1 CALCUULUS III, Spring 2002

LIST OF USEFUL TAYLOR SERIES

\begin{itemize}
\item $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \cdots$, for $|x| < 1$.
\item $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x^2 + x^4 - x^6 + \cdots$, for $|x| < 1$.
\item $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$, for all x.
\item $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$, for all x.
\item $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} + \cdots$, for all x.
\item $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$, for $|x| < 1$.
\item $\tan^{-1}(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$, for $|x| < 1$.
\end{itemize}

(I) Use the list of “useful Taylor series” and simple substitution to find the Taylor series of the following functions. Then use the formula $a_n = \frac{f^{(n)}(0)}{n!}$ to find the sixth derivative at $x = 0$ of each function:

1. $\ln(1-x)$ in powers of x.
2. $\sin(3x)$ in powers of x.
3. $\frac{1}{1+x^2}$ in powers of x.
4. e^{-2x} in powers of x.
5. $\tan^{-1}(\frac{x}{2})$ in powers of x.

(II) Use the list of “useful Taylor series” to find the Taylor series of the following functions, and, if possible, find the 44th derivative at $x = c$ (c is -2 for the first problem, -1 for the second, and 0 for the rest).

1. $\frac{1}{2}$ in powers of $(x+2)$.
2. $\frac{2}{x+5}$ in powers of $(x+1)$.
3. $x^3 e^{-2x}$ in powers of x.
4. $e^{2x} + e^{-x}$ in powers of x.
5. $\sin x$ in powers of x.
6. $e^{x} - (1 + x)$ in powers of x.
7. $(1 + x) \ln (1 + x)$ in powers of x.
8. $\ln \left(\frac{1+x}{1-x} \right)$ in powers of x. (Hint: $\ln \left(\frac{1+x}{1-x} \right) = \ln (1 + x) - \ln (1 - x)$).
9. $\frac{5+2x}{x^2+2}$ in powers of x. (Hint: divide the polynomials first).
10. $\frac{5+x}{2-x-x^2}$ in powers of x. (Hint: use partial fractions).
11. $\ln [(1 + 2x)(1 + 3x)]$ in powers of x.
12. $\cos^2(x)$ in powers of x. (Hint: use the double angle formula).
(III) Integrate or differentiate a known power series to find the Taylor series at \(x = 0 \) for the following:

1. \(F(x) = \int_0^x \frac{1}{1+x} \, dx \) (Does it look familiar?)
2. \(F(x) = \int_0^x e^{x^2} \, dx \)
3. \(\frac{d}{dx} (x^3 \tan^{-1}(x)) \)
4. \(\frac{1}{(1-x)^2} \) (Hint take the second derivative of \(\frac{1}{1-x} \))

(IV) Find the first three terms of the Taylor series (in powers of \(x \)) of the following series (i.e., find the cubic approximation).

1. \((\sin x) (\cos x) \)
2. \(\frac{x^2-6x+7}{(1-x)(2-x)(3-x)} \)
3. \((\sin x) (\tan^{-1}(2x)) \)
4. \(\frac{\sin x}{\cos x} \)

(V) Find the first terms of the power series of the following functions to compute the limit

1. \(\lim_{x \to 0} \frac{e^{x/(1+x)} - 1}{x} \)
2. \(\lim_{x \to 0} \frac{1 - \cos(2x) - (x^2/2)}{x^4} \)
3. \(\lim_{x \to 0} \frac{\tan^{-1}(x) - \sin(x)}{x^3 \cos(x)} \)

(VI) Write a power series of \(f(x) = e^x - 1 \) in powers of \(x \). Then differentiate the power series and show that

\[
\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = 1
\]

(VII) Write a power series of \(f(x) = xe^x \) in powers of \(x \). Then integrate the power series and show that

\[
\sum_{n=1}^{\infty} \frac{1}{n!(n+2)} = \frac{1}{2}
\]

(VIII) Suppose that the function \(f \) is infinitely differentiable on an interval containing \(x = 0 \). Suppose that \(f(0) = 1 \) and that \(f'(x) = 2f(x) \) for all \(x \). Use these properties to find the following:

1. \(f'(0) \), \(f''(0) \), and \(f'''(0) \)
2. \(f^{(n)}(0) \) (a formula for the \(n \)th derivative of \(f \) at zero)
3. The series representation of \(f(x) \) in powers of \(x \).