
MATH 3451 Homework Assignment 1 solutions

Section 1.2:

5. Since this function is piecewise defined, we cannot just take the derivative
using Quotient/Chain rules. By definition,

B′(0) = lim
x→0

B(x)−B(0)

x− 0
.

There are two one-sided limits here. One is simple:

lim
x→0−

B(x)−B(0)

x− 0
= lim

x→0−

0

x
= 0.

The other is

lim
x→0+

B(x)−B(0)

x− 0
= lim

x→0+

e−1/x
2

x
.

The top and bottom both approach 0 as x→ 0, so this is an indeterminate
form. If we try to use L’Hospital’s Rule directly, things get worse:

lim
x→0+

e−1/x
2

x
= lim

x→0

(e−1/x
2

)′

x′
= lim

x→0+

2x−3e−1/x
2

1
= lim

x→0

2e−1/x
2

x3
.

Continuing in this way will only yield larger and larger exponents in the
denominator, and will always give an inevaluable 0/0 indeterminate form. There
are several ways to resolve this, but the easiest is to rewrite the original limit
using negative exponents:

lim
x→0+

e−1/x
2

x
= lim

x→0+

x−1

e1/x2 = lim
x→0+

(x−1)′

(e1/x2)′
= lim

x→0+

−x−2

−2x−3e1/x2 = lim
x→0+

x

2e1/x2 .

Now, the numerator approaches 0 and the denominator approaches ∞, so

this limit is 0, meaning that the original one-sided limit limx→0+
B(x)−B(0)

x−0 is
also 0. Since the two one-sided limits are each equal to 0, B′(0) = 0.

Section 1.3:

3(a). Clearly x = 0 is a fixed point, and for any x 6= 0, |f(x)| = |x|
2 < |x|.

Therefore, for any x 6= 0, |fn(x)| < |fn−1(x)| < · · · < |x| for all n > 0, so
fn(x) 6= x and x is not periodic. Therefore, x = 0 is the only periodic point.

3(b). Clearly x = 0 is a fixed point, and for any x 6= 0, |f(x)| = 3|x| > |x|.
Therefore, for any x 6= 0, |fn(x)| > |fn−1(x)| > · · · > |x| for all n > 0, so
fn(x) 6= x and x is not periodic. Therefore, x = 0 is the only periodic point.

3(c). Clearly x = 0 is a fixed point, and for any x ∈ (0, 1], f(x) = x− x2 < x,
but f(x) = x(1 − x) ≥ 0, so f(x) ∈ (0, 1] as well. Therefore, by induction, for



any x 6= 0, fn(x) < x for all n > 0, so x is not periodic. Therefore, x = 0 is the
only periodic point.

3(f). Clearly x = −1, 0, 1 are all fixed points. For any x ∈ (0, 1), f(x) =
1
2 (x+x3) < 1

2 (2x) = x, and f(x) > 0, so f(x) ∈ (0, 1). Therefore, by induction,
for any x ∈ (0, 1), fn(x) < x for all n > 0, so x is not periodic. Similarly, for
any x ∈ (−1, 0), f(x) = 1

2 (x+x3) > 1
2 (2x) = x, and f(x) < 0, so f(x) ∈ (−1, 0).

Therefore, by induction, for any x ∈ (−1, 0), fn(x) > x for all n > 0, so x is
not periodic. Therefore, x = −1, 0, 1 are the only periodic points.

4(a). The stable set of 0 is R; for any x 6= 0, fn(x) = (−1/2)nx, which ap-
proaches 0 as n→∞.

4(b). The stable set of 0 is {0}; for any x 6= 0, |fn(x)| = 3nx, which approaches
∞ as n→∞, and therefore fn(x) does not approach 0.

4(c). The stable set of 0 is [0, 1]; as shown before, fn(x) is decreasing and
nonnegative for all x ∈ [0, 1], and so must approach a limit. But that limit must
then be a fixed point, and 0 is the only one. Since fn(x) approaches 0 for all
x ∈ [0, 1], [0, 1] is the stable set of 0.

4(f). The stable set of 0 is (0, 1), the stable set of −1 is {−1}, and the stable
set of 1 is {1}. To prove this, it suffices to show that for all x ∈ (−1, 1), fn(x)
approaches 0. Recall that if x ∈ (0, 1), then fn(x) is decreasing and positive,
and therefore it approaches a limit. This limit must be a fixed point, and 0 is the
only possible value. Therefore, fn(x) → 0. A similar argument shows that for
x ∈ (−1, 0), fn(x)→ 0 as well. Finally, 0 is a fixed point, so trivially fn(0)→ 0.

7. If f is a homeomorphism, then as discussed in class, either f is increasing
on all of R or decreasing on all of R. If f is increasing, then for all x < y,
f(x) < f(y). Suppose that x is not a fixed point of f . Then, either f(x) > x or
f(x) < x. We treat only the first case, as the second is trivially similar. Since
f(x) > x and f is increasing, f(f(x)) = f2(x) > f(x). By induction, the orbit
fn(x) is increasing. But then clearly fn(x) > x for all n, so x is not periodic.
We have shown that the only possible periodic points for increasing f are fixed
points.

Now, suppose that f is decreasing, i.e. for all x < y, f(x) > f(y). Then
clearly f2 is increasing; if x < y, then f(x) > f(y), implying that f2(x) <
f2(y). Suppose that f has a periodic point x, i.e. fn(x) = x. Then clearly
(f2)n(x) = f2n(x) = (fn)2(x) = x, so x is a periodic point of f2 as well. But
since f2 is increasing, this means that x is a fixed point of f2, so f2(x) = x and
x has least period either 1 or 2. We’ve shown that the only possible periodic
points for decreasing f have least period 1 or 2.

There are many examples we could use for a homeomorphism with points
of least period 2. For instance, f(x) = −x is a homeomorphism (it’s its own
inverse), but every nonzero x has least period 2 for f ; f2(x) = −(f(x)) =



−(−x) = x.

11. We claim that every number of the form x = i
2n for positive integers i, n

satisfying 0 ≤ i < 2n is eventually fixed for f . To see this, simply note that
fn(x) = 2nx (mod 1) = 2ni

2n (mod 1) = i (mod 1) = 0, and that 0 is fixed for
f .

To see that the set S = { i
2n : 0 ≤ i < 2n} is dense, choose any interval

(a, b) ⊂ [0, 1). Since 2−n → 0, there exists N so that 2−N < b−a. For this fixed

N , the numbers 0, 1
2N

, 2
2N

, . . . , 2N−1
2N

have gaps 2−N between closest values, and
so since the length of (a, b) is more than 2−N , there exists 0 ≤ i < 2N so that
i

2N
∈ (a, b). Since (a, b) was arbitrary, this shows that S is dense.


