MATH 3451 Homework Assignment 3 solutions

9. We'll do this by induction; our inductive hypothesis is that after stage n,
we’ve removed a total length of 137", (%)Z_l, and there are 2" remaining
intervals, each with length (%)n

The base case is n = 1. After stage 1, we’ve removed a length of
there are 2 remaining intervals, each with length %

For the inductive step, assume that after stage n, we've removed a total
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length of % S (%)i_l, and there are 2" remaining intervals, each with length

(g)n. Then stage n+ 1 involves removing 2" intervals, each with length % (%)n,
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so an additional length of 2™ - % == 5?:% is removed, meaning that the total

length removed after stage n + 1 is
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Also, each of the 2™ intervals present before stage n + 1 leaves 2 intervals, each

with length % (%)n = (g)nH, so after stage m + 1 there are 2"*! remaining
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intervals each with length (%) , completing the induction.

We note that as n — oo, the total length removed approaches
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and so the middle-fifths Cantor set that remains has ‘length zero.’

Written Problem 1: Assume that p > 2 + \/5, and consider an arbitrary
periodic point p with period k. Note that if p ¢ A, then there exists m so that
f™(p) ¢ [0,1], and then by results from class, the orbit of f™(p) approaches
—00, meaning that p could not possibly have been periodic. Therefore, our
periodic point p must be in A. Again, by definition, the entire orbit of p must
be in A (because for every m, the orbit of f™(p) is part of the orbit of p, which
stays in [0, 1] forever.)

Recall that we proved in class that when p > 2 4+ /5, every € A has
[f'(x)] > 1. Therefore, since f™(p) € A for all m, we can see that
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Then, by results shown in class, we know that p is repelling. Since p was an
arbitrary periodic point, all periodic points for f,, are repelling.

Written Problem 2: Assume that 4 > 5. Suppose that = and y have symbolic
codings S(z) and S(y) with the same first n bits, call them aga; . ..a,—1, and
assume without loss of generality that £ < y. Then, x and y are in the interval
log...a, . as defined in class.



Apply the Mean Value Theorem for the interval [x,y] and the function f.
Then, there exists ¢ € [z,y] C lagas...an_, SO that (f™)(c) = %‘5(9) Note
that since ¢ € I, .. 4, _,, f*(c) € IgU I for all 0 <4 < n. By results in class, we

know that for all z € Io U Iy, |f'(z)| > /(1 — 2)2 — 4 > /5 > 2. Therefore,

(Y @ =1L 2l [ F (FE)IIf ()] > 2-2---2-2=2"
Finally, f™(x) and f™(y) are in [0, 1] since z,y € A, so
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completing the proof.

Written Problem 3: Suppose that g > 5 and that z,y have the same sym-
bolic coding. Then, for every n, the symbolic codings of x and y agree on
the first n bits, and by Written Problem 2, |x — y| < 27". Since this is true
for all n, |z —y| < 0, and so |z — y| = 0, meaning that = y. We’ve shown
that two numbers cannot share the same symbolic coding, completing the proof.

Written Problem 4: Suppose that g > 5. From class, we know that there
exists a point € A so that x has the symbolic coding

S(z) = .1001000010000001 . ..

Then, for every n, o™ S () begins with 2n 0s. By results discussed in class,

Note that since 0 is fixed, f0 € I for all n, and so the symbolic coding of 0 is
S(0) =.000....

All of this means that the symbolic coding of f”Qx and the symbolic coding
of 0 agree on the first 2n bits, meaning by Written problem 2 that |f”2x -0l <
2721 — 4="_ This obviously implies that f™ z — 0.

Also, note that for all m, ™S (z) # S(0), since S(z) has infinitely many 1s.
Since c™S(x) = S(f™x), by Written problem 3 we can conclude that f™z # 0,
and since m was arbitrary, 0 is not in the orbit of x.



