph

1 Introduction

Given an undirected or directed simple graph G = (V, E), an efficient approximation algorithm!? is
presented for the problem of finding a k-connected (k = 1,2, 3,...) spanning subgraph G’ = (V, E’)
that has the minimum number of edges. Let n and m denote |V| and |E|, respectively. There are
four versions of the problem, depending on whether G is a graph (i.e., an undirected graph) or a
digraph (i.e., a directed graph), and on whether the spanning subgraph G’ is required to be k-node
connected or k-edge connected. All four versions of the problem are NP-hard: the two problems on
graphs are NP-hard for k& > 2, and the two problems on digraphs are NP-hard for k > 1, [GJ 79].
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L An a-approzimation algorithm for a combinatorial optimization problem runs in polynomial time and delivers a
solution whose value is always within the factor « of the optimum value. The quantity « is called the approzimation
guarantee of the algorithm.



Previous results Results in this paper

Undirected Graphs Digraphs Undirected Graphs Digraphs
k-ECSS | 2 —[1/k] for k > 2 [K 96] | 1.61 for £k = 1 [KRY 96] 14+ 2/(k+1)] 14 [4/VE]
1.85 for k > 2 [KR 96] 2 for k> 2 improves for k£ > 3 | improves for k£ > 17

1+4/0(logn)/k [Ka 94]

k-NCSS | 1.5 for k=2 [GSS 93] | 1.61 for k = 1 [KRY 96] 14 [1/K] 1+ [1/K]

2for k>3 2fork > 2 improves for £ > 3 | improves for k > 2

Table 1: A summary of previous & new approximation guarantees for minimum-size k-edge con-
nected spanning subgraphs (k-ECSS), and minimum-size k-node connected spanning subgraphs

(k-NCSS).

1.1 Previous work

Results of Mader [Ma 71, Ma 72] (also see [Bo 78]) imply that every minimal’? k-edge connected
graph has at most kn edges, and every minimal k-node connected graph has at most kn edges.
Clearly, a k-connected (i.e., k-node connected or k-edge connected) graph has at least kn/2 edges,
since each node has degree > k. Similarly, every k-connected digraph has at least kn arcs (directed
edges) since each node has outdegree > k, and results of Edmonds [Ed 72] and Mader [Ma 85] imply
that every minimal k-connected digraph has at most 2kn arcs. These facts immediately imply a 2-
approximation algorithm for all four versions of the problem, since there is an easy polynomial-time
algorithm to find a minimal k-edge connected (or k-node connected) spanning subgraph of a given
graph or digraph. For graphs, recent algorithmic work gives another easy and efficient method for
finding a k-connected spanning subgraph whose size (i.e., number of edges) is at most kn. A k-edge
connected spanning subgraph (V, E’) is obtained by taking E' = F{UF,U. . .UF}, where F; (1 <7 <
k) is the edge set of a maximal (but otherwise arbitrary) spanning forest of (V, E\(F1U...UF;_4)),
see [Th 89, NI 92], and a k-node connected spanning subgraph (V, E’) is obtained similarly, but
now each F; is a maximal scan-first-search spanning forest, see [NI 92, FIN 93, CKT 93].

In the approximate solution of NP-hard combinatorial optimization problems, it often turns
out that finding a solution within a factor of two of optimum is almost trivial, but achieving
(asymptotically) better approximation guarantees needs a deeper understanding of the problem.
For example, consider the metric TSP, i.e., the Traveling Salesman Problem with edge weights
satisfying the triangle inequality. Finding a solution whose value is within a factor of two of optimum
is trivial. The Christofides heuristic [Ch 76] broke the 2-approximation barrier by employing a
powerful idea: matching.

Given a graph, consider the problem of finding a minimum-size 2-edge connected spanning sub-
graph (2-ECSS), or a minimum-size 2-node connected spanning subgraph (2-NCSS). Several recent
papers have focused on these two problems. Khuller & Vishkin [KV 94] achieved the first signifi-
cant advance by obtaining approximation guarantees of 1.5 and 1.66 for the minimum-size 2-ECSS
problem and the minimum-size 2-NCSS problem. Garg et al [GSS 93] improved the approximation
guarantee of the latter problem to 1.5. These algorithms are based on depth-first search (DFS),
and they do not imply efficient parallel algorithms for the PRAM model. Subsequently, Chong &

2A graph H is called minimal with respect to a property P if H possesses P, but for every edge e in H, H\e does
not possess P.



Lam [CL 95, CL 96] gave (deterministic) NC algorithms on the PRAM model with approximation
guarantees of (1.5+¢) and (1.66 + €) for the minimum-size 2-ECSS problem and the minimum-size
2-NCSS problem.

For graphs and the general minimum-size k-ECSS problem, first Karger [Ka 94] used random-
ized rounding to improve the approximation guarantee (for k large w.r.t. logn) to 1++/[O(logn)/k];
Karger’s algorithm is not deterministic but Las Vegas. Then Khuller & Raghavachari [KR 96] im-
proved the approximation guarantee (for all k) from 2 to (roughly) 1.85. They left open the problem
of improving on the approximation guarantee of two for the minimum-size k-NCSS problem.

For digraphs and the problem of finding a minimum-size 1-connected (i.e., strongly connected)
spanning subgraph, Khuller, Raghavachari and Young [KRY 96, KRY 95] gave a 1.61-approximation
algorithm. For digraphs and k > 2, there appears to have been no previous work on achieving ap-
proximation guarantees better than two.

1.2  An illustrative example

Here is an example illustrating the difficulty in improving on the 2-approximation guarantee for
the minimum-size k-connected spanning subgraph problem. Let the given graph G have n nodes,
where n is even. Suppose that the edge set of G, E(G), is the union of the edge set of the complete
bipartite graph Kj, (,,_1) and the edge set E,;; of an n-node, k-regular, k-edge connected (or k-node
connected) graph. For example, for £ = 2, E(G) is the union of E(Kj3 (,_2)) and the edge set of
a Hamiltonian cycle. A naive heuristic may return E(Kj, (,,_r)) which has size k(n — k), roughly
two times |E,p|. A heuristic that significantly improves on the 2-approximation guarantee must
somehow return many edges of E,;.

1.3 Results in this paper

Heuristics and approximation guarantees. This paper first presents a simple heuristic for
finding an approximately minimum-size k-NCSS of a given graph or digraph. An approximation
guarantee of 1+[1/k] is proved. A variant of the heuristic finds a small-size k-ECSS of a given graph
or digraph. For graphs and the minimum-size k-ECSS problem, the approximation guarantee is
1+4[2/(k+1)]. For digraphs and the minimum-size k-ECSS problem, the approximation guarantee
is 14 [4/vk]. Let G = (V, E) be the given graph. The heuristic has two steps. The first step finds
a minimum-size subgraph (V, M) of minimum-degree k (or k — 1) via a subroutine for the degree-
constrained subgraph (b-matching) problem. The second step adds an (inclusionwise) minimal
edge set F' C E\M such that the resulting graph (V, M U F) is either k-node connected or k-edge
connected, as required. Heuristics of this type have been considered by other researchers, but we
were not aware of this when the preliminary version of this paper (Proc. IEEE FOCS’96) appeared.
Subsequently, S. Khuller (personal communication, October 1996) and T. Watanabe (personal
communication, October 1996) informed that they had examined or implemented heuristics of this
type. One of the contributions of this paper is to refine the general heuristic to the four minimum-
size k-CSS problems discussed above, and to give nearly tight analyses of the four approximation
guarantees. The running time of the heuristic is O(k|E|?), and for graphs the running time improves
to O(k®|V|> + |E|'®(log|V])?). The analyses on graphs/digraphs of the minimum-size k-NCSS
heuristic are based on theorems of Mader [Ma 72, Ma 85]. In the context of augmenting the node
connectivity of graphs and digraphs, the first application of Mader’s theorems is due to Jordan
[Jo 95, Jo 93]. Two key lemmas in our analyses, namely, Lemmas 3.3 and 3.19, are inspired by
similar results of Jordan, namely, [Jo 95, Lemma 3.3] and the following paragraph in [Jo 95] and
Lemma 2.6 and Corollary 2.7 in [Jo 93]. In the context of approximation algorithms for minimum-
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Figure 1: Illustrating the 2-NCSS heuristic on a 2-node connected graph G = (V,E); n = |V| is
even, and k = 2. Adapted from Garg, Santosh & Singla [GSS 93, Figure 7].

(a) A minimum-size 2-node connected spanning subgraph has n + 1 edges, and is indicated by
thick lines (the path vy, vs,...,v, and edges viv7 and e. = vzv,,).

(b) The first step of the heuristic in Section 3.1 finds a minimum-size M C E such that every node
is incident to > (k — 1) = 1 edges of M. The thick lines indicate M it is a perfect matching. The
second step of the heuristic finds an (inclusionwise) minimal edge set F' C E such that (V, M U F)
is 2-node connected. F' is indicated by dashed lines — the “key edge” e, is not chosen in F.
|MUF|=1.5n—5.

(c) Another variant of the heuristic first finds a minimum-size M C F such that every node is
incident to > k = 2 edges of M. The thick lines indicate M (M is the path vy, v, ..., v, and edges
V1U3, Vp_2Vy). The second step of the heuristic finds the edge set F' C E indicated by dashed lines
— the “key edge” e, is not chosen in F. (V, M U F) is 2-node connected, and for every edge vw in
F, (V,M U F)\vw is not 2-node connected. |M U F| = 1.5n — 3.

size k-connected spanning subgraph problems, Chong & Lam [CL 95] appear to be the first to use
matching.

For graphs, the heuristic finds a 2-node connected or 2-edge connected spanning subgraph whose
size is within a factor of 1.5 of the minimum size. A parallel (deterministic) version gives a (1.5+¢)-
approximation NC algorithm. Similarly, a sequential linear-time version gives an approximation
guarantee of (1.5 ¢).

Independently of this paper, and using different methods, Chong and Lam [CL 96b] have also
obtained a parallel (deterministic) (1.5 + €)-approximation NC algorithm for the minimum-size 2-
NCSS problem on graphs. Recently, Fernandes [Fe 97, Theorem 5.1] showed that the minimum-size
2-ECSS problem on graphs is MAX SNP-hard.

Table 1 summarizes the approximation guarantees obtained in this paper for the four versions
of the problem, and compares these with the previous best approximation guarantees. Figure 1
illustrates the working of the heuristic on an example.



a (V M U F) is 2-node connected, |F|= |V| -4

Figure 2: An illustration of Lemma 3.3 (a corollary of Mader’s theorem, Theorem 3.2) and of
Theorem 4.3. An n-node graph of minimum degree k = 2, (V, M), is indicated by solid lines.

(a) The dotted lines indicate an (inclusionwise) minimal edge set F' such that (V, M U F) is 2-node
connected. F has size n — 4, for n > 4. By Lemma 3.3, the maximum size of F' over all possible M
is <n-—1.

(b) The dotted lines indicate an (inclusionwise) minimal edge set F' such that (V, M UF) is 2-edge
connected. F' has size > 2(n — 6)/3, for n > 6. By Theorem 4.3, the maximum size of F over all
possible M is <2(n —1)/3.

(c) The dashed lines indicate a laminar family of tight node sets F covering the F-edges of the
2-edge connected graph in (b). The proof of Theorem 4.3 is based on examining M, F' and F.




Contributions to approximation algorithms for “uniform” network design. As dis-
cussed above, the subarea of network design with uniform edge costs and uniform connectivity
requirements has attracted a fair amount of recent interest in theoretical computer science, e.g.,
the references cite ten papers from this subarea, as well as a survey paper [K 96]. This paper
takes up four central questions from this subarea, and settles them in the sense that reasonably
good approximation guarantees are derived based on a simple heuristic. (For the sake of referees
who may have to make an extrinsic comparison, we mention that this paper subsumes some of
the main results in eight of the recent papers cited in the references.) To achieve the approxi-
mation guarantees, the paper has to rely on some deep areas of graph theory and combinatorial
optimization.

Combinatorial contributions. The paper has two combinatorial results that may be of
independent interest. The first is Theorem 3.5 that gives a new lower bound on the size of a k-edge
connected spanning subgraph. The proof relies on the Gallai-Edmonds decomposition theorem of
matching theory. Theorem 3.5 is related to a result of R. P. Gupta: a bipartite graph of minimum
degree k has k edge-disjoint edge covers. Theorem 3.5 implies some interesting results in matching
theory such as Petersen’s theorem (see Corollary 3.11), and the following: “except for cycles of
odd length, every 2-edge connected graph has two edge-disjoint edge covers” (see Corollary 3.12).
The second combinatorial result of independent interest is Theorem 4.3. This theorem gives an
asymptotically tight upper bound of k|V|/(k + 1) on the size of an (inclusionwise) minimal edge
set F' such that (V,M U F) is a k-edge connected (simple) graph, where (V, M) is a graph of
minimum degree > k. The proof makes use of a laminar family of tight node sets that covers F.
The proof is long, and at several points, novel arguments have to be developed. Theorem 4.3 is
related to a theorem of Mader on “critical cycles” in a k-node connected graph, see Theorem 3.2.
Apparently, Mader’s theorem has no analogue for k-edge connected graphs; for & = 2, this can be
seen from the example in Figure 5; the example generalizes to all £ > 2. However, there is one
implication of Mader’s theorem that is an analogue of Theorem 4.3: If (V, M) is as above, and
F is an (inclusionwise) minimal edge set such that (V, M U F') is a k-node connected graph, then
|F| < |V| -1 (see Lemma 3.3). Both the bounds (k|V|/(k + 1) in Theorem 4.3, and |V| — 1 in
Lemma 3.3) are tight up to an additive term of (k+1), for all £ > 2. Figure 2 has relevant examples
for k = 2, and these examples generalize for all £ > 2. Although Theorem 4.3 and Lemma 3.3 are
analogous, the two results seem to be focusing on two essentially different combinatorial structures,
and neither result implies the other one.

Organization of the paper. The rest of the paper is organized as follows. Section 2 has
definitions and notation. Section 3 presents the heuristic for approximating a minimum-size k-node
connected spanning subgraph of a graph or a digraph, and separately analyzes the approximation
guarantees on graphs and digraphs. Section 4 describes and analyzes the heuristic for approximating
a minimum-size k-edge connected spanning subgraph of a graph or a digraph. Section 5 has
conclusions, including a discussion of the relationship to extremal graph theory.

2  Definitions and notation

For a subset S’ of a set S, S\S’ denotes the set {2 € S:z ¢ S'}.

This paper considers finite simple graphs and digraphs, i.e., the graphs/digraphs have no loops
nor multiedges. (But, Propositions 3.9 and 3.10 do allow multiedges.) Let G = (V, E) be a graph
or a digraph. V(G) and E(G) stand for the node set and the edge set of G. By the size of G we
mean |E(G)|. First, suppose that G is a graph. An edge incident to nodes v and w is denoted
by vw. For a subset M of E and a node v, we use degj,(v) to denote the number of edges of M



incident to v; deg(v) denotes degg(v).

A node is said to be covered by an edge set M if the node is incident to at least one edge of
M; otherwise, the node is uncovered by M. An edge cover is a set of edges that covers all the
nodes. A matching of a graph G = (V, E') is an edge set M C E such that degy,(v) < 1, Vv € V;
furthermore, if every node v € V has degy,;(v) = 1, then M is called a perfect matching. A graph
G is called factor-critical if for every node v € V', there is a perfect matching in G\v, see [LP 86].

An z+y path refers to a path whose end nodes are # and y. We call two paths openly disjoint
if every node common to both paths is an end node of both paths. Hence, two (distinct) openly
disjoint paths have no edges in common, and possibly, have no nodes in common. A set of k& > 2
paths is called openly disjoint if the paths are pairwise openly disjoint. For a node set S C V(G),
d¢(S) denotes the set of all edges in E(G) that have one end node in S and the other end node in
V(G)\S (when there is no danger of confusion, the notation is abbreviated to 6(.5)); 6(.9) is called
a cut, and by a k-cut we mean a cut that has exactly k edges.

A graph G = (V, E) is said to be k-edge connected if |V| > k4 1 and the deletion of any set
of < k edges leaves a connected graph. A graph G = (V, FE) is said to be k-node connected if
|[V| > k + 1, and the deletion of any set of < k nodes leaves a connected graph.

Let G = (V,E) be a digraph. An arc (directed edge) with start node v and end node w is
denoted (v, w). For M C E and a node v, degyy ,,+(v) (degps;,(v)) denotes the number of arcs of
M with start node v (end node v). For a node set S C V, §0ut(S) (6in(S)) denotes the set of arcs
with start nodes in S and end nodes in V'\S (end nodes in S and start nodes in V'\ S). The digraph
is called strongly connected (1-connected) if for every (ordered) pair of nodes v,w, there exists a
directed path from v to w. The digraph is called k-edge connected if |V| > k + 1, and the deletion
of any set of < k arcs leaves a strongly-connected digraph. The digraph is called k-node connected
if |[V| > k+ 1, and the deletion of any set of < k nodes leaves a strongly-connected digraph.

An edge vw (arc (v,w)) of a k-node connected graph G (digraph G) is called critical w.r.t.
k-node connectivity if G\vw (G\(v,w)) is not k-node connected. Similarly, we have the notion of
critical edges (arcs) w.r.t. k-edge connectivity.

Let G = (V, E) be a graph, and let b : V' — Z assign a nonnegative integer b, to each node v €
V. The perfect b-matching (or perfect degree-constrained subgraph) problem is to find an edge set
M C E such that each node v has degy;(v) = b,. The maximum b-matching (or maximum degree-
constrained subgraph) problem is to find a maximum-cardinality M C E such that each node v has
degjs(v) < b,. The b-matching problem can be solved in time O(|E|}*(log |V |)!}*\/a([E], | E])), see
[GaTa 91, Section 11] (for our version of the problem, note that each edge has unit cost and unit
capacity, and each node v may be assumed to have 0 < b, < deg(v)). Also, see [Ge 95, Section 7.3]
and [Ga 85].

3 A (1 + 7)-approximation algorithm for minimum-size k-node
connected spanning subgraphs

This section presents the heuristic for finding an approximately minimum-size k-node connected
spanning subgraph (abbreviated k-NCSS), and proves an approximation guarantee of 1 4 [1/k].
First, we focus on graphs, and then turn to digraphs. The analysis of the heuristic for graphs hinges
on a deep theorem of Mader [Ma 72, Theorem 1]. Given a graph G = (V, E), a straightforward
application of Mader’s theorem shows that the number of edges in the k-NCSS returned by the
heuristic is at most

(IV] = 1)+ min{|M| : M C E and degy;(v) > (k— 1), Yv € V},



see Lemma 3.3 below. An approximation guarantee of 14+[2/k] on the heuristic follows, since the
number of edges in a k-node connected graph is at least k|V'|/2, by the “degree lower bound”, see
Proposition 3.4. Often, the key to proving improved approximation guarantees for (minimizing)
heuristics is a nontrivial lower bound on the value of every solution. We improve the approximation
guarantee from 14+[2/k] to 14[1/k] by exploiting a new lower bound on the size of a k-edge connected
spanning subgraph, see Theorem 3.5:

The number of edges in a k-edge connected spanning subgraph of a graph G = (V, E)
is at least ||V'|/2] + min{|M| : M C E and degy;(v) > (k— 1), Vo € V}}.

The analysis of the heuristic for digraphs is similar, and hinges on another theorem of Mader
[Ma 85, Theorem 1], which may be regarded as the generalization of [Ma 72, Theorem 1] to digraphs.
An approximation guarantee of 1+ [1/k] is proved on the digraph heuristic by employing a simpler
version of Theorem 3.5, namely Proposition 3.8, to give a lower bound on the number of edges in
a solution.

Assume that the given graph or digraph G = (V, E) is k-node connected, otherwise, the heuristic
will detect this and report failure.

3.1 Undirected graphs

Let E* C E denote a minimum-cardinality edge-set such that the spanning subgraph (V, E*) is k-
edge connected. Note that every k-node connected spanning subgraph (V, E’) (such as the optimal
solution) is necessarily k-edge connected, and so has |E’| > |E*|.

The heuristic has two steps. The first finds a minimum-size spanning subgraph (V, M), M C E,
whose minimum degree is (k — 1), i.e., each node is incident to > (k — 1) edges of M. Clearly,
|M| < |E*|, because (V, E*) has minimum degree k, i.e., every node is incident to > k edges of
E*. To find M efficiently, we use the algorithm for the maximum degree-constrained subgraph
(b-matching) problem. Our problem is:

min{| M| : degps(v) > (k—1), Vv € V, and M C E}.

To see that this is a b-matching problem, consider the equivalent problem of finding the complement
M of M w.r.t. E, where M = E\M:

max{|M]| : degz;(v) < deg(v) +1—k, Vv € V, and M C E}.

The b-matching problem can be solved in time O(|E|**(log|V])?) see [GaTa 91], hence this running
time suffices to find M.

The second step is equally simple. We find an (inclusionwise) minimal edge set F' C E\M such
that M U F gives a k-node connected spanning subgraph, i.e., (V, M U F) is k-node connected and
for each edge vw € F, (V, MU F)\vw is not k-node connected. Recall that an edge vw of a k-node
connected graph H is critical (w.r.t. k-node connectivity) if H\vw is not k-node connected. The
next result characterizes critical edges.

Proposition 3.1 An edge vw of a k-node connected graph H is not critical iff there are at least
k+ 1 openly disjoint visw paths in H (including the path vw ).

To find F efficiently, we start with ' =  and take the current subgraph to be G = (V, E)
(which is k-node connected). We examine the edges of E\M in an arbitrary order, say, ey, es, . . ., €
(£ = |E\M]|). For each edge e; = v;w;, we attempt to find (k + 1) openly disjoint v;<>w; paths



in the current subgraph. If we succeed, then we remove the edge e; from the current subgraph
(since e; is not critical), otherwise, we retain e; in the current subgraph and add e; to F' (since e;
is critical). At termination, the current subgraph with edge set M U F is k-node connected, and
every edge vw € F is critical. The running time for the second step is O(k|E|?).

The proof of the next lemma hinges on a theorem of Mader [Ma 72, Theorem 1]. For an English
translation of the proof of Mader’s theorem see Lemma 1.4.4 and Theorem 1.4.5 in [Bo 78].

Theorem 3.2 (Mader [Ma 72, Theorem 1]) In a k-node connected graph, a cycle consisting
of critical edges must be incident to at least one node of degree k.

Lemma 3.3 |F| <|V|-1.

Proof: Consider the k-node connected subgraph returned by the heuristic, G' = (V, E’), where
E'= MUF. Suppose that F' contains a cycle C'. Note that every edge in the cycle is critical, since
every edge in F is critical. Moreover, every node v incident to the cycle C has degree > (k+ 1) in
G, because v is incident to two edges of C, as well as to at least (k — 1) edges of M = E'\F. But
this contradicts Mader’s theorem. We conclude that F' is acyclic, and so has < |V| — 1 edges. The
proof is done. a

Proposition 3.4 Let G = (V, E) be a graph of node connectivity > k. The heuristic above finds a
k-node connected spanning subgraph (V, E') such that |E'| < (14 [2/k])|Eopt|, where |Eop| denotes
the cardinality of an optimal solution. The running time is O(k3|V|2 + |E|*-5(log |V |)?).

Proof: The approximation guarantee follows because |E,,| > (k[V]/2), so

(M| +|F| _ [M|  |F] Vi
- + <14
[Boptl  [Eopt| | Eopil (k[V1/2)

=1+ [2/k].

We have already seen that M can be found in time O(|E|!*(log |[V|)?), and F can be found in time
O(k|E|?). The running time of the second step can be improved to O(k%|V|?) as follows: we run a
linear-time preprocessing step to compute a sparse certificate E of G for k-node connectivity, i.e.,
E CE, |E’| < k|V|, and for all nodes v, w, (V, E’) has k openly disjoint v<>w paths iff G has k
openly disjoint v<>w paths, see [NI 92, FIN 93, CKT 93]. We compute M as before, by running
the first step on G. To find the set FF C E\M, we run the second step on E U M rather than on
E, and for each edge v;w; € E’\M, we attempt to find (k + 1) openly disjoint v;<>w; paths in the
current subgraph of (V, E U M). The second step runs in time O(k|E U M|?) = O(k*|V|?), since
|EU M| =O0(k|V]). O

To improve the approximation guarantee to 1 + [1/k], we present an improved lower bound
on |E*|, where E* denotes a minimum-cardinality edge set such that G* = (V, E*) is k-edge
connected. Suppose that E* contains a perfect matching Py (so |Py| = n/2). Then |E*| > (n/2) +
min{|M*| : M* C E, degy+(v) > (k—1), Vv € V}. To see this, focus on the edge set M’ =
E*\ Py. Clearly, every node v € V is incident to at least (k — 1) edges of M’, because degg«(v) > k
and degp (v) = 1. Since M™* is a minimum-size edge set with degys(v) > (k— 1), Vv € V, we have
|M*| < |M'| = |E*| — (n/2). The next theorem generalizes this lower bound to the case when E*
has no perfect matching. The proof is given in the next subsection (Section 3.2), after developing
some preliminaries.

Theorem 3.5 Let G* = (V, E*) be a graph of edge connectivity > k > 1, and let n denote |V|. Let
M* C E* be a minimum-size edge set such that every node v € V is incident to > (k — 1) edges of
M*. Then |E*| > |M*| + [n/2].



Theorem 3.6 Let G = (V, E) be a graph of node connectivity > k. The heuristic described above
finds a k-node connected spanning subgraph (V, E') such that |E'| < (14 [1/k])|Eopt|, where |Eqpl
denotes the cardinality of an optimal solution. The running time is O(k*|V | + |E|**(log |V )?).

Proof: The approximation guarantee of 1 + [1/k] follows easily from Theorem 3.5, using an
argument similar to Proposition 3.4. We have E' = M U F, where |F| < (n — 1). Moreover,
since M is a minimum-size edge set with degy,(v) > (k — 1), Yo € V, Theorem 3.5 implies that
| M| < |Eopt| — [n/2] < |Eopt| — (n—1)/2. Hence,

M|+ [F| _ |Bopel = (n=1)/2+4 (n=1) _ | n/2
|E0pt| N |E0pt| N |E0pt|

< 1+ [1/k],

where the last inequality uses the “degree lower bound”, |E | > kn/2.
The running time analysis is the same as that in Proposition 3.4. a

3.2 A lower bound for the size of a k-connected spanning subgraph and Gupta’s
theorem on bipartite graphs

This subsection gives a proof of Theorem 3.5. This theorem is used in the previous subsection to
prove an approximation guarantee of 1+ [1/k] for a minimum-size k-NCSS. Theorem 3.5 gives the
following new lower bound on the size of a k-ECSS:

Let G* = (V, E*) be a k-edge connected graph (k > 1), and let n denote |V|. Let
M* C E* be a minimum-size edge set such that every node v € V is incident to
> (k— 1) edges of M*. Then |E*| > |M*|+ |n/2].

First, a theorem of R. P. Gupta on bipartite graphs is recalled. For the special case of bipartite
graphs, (a stronger form of) the lower bound in Theorem 3.5 follows easily from Gupta’s theorem,
see Proposition 3.8. This proposition is used in Section 3.4 to prove an approximation guarantee
of 1 4 [1/k] for a minimum-size k-NCSS of a digraph. Gupta’s theorem does not apply to non-
bipartite graphs. The proof of Theorem 3.5 (for arbitrary graphs) relies on the Gallai-Edmonds
decomposition theorem of matching theory. When the Gallai-Edmonds decomposition of the graph
is “nontrivial”, one can define a bipartite graph B that partially represents the decomposition.
The proof of Theorem 3.5 is completed by examining B. One way is to prove a variant of Gupta’s
theorem (see Proposition 3.9), and then apply it to B. This is described below. Readers interested
in a detailed study of the proofs in this subsection may find it useful to review two results in
matching theory, namely, the Gallai-Edmonds decomposition theorem [LP 86, Theorem 3.2.1], and
the Hungarian method for bipartite matching [LP 86, Lemma 1.2.2].

Theorem 3.7 (Gupta [Gu 67]) Let B = (X UY, E) be a bipartite graph with minimum degree
k. Then there exists a partition of the edge set of B, namely E, into k sets E1, E,, ..., E}, such
that each node v € X UY 1is incident to at least one edge from each set E;, 1 < i <k.

For an elegant proof, see the solutions to Problems 10-12 in [L 93, Chapter 7]. Also, see [BM 76,
Problem 6.1.6]. The next result strengthens Theorem 3.5 for bipartite graphs. The proof is via
Gupta’s theorem. Another brief proof follows from Proposition 3.10.

Proposition 3.8 Let B* = (X UY,E*) be a bipartite graph with minimum degree > k. Let
M* C E* be a minimum-size edge set such that every node v € X UY 1is incident to > k — 1 edges
of M*. Then |E*| > |M*|+ (| X UY]/2).
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Proof: Apply Gupta’s theorem to E*, and let Eq, Es, ..., E} be the partition of E*. Focus on
the set, say E}, that has the maximum cardinality. Clearly, |Ex| > |E*|/k > | X UY|/2. Now,
consider M’ = E*\ E}, and observe that each node v € X UY is incident to > (k — 1) edges of M’,

because Gupta’s result shows that v is incident to some edge from each of the remaining (k — 1)
sets Fq, Es, ..., Ex_1. The proof is done since |E*| — (| X UY|/2) > |M’'| and |M'| > |M*|. O

Proposition 3.8 does not generalize to nonbipartite graphs B*, even if we strengthen the con-
dition “B* has minimum degree > k” to “B* is k-edge connected”. For example, let £ = 2, and
let B* = K3, the complete graph on three nodes. Then M* is a minimum edge cover of K3, and
has size two. But then |E*| = |[M*|+1 < |M*| 4+ (|V|/2). The generalization of Proposition 3.8
fails because B* is a 2-edge connected, 2-regular graph such that for every edge cover M*, the
edge-complement of M* in B*, (V, E* — M*), has an isolated node, so it does not have an edge
cover. For every even integer k > 2, there is an infinite family of nonbipartite graphs such that
the generalization of Proposition 3.8 fails. Take B* to be a k-edge connected, k-regular graph with
an odd number of nodes n. Then M* has size at least (1 + (k — 1)n)/2, so (V, E* — M*) has an
isolated node, and hence has size < n/2. It can be seen that the examples in this paragraph are
factor-critical graphs.

The next proposition may be regarded as a variant of Gupta’s theorem. Note that the bipartite
graph B in the next proposition may have minimum degree one, and B may have multiple copies
of an edge.

Proposition 3.9 Let B = (X UY,E) be a bipartite (loopless) multigraph with node bipartition
X UY. Let each node y € Y have deg(y) > k,and let B have a matching of size |X|. Then B has
an edge cover J such that each node y € Y is incident to exactly one edge of J, and each node
z € X s incident to either exactly one edge of J or at least (k — 1) edges of E\J.

Proof: See Figure 3(b) for an illustration. Let Jy be a matching of size |X|. The edge cover
J is constructed iteratively, starting with J' = Jy and J” = . Throughout, J’ is a matching of
the current B, and at the end of the construction, J' U J” is an edge cover of the original B that
satisfies the proposition.

If J/UJ” is an edge cover, i.e., if J' is a perfect matching, then the proof is completed by taking
J = J' ' UJ”. Clearly, the degree requirements in the proposition hold. Otherwise, if J' U J” is not
an edge cover, the size of J' UJ” is increased by one such that one more Y-node is covered and the
degree requirements in the proposition are maintained. Let v € Y be a node that is not covered by
J'UJ". Let T be the node set of the maximal J'-alternating tree that contains v. That is, a node
w is in T iff there exists a J'-alternating path between v and w. (For a matching J', recall that a
J'-alternating path means a path whose edges are alternately in J’ and not in J'.)

Claim: There is a node z € TN X with deg(z) > k4 1.

To prove this claim, note that (i) |[TNY| = |T'N X|+ 1 (since each node y € T NY except v is
incident to an edge of J'), and (ii) for every node y € T NY, every incident edge zy has the other
end node z in T'N X (otherwise,  can be added to 7', and so T is not maximal). By assumption,
each node y € T NY has deg(y) > k, hence, (i), (ii), and the pigeon-hole principle guarantee that
there is a node ¢ € TN X with deg(z) > k. This proves the claim.

Let #z be the J'-edge incident to z, i.e., « is matched to z by J’. This edge is (permanently)
added to the edge cover J by taking J” = J” U{zz}. The node z is deleted from B. Since z € T,
there exists a J'-alternating path between v and z (by definition of T'). Let this path be P’. The
matching J' is updated by switching alternate edges along P’ i.e., J' is replaced by the symmetric
difference of J’ and E(P’). Note that the current B (with node z deleted) has a matching of size
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Dy

Figure 3: An illustration of the proofs of Theorem 3.5 and Propositions 3.9, 3.10.

(a) G = (V,E)is a 2-edge connected graph (k = 2), and the Gallai-Edmonds decomposition is
given by A = A(G) = {a1, a2, a3,a4}, and D = D(G) = V(D1)UV(D2) UV (D3)UV(Dy4) UV (D5) U
V(Deg). The odd (factor-critical) components of G\A are Dy, ..., Ds.

(b) The bipartite multigraph B in the proofs of Propositions 3.9, 3.10. In Proposition 3.10, B
is obtained from G by deleting the nodes in V\(A U D) and the edges in EF(A), and shrinking
Dy, ..., Dg into single nodes. In B, note that deg(D;),...,deg(Dg) > k = 2, and there is a match-
ing J' of size |A| = 4. J’ is indicated by dashed lines, J' = {a1D1, a2 D2, a3D4, a4 D5 }.

In the construction of Proposition 3.9, the 1st iteration chooses, say v = Ds. Then T =
{Ds,as,Ds,a1, D1}, and ¢ = a3 € TN A has degree > k+1 = 3. The edge a» D is added to J”, the
node D, is deleted, and in J’, as D is replaced by asDs. Finally, J' = {a; D1, asDs, asDg, asDs},
J" ={asDs,a3D4}, and J = J' U J” is the required edge cover.

(¢) In G, J maps to an edge set J. J is extended to the required edge cover P of G by adding a
perfect matching on the nodes of G not incident to J. P is indicated by dashed lines.
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|X |, namely J’, and has deg(y) > k, for all nodes y € V(B)\X. Therefore, the hypothesis of the
proposition continues to hold.

The above step is repeated till J' U J” covers all nodes of B. Finally, J is taken to be J U J".
The construction guarantees that J satisfies the degree requirements in the proposition. O

Recall the Gallai-Edmonds decomposition theorem of matching theory, [LP 86, Theorem 3.2.1].
For every graph H, there is a partition of V/(H) into a set of (matching) noncritical nodes D(H) and
a set of (matching) critical nodes V\D(H) (i.e., D(H) consists of all nodes that are left uncovered
by some maximum matching of H). The partition is “trivial” if either H has a perfect matching, or
if H is factor-critical: in the first case, D(H) = 0, and in the second case, D(H) = V(H). Let A(H)
be the set of critical nodes of H that are adjacent to one or more noncritical nodes of H. Possibly,
A(H) is the empty set. When there is no danger of confusion, we use A and D instead of A(H)
and D(H). Let def(H) denote the deficiency of H, i.e., the number of nodes that are not covered
by a maximum matching of H. (So, def(H) = |V (H)| — 2|P|, where Py, is a maximum matching
of H.) The Gallai-Edmonds decomposition theorem shows that in the graph H\A, the noncritical
nodes D form ¢ = |A(H)|+ def(H) odd components Dy, Ds, ..., Dy, ie.,each D; (i=1,...,q)is a
connected component of H\ A with V(D;) C D(H) and |V (D;)| odd. Moreover, every one of these
odd components D; is factor-critical.

The next result is a generalization of Proposition 3.9.

Proposition 3.10 Let G be a graph, and let D = D(G) and A = A(G) be the node sets in
the Gallai-Edmonds decomposition. Let ¢ = |A(G)| + def(G), and let Dy, D, ..., D, be the odd
components of G\A. If every D; gives a cut containing at least k edges, i.e., if §(V(D;)) has size
>k fori=1,...,q, then G has an edge cover P such that each node in V(G)\A is incident to
exactly one edge of P, and each node in A is incident to either exactly one edge of P or at least

(k — 1) edges of E(G)\P.

Proof: See Figure 3 for an illustration. The proof follows easily by applying Proposition 3.9 to a
bipartite graph associated with the Gallai-Edmonds decomposition.

If def(G) = 0, then the proof is done: take P to be a perfect matching of G. Otherwise,
def(G) > 0, and so D # (. Suppose that A = (. Then every component D; of G is factor-
critical, but this violates the condition on |§(V(D;))|. Hence, A is nonempty. Clearly, every edge in
§(V(Dy)) (i =1,...,q) has one end node in A and the other in D;. Let G[AU D] be the subgraph of
G induced by AUD. Let B = (X UY,E’), X = A, be the bipartite (loopless) multigraph obtained
from G[A U D] by deleting all edges with both end nodes in A and by shrinking the components
Dy, D, ..., D, of GIAUD]\ A to single nodes. The shrunk nodes are also called Dy, D, ..., D,, and
soY = {Dy,D,,...,D,}. B has > k edges incident to each of the shrunk nodes Dy, Ds, ..., Dy,
since in G each of the cuts 6(V(D;)) (¢=1,...,q) has > k edges. Moreover, B has a matching of
size | X | = | A|, by the Gallai-Edmonds decomposition theorem. Therefore, B satisfies the conditions
in Proposition 3.9. By the proposition, B has an edge cover J satisfying the degree requirements
in the proposition; note that each node D; € Y is incident to exactly one edge of J. Let J denote
a set edges of G that corresponds to J, i.e., for each edge ap,D; € J withap, € X = A, D; €Y,
there is an edge apw; € J such that (in G) w; is a node in D; and w; is adjacent to ap. Let V(f)
be the set of nodes of G incident to edges in J, ie., V(J) = AU {w; € V(D;):4=1,...,¢}. By
the Gallai-Edmonds decomposition theorem, G\V(f) has a perfect matching P. To see this, note
that each component of G\V(j) is either an even component of G\ A or is obtained by deleting one
node from an odd (factor-critical) component of G\ 4; in either case, the component has a perfect

matching.
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Take P = J U P. Clearly, P is an edge cover of GG such that each node v € V\ A is incident to
exactly one edge of P. Moreover, by Proposition 3.9, every node in A is incident to either exactly
one edge of P or to > (k — 1) edges of E\P. a

Proof: (Theorem 3.5) See Figure 3 for an illustration. We construct an appropriate edge set
P* such that |P*| > [n/2] and every node v € V is incident to > (k — 1) edges of E*\P*. In
the statement of Theorem 3.5, note that M* is a minimum-size edge set such that (V, M*) has
minimum degree (k — 1). Hence, |[E*\P*| > |M*|. The theorem follows immediately from the
existence of the edge set P*, because |E*| = |[E*\P*| + |P*| > |[E*\P*| + |n/2] > |M*| + |n/2].

If the size of a maximum matching of G* is > (n — 1)/2, i.e., if G* has a matching that leaves
at most one node uncovered, then we take P* to be a maximum matching. (This handles the case
when G~ is a factor-critical graph.)

To handle the case when def(G*) > 2, we apply Proposition 3.10 to G*, noting that G* satisfies
the conditions in the proposition. (Since G* is k-edge connected, deg(v) > k, Vv € V, and every
node set S CV, 0 # S # V, has |6(S)| > k.) We take P* to be the edge cover P guaranteed by
the proposition. Since P* is an edge cover of G*, |P*| > n/2. Moreover, (V, E*\ P*) has minimum
degree > k — 1 by the proposition and the fact that G* has minimum degree > k. The theorem
follows. a

We mention two corollaries of Theorem 3.5/Proposition 3.10, though these are not relevant to
the main theme of the paper.

Corollary 3.11 (Petersen’s Theorem) A 3-regular graph without cut edges has a perfect match-
mg.

Proof: Let G* = (V, E*) be the graph, and let n = |V|. Clearly, n is even, and |E*| = 3n/2. The
key point is that every node set S of odd cardinality (i.e., S C V and |S| odd) has |§(.S)| > 3 since
|6(S)| is odd (since 3|S| — 2|E(S)|is odd) and is > 2. Suppose that G* has no perfect matching.
Then def(G*) > 0, and so in the Gallai-Edmonds decomposition we have D(G*) # 0; moreover, G*
is not factor-critical (n is even) so A(G*) # 0. Applying Proposition 3.10 with k& = 3 shows that
G* has an edge cover P such that every node is incident to > (k — 1) = 2 edges of M = E*\P.
Clearly, |P| > n/2, since P is an edge cover, and |M| = |E*\P| > n, since (V, M) has minimum
degree 2. Since |E*| = |P|+|M| = 3n/2, we have |P| = n/2 and |M| = n. Therefore, P is a perfect
matching of G*. O

Corollary 3.12 Let G = (V, E) be a 2-edge connected graph. G has two edge-disjoint edge covers
iff G is not a cycle of odd length.

Proof: If G is an odd-length cycle, then it does not have two edge-disjoint edge covers.

Suppose that G is not a cycle of odd length. If G has a perfect matching P, then clearly P
and E\P are edge-disjoint edge covers of G. Suppose that G is factor-critical and has a node v
with deg(v) > 3. Let w be a neighbour of v. Now G\w has a perfect matching, say P,. Then
P = Py U {vw} is an edge cover of G such that (V, E\P) has an edge cover. Otherwise, G is not
factor-critical and has no perfect matching. Then Proposition 3.10 gives an edge cover P such that
E\P is an edge cover. O
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3.3 Minimum-size 2-connected spanning subgraphs of undirected graphs:
a parallel (1.5 + ¢)-approximation algorithm

This subsection focuses on the design of an efficient parallel algorithm and a linear-time sequential
algorithm for the problem of finding a minimum-size 2-node connected (2-edge connected) spanning
subgraph of a graph. Let € > 0 be a constant, independent of |[V(G)|. A deterministic parallel
version of the main heuristic runs in NC and achieves an approximation guarantee of (1.5 + ¢€),
whereas a randomized N C version achieves an approximation guarantee of 1.5. A sequential linear-
time version of the main heuristic achieves an approximation guarantee of (1.5+¢). The proof of the
1.5 approximation guarantee in this subsection again hinges on Mader’s theorem (Theorem 3.2),
but instead of employing the lower bound in Theorem 3.5, we employ a nice lower bound result
due to Chong and Lam (Proposition 3.14).

The heuristic for a minimum-size 2-NCSS described below can be used to find a 1.5-approximation
of a minimum-size 2-ECSS. For this, we run a preprocessing step on the given graph G = (V, E),
which is assumed to be 2-edge connected, to partition the edge set into blocks (maximal 2-node
connected subgraphs). Then separately for each block, we run our heuristic for a minimum-size
2-NCSS. For a block, the optimal 2-ECSS may not be 2-node connected, nevertheless, the lower
bound used by the 2-NCSS heuristic applies to 2-ECSS too, so the edge set found by our algorithm
will have size within 1.5 times the minimum size of a 2-ECSS.

Consider the problem of approximating a minimum-size 2-NCSS. Assume that the given graph
G = (V,E) is 2-node connected. The heuristic consists of two steps. The first finds a minimum
edge cover M C E of G, i.e., a minimum-cardinality edge set such that every node is incident to
at least one edge of M. One way of finding M is to start with a mazimum matching M of G, and
then to add one edge incident to each node that is not matched by M. Recall that def(G) denotes
the number of nodes not matched by a maximum matching of G, i.e., def(G) = |V| — 2|M]|. Then
we have |M| = |M| + def(G). (It is easily seen that no edge cover of G has smaller cardinality
than |M| + def(G).) The second step of the heuristic finds an (inclusionwise) minimal edge set
F C E\M such that M U F gives a 2-NCSS. In other words, (V, M U F) is 2-node connected, but
for each edge vw € F, (V,M U F)\vw is not 2-node connected. Let E’ denote M U F, and let
Eopt C E denote a minimum-cardinality edge set such that (V, E,,;) is 2-edge connected.

Lemma 3.13 |E'| = |[M|+ |F| < 1.5|V| 4+ def(G) — 1.

Proof: By Mader’s theorem (Theorem 3.2), F is acyclic, so |F| < [V|— 1. A minimum edge
cover M of G has size |M| = |M| + def(G), where M is a maximum matching of G. Obviously,
|M| < |V|/2. The result follows. O

The next result, due to Chong and Lam, gives a lower bound on the size of a 2-ECSS. Propo-
sition 3.15 generalizes Chong and Lam’s lower bound to k-edge connected spanning subgraphs,
k> 1.

Proposition 3.14 (Chong & Lam [CL 95, Lemma 3]) Let G = (V, E) be a graph of edge
connectwity > 2, and let |E,p| denote the minimum size of a 2-edge connected spanning subgraph.

Then |Eyp| >max(|V] 4 def(G) — 1, |V]).

Proposition 3.15 Let G = (V, E) be a graph of edge connectivity > k > 1, and let |E,p| denote
the minimum size of a k-edge connected spanning subgraph. If G is not factor-critical, then |Eqp| >

k k
§(|V| + def(G)). In general, |Eyp| > §max(|V| + def(G) — 1, |V]).

15



Proof: Suppose that G is not factor-critical and def(G) is > 1. Then, by the Gallai-Edmonds
decomposition theorem of matching theory [LP 86, Theorem 3.2.1], there is a nonempty node set
A such that G\ A has |A| + def(G) odd components (G\A may have some even components too).
Focus on an (odd or even) component D; of G\A. The number of edges of E,,: such that either
one or both end nodes are in D; is at least (|V(D;)| + 1)k/2, because every node v € V(D) is
incident to > k edges of E,,, and moreover, §(V(D;)) has at least k edges of E,,;. Summing over
all components D; of G\ A proves the proposition. a

Theorem 3.16 Let G = (V, E) be a graph of node (edge) connectivity > 2. Let € > 0 be a constant.
The heuristic described above finds a 2-node connected (2-edge connected) spanning subgraph (V, E')
such that |E'| < 1.5|Eyp|, where |E,p:| denotes the minimum size of a 2-ECSS.

A randomized parallel version of the heuristic runs in RNC and achieves an approzimation
guarantee of 1.5. A deterministic parallel version of the heuristic runs in NC and achieves an
approzimation guarantee of (1.5 + €).

The sequential running time is O(\/|[V]|E|). A sequential linear-time version of the heuristic
achieves an approzimation guarantee of (1.5+ €).

Proof: The approximation guarantee follows from Lemma 3.13 and Proposition 3.14, since

0.5|V|
14

!
|E| P 1.5|V| 4+ def(G) — 1 <14 <15
|Eopt| — max(|V|+def(G) — 1,|V]) — -
Consider the deterministic parallel version of the heuristic. Let M denote a maximum matching
of G. For Step 1, we find an approximately maximum matching in NC using the algorithm of
[FGHP 93): for a constant ¢, 0 < € < 0.5, the algorithm finds a matching M’ with |M’| > (1—2¢)|M]|
in parallel time O(e~*(log|V])®) using O(¢~*|V|>T(?/¢)) processors. We obtain an (inclusionwise)
minimal edge cover M of size < (1 + 2¢)|M| + def(G) by adding to M’ one edge incident to
every node that is not matched by M’. For Step 2, we use a variant of the NC algorithm of
[HKe+ 95, KeR 95], see Algorithm 2 and Lemma 2 in Kelsen & Ramachandran [KeR 95]. Let G’
be a 2-node connected spanning subgraph of G such that E(G’) contains the minimal edge cover
M. Call an edge vw of G’ essential if either vw is in M or G'\vw is not 2-node connected (i.e., an
edge of G’ is nonessential if it is not in M and it is not critical w.r.t. the 2-node connectivity of G’).
Algorithm 2 of [KeR 95] starts by taking the current subgraph G’ to be G, and repeatedly finds a
spanning tree T of G’ that has the minimum number of nonessential edges, minimally augments T
to obtain a 2-node connected spanning subgraph G” of G’, and then replaces the current subgraph
G’ by G”. Finding the spanning tree T is easy: we compute a minimum spanning tree of G’ where
the cost of each edge in M is taken to be (—1), the cost of each remaining essential edge of G’
is zero, and the cost of each nonessential edge of G’ is one. The parallel complexity of the whole
algorithm is in NC, see [HKe+ 95, KeR 95]. Now, the approximation guarantee is (1.5 + ¢€).

For the sequential linear-time version of the heuristic, note that a matching M’ with |M'| >
(1—2¢)|M| can be found in time O((|V| + | E|)/€). Moreover, in linear time, we can find a minimal
2-node connected spanning subgraph whose edge set contains the minimal edge cover M C F
obtained by adding edges to M’, see [HKe+ 95]. 0

3.4 Directed graphs

The main heuristic extends to digraphs. The key tool in the analysis of the approximation guarantee
is another theorem of Mader, [Ma 85, Theorem 1]. Given a digraph G = (V, E) that is assumed to
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have node connectivity at least k, the first step of the heuristic finds an arc set M C E of minimum
cardinality such that for every node v, there are > (k — 1) arcs of M going out of v and > (k — 1)
arcs of M coming into v. Clearly, |M| < |E,p|, where E,,; C E denotes a minimum-cardinality arc
set such that (V, E,p) is k-node connected. The second step of the heuristic is as in Section 3.1:
we find an (inclusionwise) minimal arc set F' C E\M such that M U F is the arc set of a k-node
connected spanning subgraph. The key point is that |F| < 2|V| — 1, by Mader’s digraph theorem
(Theorem 3.17).

Consider the first step in more detail. To find the arc set M, we transform the digraph problem
to a b-matching problem on the bipartite graph B(G) associated with G. For each node v € V(G),
there is a pair of nodes v_,v; in the bipartite graph B(G), and for each arc (v,w) of G, there
is one edge vyw_ in the bipartite graph. Our problem of finding a minimum-cardinality M C F
with degyy ;. (v) > (k — 1), degps pue(v) > (k — 1), Vv € V, corresponds to the problem of finding a
minimum-cardinality edge set M’ of the bipartite graph such that each node of the bipartite graph
is incident to > (k — 1) edges of M’. As in Section 3.1, this is a b-matching problem.

An alternating cycle of a digraph is a nonempty, even-length sequence of distinct arcs C' =
e1,€a,...,€2-1, €2, £ > 1, such that (using indices modulo 2¢) for each ¢ = 0,1, ..., the arcs ey
and eg;+1 have the same start node, and the arcs es; 11 and eg;42 have the same end node. In other
words, the set of undirected edges corresponding to an alternating cycle C' is a union of cycles,
and moreover, alternate occurrences of nodes have two C-arcs coming out or two C-arcs going in.
See Figure 4 for an illustration. For an alternating cycle €', a C-out node is a node having two
outgoing arcs of C', and a C-in node is a node having two incoming arcs of C'. Recall that an arc e
of a k-node connected digraph H is called critical if H\e is not k-node connected. Here is Mader’s
theorem on the critical arcs of a k-node connected digraph; see Figure 4 for an illustration.

Theorem 3.17 (Mader [Ma 85, Theorem 1)) In a k-node connected digraph, if there is an
alternating cycle C each of whose arcs is critical, then there is either a C-out node of outdegree k
or a C-in node of indegree k.

Fact 3.18 (Mader [Ma 85, Lemma 2]) Let H be a digraph, and let B(H) be the associated
bipartite graph. There is a cycle in B(H) iff there is an alternating cycle in H.

Remarks: Mader [Ma 85| states the theorem for minimal k-node connected digraphs, but in fact,
his proof needs only the fact that every arc in the alternating cycle is critical. Now, consider a
digraph Hy that is obtained from an arbitrary strongly connected digraph by subdividing every arc
at least once (i.e., an arc is replaced by > 1 new nodes and a directed path of > 2 arcs). Note that
Hj contains no alternating cycle. Mader [Ma 85, p. 104] shows that there exists a minimal k-node
connected digraph G such that Hj is contained in the subgraph of G induced by arcs whose start
nodes have outdegrees > k and whose end nodes have indegrees > k.

Lemma 3.19 Let F C E\M be the set of critical arcs found by the second step of the heuristic.
Then |F| <2|V|—1.

Proof: Let G' = (V, E’), where E' = M U F. We claim that F' contains no alternating cycle. By
way of contradiction, suppose that C' C F is an alternating cycle. Observe that every C-out node
v has > (k + 1) outgoing arcs of E’, since there are > (k — 1) arcs of M outgoing from v, and
there are two arcs of C' outgoing from v. Similarly, every C-in node has > (k 4 1) incoming arcs
of E’. This contradicts Mader’s digraph theorem. Hence, F' contains no alternating cycle. Then
|F'| < 2|V| — 1, because the bipartite graph associated with (V, F) is acyclic. O
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(a) Alternating cycle C; (b) Alternating cycle C»

U1 U3

INNN N

Bipartite graph B(C4)

Ve Vg

Bipartite graph B(C5)

(c) An alternating cycle in a strongly connected digraph

Figure 4: An illustration of an alternating cycle in a digraph, and of Mader’s theorem on critical
alternating cycles in a k-node connected digraph, see Theorem 3.17.

(a) An alternating cycle Cy, and its bipartite graph B(C}).

(b) Another alternating cycle Cy = (v1, v2), (vs, v2), (vs, v4), (s, v4), (vs, vs), (v1,ve) and its bipar-
tite graph B(C3). For an alternating cycle, the undirected version may not be a cycle, but the
bipartite graph has at least one cycle.

(c) An alternating cycle C' of a 1-connected (strongly connected) digraph is indicated by dashed
lines. Every C-out node has outdegree > k = 1, and every C-in node has indegree > k = 1. None
of the arcs in the alternating cycle is critical for 1-connectivity. This example is modified from an
example of Mader [Ma 85].
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The previous lemma immediately gives an approximation guarantee of 1+4[2/k] for a minimum-
size k-NCSS of a digraph, because the “degree lower bound” implies that a digraph k-NCSS has
> k|V| arcs. The approximation guarantee can be improved to 1 4 [1/k] via the lower bound on
the size of a digraph k-NCSS implied by Proposition 3.8.

Proposition 3.20 Let G = (V, E) be a digraph of node connectivity > k. The heuristic above
finds a k-node connected spanning subgraph (V, E') such that |E'| < (1 + [2/k])|Eopt|, where |Eqp
denotes the cardinality of an optimal solution.

Theorem 3.21 Let G = (V, E) be a digraph of node connectivity > k. The heuristic described
above finds a k-node connected spanning subgraph (V, E') such that |E'| <(1+ [1/k])|Eopt|, where
Eopt C E denotes a minimum-cardinality arc set such that (V, Eop) is k-node connected. The
running time is O(k|E|?).

Proof: The proof of the approximation guarantee is similar to the proof for undirected graphs
in Theorem 3.6. Let G,p: = (V, Eopt) be a k-node connected spanning subgraph of minimum size.
Apply Proposition 3.8 to the bipartite graph B(G,pt) of Gopt to deduce that |M*| < |E(B(Gopt))| —
|[V(B(Gopt))|/2, where M* C E(B(Gopt)) is a minimum-size edge set such that every node of
B(Gopt) is incident to > k — 1 edges of M*. Since the arc set M C E(G) found by the heuristic
has [M| < |M~| (since M comes from a supergraph of E,), it follows that |M| < |E(B(Gopt))| —
|[V(B(Gopt))|/2 = |Eopt| — |V(G)|. Consequently, since |E'| = |[M|+ |F| and |F| < 2|V(G)| -1,

E' E, | — 2 -1 1
Z] o — V(G + V@) - 1
|E0pt| |E0pt| k
where the last inequality uses the “degree lower bound”, |E,,| > k|V(G)|. The running time
analysis is similar to that for the heuristic for graphs, see Section 3.1. a

4  Approximating minimum-size k-edge connected spanning sub-
graphs

The heuristic can be modified to find an approximately minimum-size k-edge connected spanning
subgraph (abbreviated k-ECSS) of a graph or a digraph. First, we focus on graphs, and prove a
(1+[2/(k+ 1)])-approximation guarantee for finding a minimum-size k-ECSS. The analysis hinges
on Theorem 4.3 which may be regarded as an analogue of Mader’s theorem [Ma 72, Theorem 1]
for k-edge connected graphs. Then we turn to digraphs, and prove an approximation guarantee of
1+ [4/Vk] for the k-ECSS heuristic.

In this section, an edge e (arc e) of a k-edge connected graph (digraph) H is called critical
if H\e is not k-edge connected. Assume that the given graph or digraph G = (V, E) is k-edge
connected, otherwise, the heuristic will detect this and report failure.

4.1 Undirected graphs

In this subsection, G = (V, E) is a graph. The first step of the heuristic finds an edge set M C E of
minimum cardinality such that every node in V is incident to > k edges of M. Clearly, |M| < |Eqp/,
where E,,; C E denotes a minimum-cardinality edge set such that (V, E,,;) is k-edge connected.
The second step of the heuristic finds an (inclusionwise) minimal edge set ' C E\M such that
M U F is the edge set of a k-edge connected spanning subgraph. In detail, the second step starts
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with F = 0 and E' = E. Note that G’ = (V, E) is k-edge connected at the start. We examine the
edges of E\M in an arbitrary order ej, es, . ... For each edge e¢; = v;w; (where 1 < ¢ < |E\M]), we
determine whether or not v;w; is critical for the current graph by finding the maximum number of
edge-disjoint v;<>w; paths in G’.

Proposition 4.1 An edge v;w; of a k-edge connected graph is not critical iff there exist at least
k+ 1 edge-disjoint v;<>w; paths (including the path v;w; ).

If v;w; is noncritical, then we delete it from E’ and G’, otherwise, we retain it in £’ and G’,
and also, we add it to F. At termination of the heuristic, G' = (V, E’), E' = M U F, is k-edge
connected and every edge vw € F is critical, i.e., G"\vw is not k-edge connected. Theorem 4.3
below shows that |F| < k|V|/(k+ 1) for k > 1. Since |E,u| > k|V|/2, the minimum-size k-ECSS
heuristic achieves an approximation guarantee of 1 4+ [2/(k 4 1)] for k& > 1.

The next lemma turns out to be quite useful. A straightforward counting argument gives the
proof, see Mader [Ma 71, Lemma 1], or Cai [Ca 93, Claim 3].

Lemma 4.2 Let G = (V, M) be a simple graph of minimum degree k > 1.

(i) Then for every node set S C V with 1 < |S| < k, the number of edges with ezactly one end
node in S, |6(S)|, is at least k.

(i) If a node set S C V with 1 < |S| < k contains at least one node of degree > (k + 1), then
|6(S)| is at least k + 1.

The goal of Theorem 4.3 is to give an upper bound on the number of critical edges in the
edge-complement of a spanning subgraph of minimum degree k in an arbitrary k-edge connected
graph H. Clearly, every critical edge e € E(H) is in some k-cut 6(4.), Ac C V(H). By a tight
node set S of a k-edge connected graph H we mean a set S C V(H) with [6(S)| =k, i.e., a node
set S such that §(5) is a k-cut. As usual, a family of sets {S;} is called laminar if for any two sets
in the family, either the two sets are disjoint, or one set is contained in the other. For an arbitrary
subset F' of the critical edges of H, it is well known that there exists a laminar family F of tight
node sets covering F', i.e., there exists F = {A1, As,..., A}, where A; C V(H) and §(4;) is a
k-cut, for 1 < i < £, such that each edge e € F’ is in some §(4;), 1 < i < £. (For details, see [Fr 93,
Section 5] or [Ca 93, Lemma 3], but in the latter reference note that the associated family (of a
collection of k-cuts) should be laminar rather than crossing-free.) It is convenient to define a tree
T corresponding to F U {V(H)}: there is a T-node corresponding to each set A; € F and to V(H),
and there is a T-edge A;A; (or V(H)A;) iff A; C A; and no other node set in F contains A; and is
contained in A;. Note that the T-node corresponding to the node set A; of the laminar family F
is denoted by A;, and the T-node corresponding to the node set V(H) is denoted by V(H). Each
T-edge corresponds to a k-cut of H. Suppose that the tree T is rooted at the T-node V(H). We
associate another node set ¢; C V(H) with each node set A; of F:

¢ = AN J{A e FrAC A A+ A}

In other words, a T-node A; € F that is a leaf node of T' has ¢; = A;, otherwise, ¢; consists of
those H-nodes of A4; that are not in the node sets A’, A”, ..., where A’, A”, ... € F correspond to
the children of A; in the tree T'. For distinct T-nodes A; and A;, note that ¢; and ¢; are disjoint.
See Figure 5 for an illustration of F = {4;}, the family of node sets {¢;}, and the tree T for a
particular graph.

The proof of Theorem 4.3 is long and nontrivial. Readers interested in a detailed study of the
proof may be helped by: (i) an examination of the examples in Figure 2(c) and Figure 5, (ii) the
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Laminar family F of tight node sets Tree T of F

o e :::\\
o V(H)
. . . )
® A2
o . ® ® A
Laminar family F’ of tight node sets Tree T' of F’

Figure 5: Two laminar families of tight node sets for a 2-edge connected graph H (k = 2).

(a) The laminar family F covers all critical edges of H. F consists of the node sets Aj, ..., As,
where each A; is tight since |6(A4;)| = 2 = k. For a node set A;, ¢; is the node set 4;\ | J{4; €
F:A; C A, A;j # A;}. Note that ¢; = A; for the inclusionwise minimal A;, i.e., for i =1,4,5,7,8.
Also, the tree T corresponding to F U {V (H)} is illustrated.

(b) The laminar family F’ covers all critical edges of E(H)\M, where M C E(H) is such that
every node is incident to at least k& = 2 edges of M. M is indicated by dotted lines. All edges
of E(H)\M are critical. F’ consists of the tight node sets A;, A,. Also, the node sets ¢1, ¢o are
indicated (¢; = A1), and the tree T’ representing F' U {V(H)} is illustrated.
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illustration of the proof in Figure 6(a)—(d), (iii) a study of the proof of Theorem 4.9, which is an
analogous but weaker result for k-edge connected digraphs, and (iv) a study of the relevant parts

of the papers by A. Frank [Fr 93] and by M. Cai [Ca 93].

Theorem 4.3 Let H = (V, E) be a k-edge connected, n-node graph (k > 1). Let M C E be an edge
set such that the spanning subgraph (V, M) has minimum degree > k. Let F be the set consisting
of edges of E\M that are in some k-cut of H. Let F = {A1,..., As} be a laminar family of tight
node sets that covers F, i.e., for each e € F, there is an A; € F such that e € 6(A;). Then

k
k+

L
U4

Fl<— <
Fl< g U A<

—(n—1). 1)

Some key preliminaries are discussed, before delving into the proof. The upper bound on |F| is
asymptotically tight. Consider the k-edge connected graph G obtained as follows: take £+ 1 copies
of the (k+1)-clique, Cy, C4,...,Cy, and for each i = 1,..., ¢, choose an arbitrary node v; in C; and
add k (nonparallel) edges between v; and Cy. Take M = |J:_, E(C;), and F = E(G)\M. Observe
that |F| = k(n— (k+1))/(k+1).

£ £
Fact 4.4 For a laminar family of tight node sets F = {A1, ..., A4}, U 0(4;) = U d(¢).
= =1

Proof: For each ¢ = 1,...,¢, an edge in 6(¢;) is either in §(4;) or in 6(A’),8(A"),..., where
A’ A", ... € F correspond to the children of A; in the tree T. Hence, the set on the left side
contains the set on the right side.

To see that the set on the left side is contained in the set on the right side, note that for
every edge e in the left side set, there is an (inclusionwise) minimal tight node set Aj(c) such that
e € 6(4;()), and the associated node set ¢;(.) has e € 6(¢;())- O

Fact 4.5 Let H M, F and F = {Ay,..., As} be as in Theorem 4.3. The inequality in the theorem

1s tmplied by the inequality

£

U o4

=1

< k+12|¢@|+ Z|Mms ().

Proof: Let M. C M denote the set of M-edges that are covered by the laminar family F, i.e.,

£

U 5(140] =Mn

=1

£

U d(e ] L:JMWW%

=1

MC:O[MﬂcS(Ai)]:Mﬂ

Consider an arbitrary edge e = vw that isin M.. If e € 6(¢;) (i =1,...,£), then either v € ¢;, w ¢
¢; or w € ¢;,v € @;. Since the node sets ¢; (i = 1,...,£) are mutually disjoint, there are at most
two tight node sets A; € F such that e € 6(¢;). (E.g., if there are tight node sets A,, A, € F,
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g # h, withv € ¢;,w € ¢y, then e € §(¢,),e € 6(¢p), and e € 6(¢;) fori=1,...,¢,i# g,i#+ h.)
Then

l\DIl—‘

£ £
UM05¢1 ZMO&@ (2)

since we are counting the cardinality of a union of sets such that each element occurs in at most
two of these sets.

£
Now note that U 6(A;) = F U M., hence
=1

= |F| + | Me|. (3)

£ £
Also, U A; = U ¢;, hence

k

£
E+1 UA’

=1

,lem )

Substituting inequalities (2), (3) and (4) into the second inequality in the fact gives

£
U
=1

which is the inequality in Theorem 4.3. a

k
B+ 0] < — (U A + 10,

k+

Most of the complications in the proof of Theorem 4.3 seem to be caused by the presence of
tight node sets A; € F such that |¢;| = 1. To illustrate the main ideas in the proof, we first prove
(in 15 lines) a weaker version of Theorem 4.3. In the weaker version, the required upper bound of
kE(n—1)/(k+1) is relaxed to (n — 1), and the laminar family of tight node sets F = {4;,..., A¢}
is restricted such that every A; € F has |¢;| > 2. (The motivation for putting the restriction on F
is expository. Such restricted laminar families 7 do not seem to be of mathematical interest.)

Proposition 4.6 Let H, M, F and F be as in Theorem 4.8, and moreover, suppose that each tight
node set A; € F has |¢;| > 2. Then

Pl <Al <n—1.

=1

Proof: For an arbitrary ¢ = 1,..., ¢, consider 4;, ¢;, and let p denote |¢;|. By assumption, p > 2.
Suppose that p < k (the other case p > k + 1 turns out to be easy). Then

[M 0 6(¢i)| > p(k — (p— 1)), (5)

since for every node v € ¢;, there are at most (p — 1) incident edges vw € E(H) with w € ¢;.
Adding 2|¢;| to both sides of inequality (5) gives

2|¢i| + |M N 8(¢i)| > 2p+p(k — (p— 1)) > —p* + (k + 2)p. (6)

23



Subtracting 2k from both sides of inequality (6) gives
2\¢il + |M 0 8(s)| — 2k > —p* + (k+2)p— 2k = —(p — k)(p — 2) > 0, (7)

where the last inequality —(p — k)(p — 2) > 0 holds because 2 < p < k. Inequality (7) implies

1
6+ 1M 58] > k= [5(4). (8
If |¢;| > (k+ 1), then obviously inequality (8) holds.
Summing up inequality (8) over i =1, ..., £ gives
£ £ £ 1 £
U 340|140 = k- £< 3 I6il + £ D0 (M N18(8)1 (9)
=1 =1 =1 =1

The proof of Fact 4.5 shows that inequality (9) implies the inequality in the proposition, |F| <
£
U4
=1
Proof: (Theorem 4.3)

W.l.o.g. assume that F is minimal, i.e., for every A; € F there is an edge e; € F such that
e; € 6(A;) and e; ¢ 6(A) for all A € F, A # A;. Since F is minimal, every A; € F has |¢;| > 1.
Let T be the tree representing 7 U {V(H)}. The proof examines the node sets A; € F, ¢;, but the
node set V(H)\ U{4; : A; € F} is not relevant for the proof. Every inclusionwise minimal 4; € F
has |4;| > (k + 1), since 6(A4;) N F # 0 implies that A; contains a node v with degg(v) > (k+ 1),
so Lemma 4.2 implies this bound on |4;|. Hence, every A; € F with |¢;| = 1 has at least one child
in the tree T'.

Two key assumptions are needed to complete the proof.

<n-1. a

Assumption 1: For 1 < ¢ < {, every ¢; induces a complete subgraph of H, and moreover, every
edge of this complete subgraph is in M, i.e.,,fori=1,...,¢, Vv, w € ¢;,vw € E(H) and vw € M.

Assumption 2: For every A; € F with |¢;| = 1, there is an A; € F such that |¢;| < k and A; is
a child of A; in the tree T.

Claim 1: Assumption 1 causes no loss of generality.

Here is the proof of Claim 1. For an arbitrary ¢ = 1,...,¢, consider ¢; and E(¢;), the set of
edges of H with both end nodes in ¢;. Clearly, an edge vw € E(¢;) is not in F, since vw is in none
of the k-cuts §(4;) (j =1,...,¢). Therefore, all the missing edges vw with v € ¢;,w € ¢; can be
added to H (say, vw is first added to E\(M U F)) such that ¢; induces a clique, and this will keep
M, F and F unchanged. Moreover, every edge vw € E(¢;) can be placed in M, and the minimum
degree requirement on (V, M) will continue to hold. By repeating this for each ¢ = 1,...,¢, we
obtain H', M’, F' = F and F’' = F that satisfy Assumption 1 and the conditions in the theorem.
Clearly, if the inequality in the theorem holds for H', M’, F', F’', then it also holds for H, M, F, F.

Claim 2: Assumption 2 causes no loss of generality.
Here is the proof of Claim 2. Consider an 4; € F (i = 1,...,£) such that |¢;| = 1 and in the
tree T every child A; € F of A; has |¢;| > (k+ 1). Let ¢, = {v*}. Let A; € F be an arbitrary

T-child of A; with |¢;] > (k +1). Clearly, by Assumption 1, the subgraph of H induced by ¢, is a
clique, and every edge in the clique is in M. Suppose that H has an edge wv™ such that w € A4;\¢;,
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6(A;) N6(ANA; U i)

Figure 6: An illustration of the proof of Theorem 4.3.

(a) Every edge in 8(A4;) N &(¢;) contributes > 1 to the Lh.s. of inequality (o), and every edge in
6(A:)\8(¢;) contributes > 1.

(b) The tight node set A; is shown, together with two tight node sets A;, A, contained in A;. The
node sets ¢; and ¢; are also shown. The three kinds of edges arising in the proof are illustrated.
(¢) In Claim 2, ¢; = {v*} and |@;| > (k+ 1). An edge wv* with w € A;\¢; is replaced by a pair
of new edges wz and yv*, where z € ¢;, y € ¢;.

(d) In Claim 2, ¢; = {v*}. If an edge v*z with ¢ ¢ A, is in F (so v*z ¢ M), then there is an edge
v*w in M with w € ¢;, where ¢; C A; C A; and |¢;| > (k+ 1). Edges v*z and v*w are swapped
between M and F'.
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ie., wv* € 6(A4;)\6(¢;). (Figure 6(c) illustrates this.) Then we replace wv* by a pair of new edges
we,yv* with € ¢;,y € ¢; (possibly, z = y) such that the resulting graph H' is simple (i.e., H’
has no multiedges); this can be done always, since |¢;| > (k + 1) and both §(4;) and 6(4,) are
k-cuts, where A, € F is the T-child of A; containing node w. The resulting graph H' is k-edge
connected. To see this, note that H is k-edge connected, and H’ is obtained from H by replacing
one edge wv* by two edges wz, yv*, where the nodes z and y are contained in the (k + 1)-clique
induced by ¢;. The formal proof of the k-edge connectivity of H' is easy, and is left to the reader.
If wo* € M, then we take M’ = (M\{wv*}) U {we,yv*}, F' = F, otherwise, we take M' = M,
F' = (F\{wv*}) U {we,yv*}. In either case F covers F'. By repeating this manoeuvre for all
relevant ¢ = 1,...,¢, we obtain H', M’, F/ and F' = F with |F’| > |F| that satisfy the conditions
in the theorem. Clearly, if the inequality in the theorem holds for H', M’, F', F’, then it also holds
for H, M, F, F. Moreover, the following condition () holds:

for every A; € F with |¢;| = 1, for every T-child A; € F of A; with |¢;| > (k+ 1), (*)
every edge in 6(A4;) N 6(¢;) is in 6(¢;).

Now w.l.o.g. suppose that H, M, F' and F satisfy condition (x). Call an A; € F bad if |¢;| = 1
and every T-child A; € F of A; has |¢;] > (k4 1). Suppose that there is a bad A; € F with
¢i = {v*} such that one of the edges v*z € §(A4;) N6(¢;) is not in M. (Figure 6(d) illustrates this.)
Then since |[6(4;)| = k, [6(4;) N F| > 1, and |M N é(¢;)| > k, there must be an M-edge wv™ in
d(#i)\6(A;). Let A; € F be the T-child of A; such that w € A;. Since A; is bad, |¢;| > (k+ 1),
therefore condition (*) applies and ensures that the node w is in ¢;. Moreover, by Assumption 1,
w is incident to > k edges of M that have both end nodes in ¢;. Take M’ = (M\{wv*}) U {v*z},
F' = (F\{v*2}) U{wv*}, and observe that |M| = |M’|, |F| = |F'|, every node v € V(H) is incident
to > k edges of M’, F’ consists of critical edges in E(H)\M’, and F covers F’. By repeating this
manoeuvre for all relevant ¢ = 1,...,¢, we obtain H, M’, F/ and F that satisfy the conditions in
the theorem such that |F’| = |F|, and for every bad A; € F, no edge in 6(4;) N é(¢;) is in F’.
Then we can start with F, and remove each bad A; from F to obtain another laminar family F’
covering F’ such that | U Al <| U Al, and F’ satisfies Assumption 2. Clearly, if the inequality

AcF! AcF
in the theorem holds for H’, M’, F', F', then it also holds for H, M, F', F. This completes the proof

of Claim 2.
Instead of proving that F, F satisfy inequality (1), we prove that under Assumption 2, M, F
and F = {Ay,..., A} satisfy the following sharper inequality (see Fact 4.5):

_k+1§]m+ gana@ (10)

Clearly, every A; € F with |¢;| > (k + 1) satisfies the inequality

< i 11
50491 < ool (1)
From the proof of Proposition 4.6 (see inequalities (5), (6), (7), (8)), it follows that every A; € F

with 2 < |¢;| < k satisfies the inequality

k—
A+ 5 < T

where the surplus term on the left hand side (L.h.s.) is the difference between k|¢;|/(k + 1) and
|@i|/2. Every A; € F with |¢;| = 1 satisfies the inequality

5(4) N5(89] + SI8ANS@] + g — 516040 130 < 1

|l + 5 |Mﬂ5(¢i)l, (12)

ol + 5 |Mﬂ5(¢i)l, (13)

2 k+1
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because [§(4;) N 8(:)] + 15(A)\6(6:)| = I8(A)| = & < [M N 5(8).

Claim 3: Under Assumption 2, the inequality (o) obtained by summing up over all A; € F the
appropriate one of inequalities (11), (12), (13) implies inequality (10), i.e., the Lh.s. of inequality (o)
is > the Lh.s. of inequality (10), and the r.h.s. of inequality (o) is < the r.h.s. of inequality (10).

Here is the proof of Claim 3. Clearly, inequality (o) will imply inequality (10) if for every
A; € F, every edge in 6(4;) N §(p;) contributes > 1 to the Lh.s. of inequality (¢). This property
holds for A; € F with |¢;| > 2 by inequalities (11),(12), but for A; € F with |¢;| = 1 the property
fails to hold (see inequality (13)). Fortunately, there is a way around this difficulty. For 4; € F with
|¢;| = 1, we allow A;, @; to contribute a deficit of %|5(Al)ﬂ(5(¢l)| on the Lh.s. of inequality (o); using
this deficit, we can ensure that every edge in 6(A4;) Nd(¢;) (in 6(A;)\6(¢;)) contributes > 1 (> 1/2)
to the Lh.s. of inequality (o), see inequality (13). (Figure 6(a) illustrates the general scheme.) For
each A; € F with [¢;| = 1, let A,;) € F be an arbitrary T-child of A; such that 1 < |@.;)| < k;
A,(;) exists by Assumption 2. Inequality (o) implies inequality (10) because the deficit contributed
by each A; € F with |¢;] = 1 is compensated by the surplus contributed by Ac(iys Pe(i)- To see
this, focus on an arbitrary A; € F with |¢;| = 1, and let j = ¢(¢). First observe that if an edge
vw € 6(A;) with v € A; is not in §(4;), then there are three possibilities: (i) v € ¢;, w € ¢;, (ii)
v o;, we ¢, ie,ve Ay where A; € F corresponds to a child of A; in the tree T', and (iii)
veA;, we A\[A;U ¢, ie, we Ay, where A, € F corresponds to a sibling of A; in the tree T'.
(Figure 6(b) illustrates the three possibilities.) Second, observe that

16(A:) N 6(di)| < |6(A;)\6(Ai)| = |6(A;\;) N 8(i)| + |6(A;) N S(AN[A; U gi])| + [6(¢5) N 8(s)-

For each of the first two terms ¢ on the right hand side, A;, ¢; contributes a surplus of at least ¢/2
to the Lh.s. of inequality (o), because (i) every edge in two distinct k-cuts 6(A,) and 6(4;), A, € F,
A; € F, Ay C Aj, contributes a surplus of 1/2 or more, since A € F such that §(¢p) N 6(Ap)
contains the edge contributes one for the edge, and every other A € F such that §(A) contains the
edge contributes > 1/2 for the edge; (ii) every edge in two distinct k-cuts §(4,) and §(4;), 4, € F
disjoint from A; € F, contributes a surplus of one or more.

Focus on the third term |§(¢;) N §(#;)|, and note that its value is < |¢;|, since |¢;| = 1 and the
graph is simple. If |¢;| = 1, then the deﬁcit contributed by A;, ¢; (to the Lh.s. of inequality (o)) is

compensated, because the surplus of k-|-1 (on the Lh.s. of A;’s inequality) is > % (for k > 1), hence

DA NS < 18(4\65) N 8(00)| + 318(40) NB(ANA; U gD+

If 2 < |¢;| < k, then the deficit contributed by A;, ¢; (to the Lh.s. of inequality (o)) is compensated,
because the surplus of %Mﬂ + kkﬁ (on the Lh.s. of A;’s and A;’s inequalities) is > |¢;|/2 (for
k> |65] > 1), hence

LI¢|+ i
20k +1) 77 k417

This completes the proof of Claim 3 and the proof of the theorem. a

SIS(A) NS < 1AM 18]+ 518(45) N S(ANA; U gDl +

Theorem 4.7 Let G = (V, E) be a graph of edge connectivity > k > 1. The heuristic described
above finds a k-edge connected spanning subgraph (V, E') such that |E'| < (14 [2/(k+ 1)])|Eoptl,
where |E,,| denotes the cardinality of an optimal solution. The running time is O(k*|V|? +

|E["*(log|V)?).
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The next result is not relevant for the analysis of the heuristics in this paper, but may be of
interest in graph theory. Given a k-edge connected graph H, let us call a critical edge of H specialif
both end nodes have degree at least (k+1) in H. The number of special edges is at most k|V (H)],
since by Mader’s result [Ma 72], the maximum number of critical edges in a k-edge connected graph
H is at most k|V(H)|. Based on theorems of Cai [Ca 93], we give a bound of 6|V (H)| (independent
of k) on the number of special edges in H, see Proposition 4.8.

Proposition 4.8 The number of special edges in a k-edge connected, n-node graph H is at most
6n for odd k > 1, and at most 4n for even k > 2.

Proof: Let F be a laminar family of tight node sets that covers all the special edges such that
every A € F has at least one special edge in 6(A). Let T be the tree representing F U {V (H)}.
Each special edge of H is in some k-cut that corresponds to a T-edge. Hence, the number of special
edges is at most k - |[E(T)| < k- |V (T)|. To estimate |V(T')|, we apply Theorems 5 and 6 of Cai
[Ca 93], with slight modifications. One point to note is that Theorems 5,6 of [Ca 93] are stated
for minimal k-edge connected graphs, but an examination of the proofs shows that these theorems
apply to all k-edge connected (undirected) graphs. There are two cases:

e if 4 <k and k is even, then |[V(T)| < (4n/(k+4)) — (5k/(k + 4)) < 4n/k, and
e if 7 < k and k is odd, then |V(T)| < (6n/(k+6)) — (8k/(k + 6)) < 6n/k.

Hence, the number of special edges in H is at most 6n for odd k, and at most 4n for even k. Note
that for k = 2 (or &k = 1,3 or 5), the number of special edges is at most kn, which is < 4n (or
< 6n), since by results in [Ma 72], the number of critical edges is at most kn, and every special
edge is a critical edge. a

4.2 Directed graphs

The heuristic for finding an approximately minimum-size k-edge connected spanning subgraph of
a digraph has two steps. Similarly to Section 3.4, the first step finds a minimum-cardinality arc
set M C F such that for every node v, there are > k arcs of M going out of v and > k arcs of
M coming into v. Clearly, |M| < |Eyp|, where E,p; C E denotes a minimum-cardinality arc set
such that (V, E,,) is k-edge connected. The second step of the heuristic finds an (inclusionwise)
minimal arc set FF C E\M such that E' = M U F is the arc set of a k-edge connected spanning
subgraph. To prove the approximation guarantee, we need to estimate |F'|. We use the notion of
special arcs to estimate |F'|. Call an arc (v, w) of a k-edge connected digraph special if the arc is
critical, and in addition, deg,,,(v) > (k+ 1) and deg;,(w) > (k + 1). Clearly, every arc in F is a
special arc of the digraph G’ = (V, E’), E' = M U F, returned by the heuristic. We can deduce
a bound of O(vk|V|) on the number of special arcs in G’ by examining chains of tight node sets
S1 C Sy C...CS,, where a node set S; is called tight if G’ has exactly k arcs in 85, (S;).

Theorem 4.9 Let k > 1 be an integer, and let H be a k-edge connected, n-node digraph. The
number of special arcs in H is at most 4k - n.

Proof: Let V denote V(H) for this proof. Each special arc e is in a k-dicut dout(Ae) = 6in(V\A4e),
where 2 < |A.] < m — 2. As in Section 4.1, we obtain two laminar families of tight node sets
Four and F;, that cover all the special arcs: that is, for each 4; € Four (A; € Fin), Ai is a set
of H-nodes, 8out(A4;i) (6in(4;)) has k arcs including at least one special arc, and each special arc
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is in some dput(A;), Ai € Fout, or is in some 6;,(4;), A; € Fi. Focus on F,y; the analysis is
symmetric for F;,. Let Foue = {A1, Ao, ..., Ag}. To estimate the number of special arcs, we need
to examine the tree T corresponding to Fo,: U {V(H)}. For ¢ = 1,...,¢, recall that the T-node
corresponding to a node set A; € F,,; is also denoted A; (the T-node corresponding to V(H) is
denoted by V'), and recall that ¢; denotes A;\ U{A € Four : A C A;, A # A;}. Partition the set
{A1,..., Ay} of T-nodes into two sets R; and R,, where R, consists of the T-nodes incident to
precisely two T-edges, and Ry = {A1,..., A¢}\R2. Note that V ¢ Ry and V ¢ R».

Claim 1: |R;| < 2|Vi|/(k+ 1), where V; denotes the set of H-nodes in J{¢; : 4; € R1}.

Here is the proof of Claim 1. Let T} be the tree obtained from the tree T' by “unsubdividing”
all the T-nodes in R,, i.e., by repeatedly replacing a degree-two T-node in R, and its two incident
edges by an edge between the two neighbours. Then T} is a tree whose nonleaf T-nodes in R; have
Ti-degree > 3, whereas the T-node V may have Tj-degree 1,2 or > 3. Let {; be the number of leaf
nodes (degree-1 nodes) of 77 in R;. Then, |Ry| < £14+ (€1 + 1) — 2 < 2¢;. Now, Claim 1 follows
because ¢; < |Vi|/(k+ 1), because for each (inclusionwise) minimal A; € F,u, the set ¢; = A; of
H-nodes has cardinality at least (k + 1) by the digraph version of Lemma 4.2(ii). (A4; contains a
node v with deg,,,(v) > (k 4 1) since 6,,:(4;) contains a special arc.)

Now focus on a maximal path P = Ag, A1,..., Ag41 of T such that every T-node A; with
1 <i< gisin Ry. In H, the node sets Ay, Ai,..., Ayqq1 satisfy Ag C A; C ... C Ag41, and for
i=1,...,q,if A’ € F,; is contained in A;, then either A’ = A;,_; or A’ C A,_;. Let Vp denote the
set of H-nodes ¢1 U ¢2 U ...U @,. Also, note that fori=1,2,...,q, ;=AU Upa U... U ;.

Claim 2: The number of arcs (v, w) such that v € Vp and (v, w) € U{dout(A4;) : 1 < i < g} is at
most k + 2k - |Vp|.

Here is the proof of the Claim 2; see Figure 7 for an illustration. The additional term of k& in
the upper bound accounts for the arcs with start nodes in A, and end nodes in V'\ A,; there are at
most k such arcs, since each such arc is in d,,(A4,). Now ignore the arcs in 64, (A,). Linearly order
the H-nodes in Vp such that for each 7, 1 < i < ¢, the H-nodes in ¢; precede the H-nodes in ¢;11.
Let v be an arbitrary node in Vp. Let I';, C Vp denote the set of end nodes w; of the arcs (v, w;)
outgoing from v such that w; € Vp and (v, w;) € [U{6out(4i) : 1 <17 < ¢}. Let the linear ordering
of the nodes in T, be wy,ws, ..., wr,|. Call an arc (v, w;) short if j < V'k, otherwise, call the arc
long. We “charge” each long arc (v, w;) to the first Vk nodes wy, w,, . . LW in Ty, le., each of

these nodes is charged 1/+v/k for each arc (v,w;), w; € T, and j > Vk. Now consider the total
charge on an arbitrary node w, € Vp due to all long arcs (z,y) € U{dout(4i) : 1 < i < ¢} with
z € Vp and y € Vp. The key fact is this: the total charge on wy is at most v/k. To see this suppose
that w, € ¢;, where 1 < ¢ < q. Then for every arc (v, w;) charged to w,, (v,w;) € Sout(Ai—1),
because v € A;\¢; (if v € V\A4; or v € ¢;, then clearly I', does not contain a node of ¢; such as
wg). Furthermore, by the linear ordering of T'y, w; € ¢; U ¢;y1 U ... U ¢y, ie., w; € A;_;. Since
dout (Ai—1) has k arcs, the total charge to w, is at most k - (1/\/%) = +/k. Finally, consider the total
number, mp, of short arcs (2, y) € U{bout(4;) : 1 < i < ¢} with 2 € Vp and y € Vp. Obviously, mp
is at most v/k|Vp|. Claim 2 is completed by summing up the three terms: k (for arcs in d,:(4,)),
Vk|Vp| (for the total charge on nodes w € Vp), and vk|Vp| (for mp).

We account for the special arcs in d,,:(A,) by “charging” the additional term of k to the
“unsubdivided edge” ApAg41 of the tree Ty in the proof of Claim 1. Thus each edge A4;A4;1 411, A; C
Aiygt1, of Ty is “charged” for < 2k special arcs (these are the special arcs in 0oyt (A4;) Udout(Aitq))-
Since the number of edges in T} is < |R;|, the number of special arcs contributed by the T-nodes
in Ry is < 2k|R;|. We “charge” 2vk to each H-node v such that v € ¢; for a T-node A; € R..
Combining the contributions of special arcs from the T-nodes in R; and R, and applying Claim 1,
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o A;
A,
Ay
Ao

Figure 7: An illustration of Claim 2 in the proof of Theorem 4.9.

(a) A subfamily of the laminar family of tight node sets F,,; that covers (some of)) the special arcs.
(b) The subtree corresponding to the subfamily of F,,; in (a). Each of the T-nodes A;, A,, ..., 4,
is incident to exactly two edges of T', where T is the tree corresponding to F,;.
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we see that the number of special arcs is at most

4kn1
(k+1)
where n; and n, denote the cardinalities of V1 = [J{¢; : 4; € R1} and Vo = J{¢; : A; € R.},

respectively. For k > 1, the number of special arcs is maximized when n, is maximum possible and
np is minimum possible. Since the tree T has at least two leafs, ns is at most n — (2k + 2). Hence,
the number of special arcs contributed by F,.; is at most 4k(2k +2)/(k + 1) + 2vk(n — (2k + 2)).
The total number of special arcs in H is at most 16k + 4vk(n — (2k + 2)) < 4v/kn. o

2k|Ry| + 2Vk -y < + 2Vk - ng

The heuristic clearly runs in time O(k|E|?). This can be improved by implementing the second
step to run in time O(k*[V|*). We run Gabow’s algorithm [Ga 95] as a preprocessing step to
compute a sparse certificate E' of G for k-edge connectivity, i.e., E C E, |E| < 2k|V|, and for all
nodes v, w, (V, E) has k arc-disjoint v—w directed paths iff G has k arc-disjoint v—w directed
paths. In detail, we fix a node a € V(G) and take E= E’(mt U E’in, where E’(mt (E’m) is the union of
k arc-disjoint out-branchings (in-branchings) rooted at a. Gabow’s algorithm [Ga 95] runs in time

O(k|V[?), and the second step runs in time O(k|E U M|?) = O(K*|V]?).

Theorem 4.10 Let G = (V, E) be a digraph of edge connectivity > k. The heuristic described above
finds a k-edge connected spanning subgraph (V, E') such that |E’| < (1 + [4/Vk])| Eopt|, where | Eopi|
denotes the cardinality of an optimal solution. The running time is O(k*|V |2 + |E|'*(log |V])?).

The upper bound on the number of special arcs in Theorem 4.9 is not tight, but is within a
factor of (roughly) three of the tight bound for n > k. To see this, take n > 3k +2 and consider the
following k-edge connected, n-node digraph G with at least Bn —2B(k+1)+ k special arcs, where
is the maximum integer such that 8(8+1)/2 < k,i.e., 8 = [v/2k + 0.25—0.5]. See Figure 8 for an
illustration of G. G has a “left” (k+1)-directed clique K, and a “right” (k+1)-directed clique Kp.
Let vy, vs,...,vs be a linear ordering of the remaining nodes, where { = n — 2(k + 1) > k. There
is one arc from v; (1 < % < £) to each of the next # nodes vy, ..., v;4g; hence, each node v; has
one arc coming in from each of the previous § nodes v;_1,...,v;—g. (Take vo,v_1,v_5...,v_g41 to
mean nodes in Ky, and take vyi1,vpy2, ..., v43 to mean nodes in Kp.) These 3 left-to-right arcs
starting from v; will turn out to be special arcs. Additionally, there are (k+1— () arcs from Kp to
each of the nodes vy, vs, ..., v, and there are (k + 1 — ) arcs from each of the nodes vy, v, ..., v
to K. Finally, there are (k — 8(8 + 1)/2) arcs from K1, to Kr. This completes the construction
of G. Tt can be checked that G is k-edge connected. (Note that besides the (k — (8 4 1)/2) arcs
from Ky, to Kp, there are (8 + 1)/2 arc-disjoint directed paths from Ky, to Kg, such that there
is one “one-hop” directed path, two “two-hop” directed paths, ..., 8 “B-hop” directed paths). For
each node set A in the laminar family of node sets {Kr, (Kr U {v1}),..., (Kz U {v1,vs,...,0})},
the out-directed cut d,,:(A4) has cardinality k, and every arc in 6,,:(A4) is a special arc.

5 Conclusions

Our analyses of the heuristics exploit results from extremal graph theory, such as Mader’s remark-
able theorem [Ma 72, Theorem 1], and raise new problems in the areas of approximation algorithms
and extremal graph theory.

For a graph G and an integer k > 1, let p(k,G) denote the minimum number of edges in
a spanning subgraph of minimum degree k. For a digraph G and integer k > 1, define u(k,G)
similarly. For a graph (or digraph) G and integer k > 1, let p/(k, G) denote the minimum number
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k—pB(B+1)/2 arcs

(k + 1)-diclique (k + 1)-diclique

k+1— (3 arcs k+1—p arcs

Sketch of G

(TN !

N
N

U3 V4 5 Vg
LA —

Figure 8: The digraph G described in the last paragraph of Section 4.2. G has n > 3k + 2 nodes,
and has > B(n — 2(k+ 1)) + k special arcs, vk < 8 < v/2k, showing that the upper bound on the

number of special arcs in Theorem 4.9 is within a small constant factor of being tight for n > k.
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of edges (arcs) in a k-edge connected spanning subgraph (k-ECSS), and let p”(k, G) denote the
minimum number of edges (arcs) in a k-node connected spanning subgraph (k-NCSS). While u(k, G)
can be computed efficiently via b-matchings, computing either p'(k, G) or u”(k, G) is NP-hard. This
paper shows that (i) by computing p(k — 1, G), we can efficiently approximate p”(k, G) to within a
factor of 1 4 [1/k] for both graphs and digraphs, and (ii) by computing p(k, G), we can efficiently
approximate p/(k,G) to within a factor of 1 + [2/(k 4 1)] for graphs, and a factor of 1 + [4/v/k]
"(k, Q) P E+1

for digraphs. Theorem 3.6 shows that for a k-node connected graph G, ,u/(k G S Tk and
wik,
"(k E+1
Theorem 3.21 shows that for a k-node connected digraph G, a ((k ’CC;)) < —]I; . Propositions 3.4
B,
"(k E+1
and 3.20 show that for a k-node connected graph or digraph G, Wk, &) < + . Theorem 4.7
pwk-1,G) ~ k-1
"(k k
shows that for a k-edge connected graph G, l;((k:g)) < . i i)
------- o e o " o &
° ° ° ° ° °
° ° ® [ ° °
° ° ° ° ° °
—® ® ® - ‘® = -®
__________________________________________ K 1 K4

Figure 9: A k-node connected graph G = (V, E) (with k > 2) such that the minimum size p” of a

k-node connected spanning subgraph decreases by (n — 3k + 1)/(2k — 2) on adding one edge.

G consists of nodes s, ¢, and £ copies of the (k — 1)-clique, and has k — 1 openly disjoint s>t

paths such that each path uses exactly one node from each (k — 1)-clique; also, G has (£ — 1)/2

dashed edges. Every edge in G is critical w.r.t. k-node connectivity. Adding the edge st to GG, and

then removing all the dashed edges leaves a k-node connected graph, so p” decreases from |E| to

|E|+1-(£-1)/2. B

A k-edge connected (and k-node connected) graph G such that the minimum size y' of a k-edge

V(G)| — 4k + 2
3k -3

by modifying G as follows: “split” every (k — 1)-clique incident with a dashed edge into a pair of

(k — 1)-cliques connected by a matching of size (k — 1).

on adding one edge can be obtained

connected spanning subgraph decreases by

For minimum-size k-ECSS (k-NCSS) problems, there appears to be a difficulty in achieving
w(1)
k2 -
Lipschitz condition if whenever graphs H and H' differ in only one edge, then |g(H)— g(H')| <1,
see [AS 92, p. 86]. Observe that p(k,G) satisfies the edge Lipschitz condition. Moreover, the
optimal size of a b-matching satisfies the edge Lipschitz condition, and so do most functions related
to matchings of graphs. In contrast, both p/(k, G) and u”(k, G) violate this condition. First, focus
on y'(k,G) for graphs G and k > 2. Let G be the minimal k-edge connected graph obtained by
“stringing” ¢ copies of the (k+ 1)-clique, i.e., take £ copies of the (k + 1)-clique, and for each copy
i, 1 < 2 < {, designate a pair of distinct nodes as s; and ¢;, and then identify ¢, and s;4; for

approximation guarantees of 1 + A graph theoretic function g is said to satisfy the edge
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i=1,2,...,£ — 1. Adding the edge s1t, decreases p’ by £ = (|V(G)| — 1)/k, since removing all
the edges s;t;, 1 < ¢ < £, leaves a k-edge connected graph. Now consider y”(k,G) for graphs G
and k > 2. For each k > 2, there exists a k-node connected graph G such that adding a particular
V(G)| —3k+1
2k — 2
graph G in Figure 1, observe that u” decreases from 1.5|V| — 5 to |V| + 1 upon adding the edge
ex. A k-edge connected (and k-node connected) graph G such that adding a particular new edge
\V(G)| — 4k + 2
3k—3
the figure caption. Garg et al [GSS 93] discuss similar issues for the minimum-size 2-NCSS problem
on graphs.

Another drawback of the analysis of the k-NCSS heuristic for graphs in Section 3.1 is that the
size of the edge set E' = MUF returned by the heuristic is compared against ¢'(k, G), the minimum
size of a k-ECSS. Given an integer k > 2, for each integer n = 2k(¢ + k) + k, where ¢ = 0,1,2, ..,
there exists a k-node connected, n-node graph G such that

new edge decreases u” by ; see Figure 9 for an illustration. For k& = 2 and the

decreases u' by can be obtained by modifying the graph in Figure 9 as indicated in

p'(k, G) (k- 2)

Wk G CREER)

In view of this, for large k, a sharper lower bound will have to be employed for proving approxi-
mation guarantees substantially better than 1+ [1/2k] for the minimum-size k-NCSS problem. For
k=2 or k = 3, larger values of " (k,G)/1/(k, G) are given by the graph G in Figure 9 with the
parameter k fixed at 2 or 3 and with |[V(G)| > k: for k = 2, the ratio approaches 6/5, and for
k = 3, the ratio approaches 14/13.

Here is another consequence of R. P. Gupta’s result, see the proof of Proposition 3.8: For a
bipartite graph G with minimum degree > k,

:u(k -1 G)
u(k,G)

This inequality does not hold for nonbipartite graphs, since for G = K111y, u(k — 1,G)/u(k, G)
equals (k — 1)/k for k odd, and equals k/(k + 1) for k even. Another result of Gupta, see [BM 76,
Problem 6.2.8], shows that u(k — 2,G)/u(k,G) < (k — 2)/(k — 1) for all graphs G of minimum
degree > k.

(k-1)
—

<
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