MATH 3451 Homework Assignment 2 solutions

Section 1.4:

1(a). As shown in problem 1.3.4(c) from last week, the only periodic point for
fl)=2—2%isz=0. At 2 =0, |f'(z)] = |1 — 22| = 1, so we can’t conclude
whether x = 0 is attracting or repelling with only the derivative. However, re-
call that it was also shown in problem 1.3.4(c) that for all z € [0, 1], f™(z) — 0
as n — 00, so x = 0 is certainly ‘attracting from the right-hand side’. If x < 0,
then f(z) = x — 22 < 2 < 0, so by induction f"(z) is decreasing. If f"(z)
were bounded from below, it would have to approach a fixed point, which is
impossible since all are less than x < 0 and 0 is the only fixed point. Therefore,
f™(x) = —oo in this case. So, z = 0 is ‘repelling from the left-hand side’, and
it’s then easy to see that it’s neither attracting nor repelling.

1(b). The results of this section show that f(z) = 2(x — 2?) has two fixed
points, at t =0and x =p, =1 — % = % We show below in problem 1.5.1 that
for all z € (0,1), f"(z) — %, so no point in (0,1) is periodic except 3. z =1 is
not periodic since f(x) = 0, a fixed point. Finally, since f(z) = pa(1l — ) for
p>1,all x ¢ [0,1] have f™(x) — —oo by a result from section 1.5 (also proved
in class), so none of those are periodic. We’ve shown that £ =0 and z = % are
the only periodic points. At 2 =0, |f'(z)] =|2(1 —22)] =2 > 1,80 x = 0 is

repelling. Similarly, at 2 = 3, f'(z) = [2(1-22)| = 0 < 1, so z = 1 is attracting.

1(g). First, note that if we define g(z) = e*~! —, then ¢’(x) = e~ ! — 1, which
is clearly negative for x < 1, zero at x = 1, and positive for > 1. Therefore,
g has a global minimum at z = 1. Also note that g(1) = 0. Therefore, g
is nonnegative for all z, and g(1) = 0 is the only root. This means that if
f(x) = e*~! then f(x) > x for all #, and x = 1 is the only place where
f(z) = z, i.e. the only fixed point. But this means that for every z, f™(x) is
nondecreasing, and that x = 1 is the only periodic point.

Atz =1, |f (z)] = e® ! =1, so we can’t conclude whether z = 0 is attract-
ing or repelling with only the derivative. However, similarly to (a), if z < 1,
then f(z) > z, but f(z) = e*~! < e = 1, so by induction f"(z) is increasing
and bounded from above by 1. It therefore approaches a limit, which must be
a fixed point, which must be z = 1. So, x = 1 is ‘attracting from the left-hand
side.” If > 1, then f™(z) is increasing, and if it were bounded from above,
it would approach a fixed point, which is impossible since x = 1 is the only
fixed point. Therefore, in this case f™(x) — oo, so x = 1 is ‘repelling from the
right-hand side.” So, overall x = 1 is neither attracting nor repelling.

Section 1.5:
1. It is useful to note for the remainder of this problem that x = 0 and x = % are

fixed points of f(z) = 2z(1 — z), and that f(3) = 1 is the global maximum of
f. Ifx € (0,3], then f(z) =2x(1—=x) >z, and f(z) € (0,1]. So, by induction,



f"(z) is increasing and bounded above by 1 %) therefore it approaches a limit,
which must be a fixed point, which must be 2 5 since x > 0. Now, note that for

any z € (0,1), f(z) € (0,1], and so by the previous work, f™(f(z)) — 3. But

this clearly implies that f"*1(z) — %, and so f"(x) — % as well.

2. (This proof is slightly informal.) We claim that for every n, f™ has 2™ 4+ 1
values of x for which f"(x) = 0, and 2" values of = for which f™(z) = 1, and
that these values alternate (i.e. as x increases, f™(x) achieves 0, then 1, then 0,
then 1, etc.).

Suppose that we know this for n and wish to prove it for n + 1. Denote the
set of  where f™(x) = 0 by Z,,, and the set of z where f*(z) = 1 by O,,. By the
inductive hypothesis, | Z,| = 2" 41, |O,| = 2™, and these sets “alternate.” Now,
note that for any x € Z,U0,,, f*(x) is 0 or 1, and so f**1(z) = 0; in fact clearly
these are the only z for which f**!(z) = 0. So, we define Z,, 11 = Z, U O,,
and note that |Z,,1| = 2" + 1+ 2" = 2" + 1, as desired. Also note that
if fotl(x) = 1, then f"(x) = % Since Z, and O,, alternate, any two closest
elements of Z,,;1 will have images under f™ equal to 0 and 1, and so by the IVT
there is a number between them where f"(z) = %, meaning that f"*!(z) = 1.
The set of all such numbers will have size one less than Z, .1, so 2""; we’ll
then call this set O,,41, which has the desired size. Also, by the construction,
Opy1 and Z, 1 “alternate,” so by induction we are finished.

Now, since f is continuous, f™ is as well. Therefore, for every pair z € Z,
and o € O, if we consider i(z) = z, then f™(z) =0 < i(z) and f™(0) = 1 > i(0).
Therefore, by the IVT lemma proved in class, there exists x between z, 0 so that
f™(xz) =i(x) = z. By the structure of Z,, and O,, given above, we can partition
[0, 1] into 2™ intervals with endpoints in Z,, and O,,, and so there are 2" values
of  where f™(x) = x, all of which are periodic with period n by definition.

Written Problem 1: Note that by the Chain Rule,

(") =) =FUmHE = FUrhHuahy
=AU == S UTHSUT) S D

Therefore, if p is periodic with period k, then for any 4,

(5 ) = £ U DL S22 ) - £ ) ()
= [ ) ) - (PR F (P ) - ()
=) P W ) F ()
Since multiplication is commutative, this is equal regardless of the value

of 4; it is always just the product of the values of f/(z) over the values x =
p, f(p), ..., f*1p in the orbit of p.

Written Problem 2: Choose any p € (0 1), and define f,(z) = pz(l — x),
with fixed points x =0 and x =p, =1— - 5 < 0. As usual, define p,, = 1 , and



fup) = pu. Choose any x # 0,p,,p,. Clearly the orbit of 0 approaches 0,
the orbit of 1 approaches 0, the orbit of p, approaches p,,, and the orbit of p,
approaches p,. For all other x, we break into cases.

Case 1: z € (—oo0,p,). Thenl—a >1—p, = i, so fu(z) = pe(l—2o) < .
(This is because p(1 — ) > 1, and z < 0. In addition, f,(z) < x < p,, so
fu(z) € (—oo,p,) as well. As usual, this implies by induction that the orbit
of x is decreasing. If it were bounded from below, it would have to approach
a limit less than p,. But there are no fixed points less than p,,, so this cannot
happen, meaning that in this case the orbit of = approaches —oo.

Case 2: z € (p,,0). Thenl—z < 1-p, = %u so as shown above, f,(z) > .
In addition, x is negative and p and 1 — x are positive, so f,(x) < 0, meaning
that p, < & < fu(z) < 0. So, again as usual, by induction the orbit of z is
increasing. It is bounded from above by 0, so it must approach a limit, which
must be a fixed point. z is greater than p, and the orbit is increasing, so the
limit must be greater than p,, and the only possible value is 0. So, in this case
the orbit of x approaches 0.

Case 3: z € (0,1). Then p and 1 — z are in (0,1), meaning that f,(z) =
px(l —z) < z. Clearly fu(x) is also positive, so 0 < fu(z) < z < 1. Again,
the usual induction shows that the orbit of x is decreasing and bounded from
above by 0, so approaches a nonnegative fixed point limit, and the only choice
is 0. So, in this case the orbit of x approaches 0.

Case 4: = € (1,p,). Since f is decreasing for x > 1, f(1) = 0, and
f(Pu) = pu, we know that f,(z) € (py,0). Then, by Case 2, the orbit of f,(x)
approaches 0, meaning that the orbit of x approaches 0 as well.

Case 5: z € (p,,,00). Then, since f is decreasing for x > 1 and f(p,) = pp,
we know that f,(z) € (—oo,p,). Then, by Case 1, the orbit of f,(x) approaches
—o00, meaning that the orbit of z approaches —oo as well.

Written Problem 3: We assume that f is a C''-diffeomorphism. Denote by
H the set of hyperbolic fixed points of f, i.e. the set of fixed points x so that

|(f7)(@)] # 1.

Now, suppose for a contradiction that x is a non-isolated point of H, i.e. x
is the limit of a sequence x,, of fixed points of f, none of which are equal to z.
Then, for every n > 0, we can choose distinct z,, and zp, in (x —n~Y x+n=1t);
without loss of generality let’s say x,, < z3,. By the Mean Value Theorem,
since both z,, and xp, are fixed, there exists ¢, € [z, ,*p, ] for which

f/(cn) — f(zb") - f('ran) _ Ty, — La,, -1

Tp,, — La, Tp,, — La,

n n



Since zq,,7p, € (x —n" Lz +n"Y), ¢, € (x —n"tx+n1) as well. How-
ever, then the sequence ¢, clearly approaches z, and since f’ is continuous and
f'(cn) =1 for all n, we can conclude that f'(x) = 1. However, this means that
x was not hyperbolic, a contradiction. Therefore, all points of H are isolated.



