
MATH 3451 Homework Assignment 4 solutions

Section 1.6:

2. If a sequence s = .s0s1s2 . . . has period 3, then

s = .s0s1s2 . . . = σ3s = .s3s4s5 . . .

meaning that sn = sn+3 for all n. This means that s repeats a 3-digit word
forever. There are 8 such sequences:

000 = 000000000 . . .,
001 = 001001001 . . .,
010 = 010010010 . . .,
100 = 100100100 . . .,
011 = 011011011 . . .,
110 = 110110110 . . .,
101 = 101101101 . . .,
111 = 111111111 . . ..

Points in the same orbit are given the same color in the list.

4(a). If s ∈ Σ′, then s = .s0s1s2 . . . does not contain any pair of adjacent 0s.
Since every adjacent pair of bits in σs = .s1s2s3 . . . already appeared in s, this
means that σs also contains no adjacent 0s and so is also in Σ′. Since this holds
for all s ∈ Σ′, we’ve shown that Σ′ is preserved by σ.

Suppose that s(n) is a sequence in Σ′ which converges to a limit s. Suppose
for a contradiction that s contains adjacent 0s, say sm−1 = sm = 0. By the
definition of convergence, there exists N so that for n > N , s(n) and s agree on
the first m bits (this can be achieved by forcing their distance to be less than
2−m). But then s(N) contains two adjacent 0s and is not in Σ′, a contradiction.
Our original assumption was then wrong, and s contains no adjacent 0s and so
is in Σ′. Since s(n) was an arbitrary convergent sequence in Σ′, we’ve shown
that Σ′ is closed.

4(c). We proceed mostly as we did in class, in that we want to list all possible
finite words/strings in Σ′ in some order. However, if we do this directly, we
might accidentally create two 0s in a row, e.g.

.0|1|01|10|11|010|011|101| . . .

To fix this, we add a single 1 between every pair of adjacent words, as in

s = .0111011101111010101111011 . . .

This sequence cannot have two 0s in a row, since each of the finite words being
combined (in black) does not have adjacent 0s and we’ve placed a 1 (in purple)



in between each pair. So, s ∈ Σ′. Also, for any t = .t0t1t2 . . . ∈ Σ′, and any
n, the string t0 . . . tn appears in s, and so there is a shift σkns beginning with
t0 . . . tn. Then, the sequence s(n) = σkns agrees with more and more letters on
s, and so s(n) → t. Since t ∈ Σ′ was arbitrary and since each s(n) is in the orbit
of s, we’ve shown that the orbit of s is dense in Σ′.

6. For any s ∈ Σ2, we claim that W s(s) consists of all t which differ from s on
only finitely many digits. Define the set of such t by A(s); we need to show that
A(s) = W s(s).

A(s) ⊆ W s(s): if t ∈ A(s), then there exists N so that tn = sn for all n > N .
But then for any n > N , σn(s) = σn(t), and so d(σn(s), σn(t)) = 0. But then
clearly, limn→∞ d(σn(s), σn(t)) = 0, and so t ∈W s(s).

W s(s) ⊆ A(s): Assume that t /∈ A(s). Then, there are infinitely many n so
that tn 6= sn. But then for any such n, σn(s), σn(t) start with different digits,
and so d(σn(s), σn(t)) ≥ 20 = 1. This means that the sequence d(σn(s), σn(t))
contains infinitely many terms which are at least 1, and so cannot possibly ap-
proach 0. Therefore, t /∈ W s(s). We showed that t /∈ A(s) =⇒ t /∈ W s(s), and
the contrapositive is t ∈W s(s) =⇒ t ∈ A(s).

Written Problem 1: Fix any ε > 0. Then there exists N so that 2−N < ε.
Define δ = 2−N . Assume that s, t ∈ Σ2 have d(s, t) < δ = 2−N . Then, as
discussed in class, s, t agree on the first N bits. Define x = S−1s and y = S−1t.
Then x, y have symbolic codings S(x) = s and S(y) = t which agree on the first
N bits, and so by Written Problem 2 of last week, (since we assume µ > 5),
|x− y| < 2−N < ε.

We’ve shown that d(s, t) < δ =⇒ |S−1s − S−1t| < ε, proving that S−1 is
(uniformly) continuous.

Written Problem 2: Let’s answer this question for Σ2 first. If a sequence
s = .s0s1s2 . . . has period 4, then s comes from repeating a 4-digit word forever.
There are 16 such sequences, coming from the 4-letter words

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

But we have to be careful: four of these will give sequences with a smaller
period, meaning they don’t have least period 4. Namely,

.0000 . . . has period 1, .0101 . . . has period 2, .1010 . . . has period 2, .1111 . . . has period 1.

So, there are 12 remaining sequences in Σ2 with least period 4. Call the set of
these sequences T .

We claim that t ∈ Σ2 has least period 4 for σ iff S−1t ∈ Λ has least period
4 for f . To see this, we note that a point z having least period 4 for a function
g just means g4z = z and giz 6= z for i = 1, 2, 3. Then, we can see that

t = σ4t⇐⇒ S−1t = S−1σ4t⇐⇒ S−1t = f4S−1t



and, for i = 1, 2, 3,

t 6= σit⇐⇒ S−1t 6= S−1σit⇐⇒ S−1t 6= f iS−1t.

(Here, we used the commuting diagram property twice, and the fact that S is a
bijection when we applied S−1 to both sides and preserved inequality.)

So, indeed S−1 preserves points of least period 4, and so S−1T is the set of
points of least period 4 for f . Since S−1 is a bijection, S−1T also has 12 points,
and so there are 12 points of least period 4 for f in Λ.


