
MATH 3451 Homework Assignment 2 solutions

Section 1.4:

1(a). As shown in problem 1.3.4(c) from last week, the only periodic point for
f(x) = x − x2 is x = 0. At x = 0, |f ′(x)| = |1 − 2x| = 1, so we can’t conclude
whether x = 0 is attracting or repelling with only the derivative. However, re-
call that it was also shown in problem 1.3.4(c) that for all x ∈ [0, 1], fn(x)→ 0
as n→∞, so x = 0 is certainly ‘attracting from the right-hand side’. If x < 0,
then f(x) = x − x2 < x < 0, so by induction fn(x) is decreasing. If fn(x)
were bounded from below, it would have to approach a fixed point, which is
impossible since all are less than x < 0 and 0 is the only fixed point. Therefore,
fn(x) → −∞ in this case. So, x = 0 is ‘repelling from the left-hand side’, and
it’s then easy to see that it’s neither attracting nor repelling.

1(b). The results of this section show that f(x) = 2(x − x2) has two fixed
points, at x = 0 and x = p2 = 1− 1

2 = 1
2 . We show below in problem 1.5.1 that

for all x ∈ (0, 1), fn(x)→ 1
2 , so no point in (0, 1) is periodic except 1

2 . x = 1 is
not periodic since f(x) = 0, a fixed point. Finally, since f(x) = µx(1 − x) for
µ > 1, all x /∈ [0, 1] have fn(x)→ −∞ by a result from section 1.5 (also proved
in class), so none of those are periodic. We’ve shown that x = 0 and x = 1

2 are
the only periodic points. At x = 0, |f ′(x)| = |2(1 − 2x)| = 2 > 1, so x = 0 is
repelling. Similarly, at x = 1

2 , f ′(x) = |2(1−2x)| = 0 < 1, so x = 1
2 is attracting.

1(g). First, note that if we define g(x) = ex−1−x, then g′(x) = ex−1−1, which
is clearly negative for x < 1, zero at x = 1, and positive for x > 1. Therefore,
g has a global minimum at x = 1. Also note that g(1) = 0. Therefore, g
is nonnegative for all x, and g(1) = 0 is the only root. This means that if
f(x) = ex−1, then f(x) ≥ x for all x, and x = 1 is the only place where
f(x) = x, i.e. the only fixed point. But this means that for every x, fn(x) is
nondecreasing, and that x = 1 is the only periodic point.

At x = 1, |f ′(x)| = ex−1 = 1, so we can’t conclude whether x = 0 is attract-
ing or repelling with only the derivative. However, similarly to (a), if x < 1,
then f(x) > x, but f(x) = ex−1 < e0 = 1, so by induction fn(x) is increasing
and bounded from above by 1. It therefore approaches a limit, which must be
a fixed point, which must be x = 1. So, x = 1 is ‘attracting from the left-hand
side.’ If x > 1, then fn(x) is increasing, and if it were bounded from above,
it would approach a fixed point, which is impossible since x = 1 is the only
fixed point. Therefore, in this case fn(x) → ∞, so x = 1 is ‘repelling from the
right-hand side.’ So, overall x = 1 is neither attracting nor repelling.

Section 1.5:

1. It is useful to note for the remainder of this problem that x = 0 and x = 1
2 are

fixed points of f(x) = 2x(1 − x), and that f( 1
2 ) = 1

2 is the global maximum of
f . If x ∈ (0, 12 ], then f(x) = 2x(1− x) ≥ x, and f(x) ∈ (0, 12 ]. So, by induction,



fn(x) is increasing and bounded above by 1
2 , therefore it approaches a limit,

which must be a fixed point, which must be 1
2 since x > 0. Now, note that for

any x ∈ (0, 1), f(x) ∈ (0, 12 ], and so by the previous work, fn(f(x)) → 1
2 . But

this clearly implies that fn+1(x)→ 1
2 , and so fn(x)→ 1

2 as well.

2. (This proof is slightly informal.) We claim that for every n, fn has 2n + 1
values of x for which fn(x) = 0, and 2n values of x for which fn(x) = 1, and
that these values alternate (i.e. as x increases, fn(x) achieves 0, then 1, then 0,
then 1, etc.).

Suppose that we know this for n and wish to prove it for n+ 1. Denote the
set of x where fn(x) = 0 by Zn, and the set of x where fn(x) = 1 by On. By the
inductive hypothesis, |Zn| = 2n+1, |On| = 2n, and these sets “alternate.” Now,
note that for any x ∈ Zn∪On, fn(x) is 0 or 1, and so fn+1(x) = 0; in fact clearly
these are the only x for which fn+1(x) = 0. So, we define Zn+1 = Zn ∪ On,
and note that |Zn+1| = 2n + 1 + 2n = 2n+1 + 1, as desired. Also note that
if fn+1(x) = 1, then fn(x) = 1

2 . Since Zn and On alternate, any two closest
elements of Zn+1 will have images under fn equal to 0 and 1, and so by the IVT
there is a number between them where fn(x) = 1

2 , meaning that fn+1(x) = 1.
The set of all such numbers will have size one less than Zn+1, so 2n+1; we’ll
then call this set On+1, which has the desired size. Also, by the construction,
On+1 and Zn+1 “alternate,” so by induction we are finished.

Now, since f is continuous, fn is as well. Therefore, for every pair z ∈ Zn
and o ∈ On, if we consider i(x) = x, then fn(z) = 0 < i(z) and fn(o) = 1 > i(o).
Therefore, by the IVT lemma proved in class, there exists x between z, o so that
fn(x) = i(x) = x. By the structure of Zn and On given above, we can partition
[0, 1] into 2n intervals with endpoints in Zn and On, and so there are 2n values
of x where fn(x) = x, all of which are periodic with period n by definition.

Written Problem 1: Note that by the Chain Rule,

(fn)′ = (f(fn−1))′ = f ′(fn−1)(fn−1)′ = f ′(fn−1)(f(fn−1))′

= f ′(fn−1)f ′(fn−2)(fn−2)′ = · · · = f ′(fn−1)f ′(fn−2) · · · f ′(f)f ′.

Therefore, if p is periodic with period k, then for any i,

(fk)′(f ip) = f ′(fk−1(f ip))f ′(fk−2(f ip)) · · · f ′(f(f ip))f ′(f ip)

= f ′(fk+i−1p)f ′(fk+i−2p) · · · f ′(fkp)f ′(fk−1p) · · · f ′(f ip)
= f ′(f i−1p)f ′(f i−2p) · · · f ′(p)f ′(fk−1p) · · · f ′(f ip).

Since multiplication is commutative, this is equal regardless of the value
of i; it is always just the product of the values of f ′(x) over the values x =
p, f(p), . . . , fk−1p in the orbit of p.

Written Problem 2: Choose any µ ∈ (0, 1), and define fµ(x) = µx(1 − x),
with fixed points x = 0 and x = pµ = 1− 1

µ < 0. As usual, define p̃µ = 1
µ , and



fµ(p̃µ) = pµ. Choose any x 6= 0, pµ, p̃µ. Clearly the orbit of 0 approaches 0,
the orbit of 1 approaches 0, the orbit of pµ approaches pµ, and the orbit of p̃µ
approaches pµ. For all other x, we break into cases.

Case 1: x ∈ (−∞, pµ). Then 1−x > 1−pµ = 1
µ , so fµ(x) = µx(1−x) < x.

(This is because µ(1 − x) > 1, and x < 0. In addition, fµ(x) < x < pµ, so
fµ(x) ∈ (−∞, pµ) as well. As usual, this implies by induction that the orbit
of x is decreasing. If it were bounded from below, it would have to approach
a limit less than pµ. But there are no fixed points less than pµ, so this cannot
happen, meaning that in this case the orbit of x approaches −∞.

Case 2: x ∈ (pµ, 0). Then 1−x < 1−pµ = 1
µ , so as shown above, fµ(x) > x.

In addition, x is negative and µ and 1 − x are positive, so fµ(x) < 0, meaning
that pµ < x < fµ(x) < 0. So, again as usual, by induction the orbit of x is
increasing. It is bounded from above by 0, so it must approach a limit, which
must be a fixed point. x is greater than pµ and the orbit is increasing, so the
limit must be greater than pµ, and the only possible value is 0. So, in this case
the orbit of x approaches 0.

Case 3: x ∈ (0, 1). Then µ and 1 − x are in (0, 1), meaning that fµ(x) =
µx(1 − x) < x. Clearly fµ(x) is also positive, so 0 < fµ(x) < x < 1. Again,
the usual induction shows that the orbit of x is decreasing and bounded from
above by 0, so approaches a nonnegative fixed point limit, and the only choice
is 0. So, in this case the orbit of x approaches 0.

Case 4: x ∈ (1, p̃µ). Since f is decreasing for x > 1, f(1) = 0, and
f(p̃µ) = pµ, we know that fµ(x) ∈ (pµ, 0). Then, by Case 2, the orbit of fµ(x)
approaches 0, meaning that the orbit of x approaches 0 as well.

Case 5: x ∈ (p̃µ,∞). Then, since f is decreasing for x > 1 and f(p̃µ) = pµ,
we know that fµ(x) ∈ (−∞, pµ). Then, by Case 1, the orbit of fµ(x) approaches
−∞, meaning that the orbit of x approaches −∞ as well.

Written Problem 3: We assume that f is a C1-diffeomorphism. Denote by
H the set of hyperbolic fixed points of f , i.e. the set of fixed points x so that
|(fp)′(x)| 6= 1.

Now, suppose for a contradiction that x is a non-isolated point of H, i.e. x
is the limit of a sequence xn of fixed points of f , none of which are equal to x.
Then, for every n > 0, we can choose distinct xan and xbn in (x−n−1, x+n−1);
without loss of generality let’s say xan < xbn . By the Mean Value Theorem,
since both xan and xbn are fixed, there exists cn ∈ [xan , xbn ] for which

f ′(cn) =
f(xbn)− f(xan)

xbn − xan
=
xbn − xan
xbn − xan

= 1.



Since xan , xbn ∈ (x − n−1, x + n−1), cn ∈ (x − n−1, x + n−1) as well. How-
ever, then the sequence cn clearly approaches x, and since f ′ is continuous and
f ′(cn) = 1 for all n, we can conclude that f ′(x) = 1. However, this means that
x was not hyperbolic, a contradiction. Therefore, all points of H are isolated.


