
MATH 3451 Homework Assignment 5 solutions

1. Assume that (X, f2) is topologically transitive, and consider any nonempty
open sets U and V . Since (X, f2) is topologically transitive, there exists n ≥ 0
and x ∈ U so that (f2)nx ∈ V . But then x ∈ U , f2n(x) ∈ V , and 2n ≥ 0. Since
U , V were arbitrary, we’ve shown topological transitivity of (X, f).

2. Choose any nonempty open U , V , and W . By topological transitivity, there
exists n > 0 and x ∈ V for which fn(x) ∈W . This means that for this specific
n, V ∩f−n(W ) 6= ∅ (it contains x), and so V ∩f−n(W ) is a nonempty open set.
We can then use topological transitivity again for the sets U and V ∩ f−n(W )
and see that there exists m > 0 so that x ∈ U and fm(x) ∈ V ∩ f−n(W ). But
this means that x ∈ U , fm(x) ∈ V , and fn(fm(x)) = fm+n(x) ∈ W , complet-
ing the proof since clearly m+ n > m.

3. Suppose that f is increasing on R. We break into cases depending on whether
or not f has a fixed point.

Case 1: f increasing, has fixed point Denote a fixed point of f by x. Since
f is increasing, for any y > x, f(y) > f(x) = x, and so by induction fn(y) > x
for all n. This means that if we define U = (x, x+ 1) and V = (x− 1, x), then
for any y ∈ U , fn(y) > x, and so fn(y) /∈ V , for all n, contradicting topological
transitivity.

Case 2: f increasing, has no fixed points Then either f(x) > x for all
x or f(x) < x for all x (if there existed y, z so that f(y) ≤ y and f(z) ≥ z,
then f would have a fixed point by the IVT applied to g(x) = f(x)− x). This
means that by induction, either all orbits are increasing forever or all orbits are
decreasing forever. In either case we can contradict transitivity; for instance, if
all orbits increase forever, then for U = (0, 1) and V = (−1, 0), it is not possible
to have x ∈ U with fn(x) ∈ V for some n. Similarly, if all orbits decrease
forever, then for U = (−1, 0) and V = (0, 1), it is not possible to have x ∈ U
with fn(x) ∈ V for some n.

4(a). Choose any s ∈ Σ′′ and n > 0. If the first n digits of s are s1 . . . sn, then
we create a periodic point in Σ′′ as follows. Choose a to be a digit from 1, 2, 3
not equal to either s1 or sn; we can do this since there are three legal symbols
in Σ′′. Then, the sequence t(n) = s1 . . . sna = s1 . . . snas1 . . . sna . . . is in Σ′′,
and agrees with s on its first n digits. Therefore, the sequence t(n) converges to
s, and each is periodic, completing the proof that periodic points of Σ′′ are dense.

4(b). Note that s = .1222222 . . . ∈ Σ′′′, and assume for a contradiction that
there exists a sequence t(n) of periodic points in Σ′′′ converging to s. Then,
by definition, there exists N so that t(N) agrees with s on two digits, i.e.
t(N) = .12 . . .; we refer to t(N) as t for simplicity. By the rules of Σ′′′, tn ≥ 2
for all n > 2. However, this contradicts periodicity of t; if σkt = t, then tk = 1,



which we’ve shown cannot happen. This contradiction means that no sequence
of periodic points of Σ′′′ converges to s, and so the set of periodic points is not
dense in Σ′′′.

5. Suppose that f has a fixed point z with |f ′(z)| < 1. Then, since f ′ is
continuous, there exists a neighborhood U = (z − γ, z + γ) so that |f ′(y)| < 1
for all y ∈ U .

Now, we prove the negation of SDIC, i.e. that ∀δ > 0, ∃ε > 0 and x so that
∀y ∈ (x− ε, x+ ε), ∀n ≥ 0, d(fnx, fny) ≤ δ. This is actually simple; just define
ε = min(δ, γ) and x = z. Then, (x− ε, x+ ε) = (z − ε, z + ε) ⊂ U . Then by the
MVT, for any y ∈ (z − ε, z + ε),

|f(y)− z|
|y − z|

= |f ′(t)|

for some t ∈ U . Since t ∈ U , |f ′(t)| < 1, and so |f(y)−z| < |y−z|. This implies
that f(y) ∈ (z − ε, z + ε), and by induction that fn(y) ∈ (z − ε, z + ε) for all
n ≥ 0. Therefore, for all n, |fn(y)− fn(z)| = |fn(y)− z| < ε ≤ δ, contradicting
SDIC.


