
MATH 3451 Homework Assignment 6 Solutions

1. We proved the following fact in class and called it Lemma 1: if I → J , then
there exists I ′ ⊆ I with f(I ′) = J . Use that fact to prove the following, which
we called Lemma 2: if I0 → I1 → I2 · · · → In, then there exists I ′0 ⊆ I0 for
which f i(I ′0) ⊆ Ii for 0 ≤ i ≤ n and fn(I ′0) = In.

Solution: We proceed by induction on n. The case n = 1 is just Lemma
1, which was proved in class. Assume that the statement holds for some n,
and we will prove it for n + 1. So, assume that we have a chain of intervals
I0 → I1 → I2 · · · → In → In+1. By Lemma 1, there exists I ′n ⊆ In so that
f(I ′n) = In+1. Since I ′n ⊆ In, the chain

I0 → I1 → · · · In−1 → I ′n

is still valid. Therefore, by the inductive hypothesis, there exists I ′0 ⊆ I0 so
that f i(I ′0) ⊆ Ii for 0 ≤ i ≤ n and fn(I ′0) = I ′n. Furthermore, fn+1(I ′0) =
f(fn(I ′0)) = f(I ′n) = In+1. Therefore, f i(I ′0) ⊆ Ii for 0 ≤ i ≤ n + 1 and
fn+1(I ′0) = In+1, completing the proof for n+ 1. This completes the induction,
so we are done.

2. Give an example of a function f with points of every least period.

Solution: There are many examples. For instance, simply define a piecewise
linear function with f(1) = 2, f(2) = 3, and f(3) = 1. Then clearly f has a
point of least period 3 and is continuous, so f has points of every least period
by Sharkovsky’s Theorem.

3. Prove the following facts about the relationship between least periods of f2

and least periods of f : (these will be very useful for problems 4 and 5!)
• If a point x has least period 2n for f , then x has least period n for f2.
• If a point x has least period n for f2 and n is EVEN, then x has least period
2n for f .
• If a point x has least period n for f2 and n is ODD, then x has least period
either 2n for f or least period n for f .

Proof: We begin by noting that x has least period 2n for f if and only if
f2n(x) = x and f(x), f2(x), . . . , f2n−1(x) 6= x. Similarly, x has least period n
for f2 if and only if f2n(x) = x and f2(x), f4(x), . . . , f2n−2(x) 6= x. From this,
the first bullet point above is obvious, since the set {f(x), f2(x), . . . , f2n−1(x)}
contains the set {f2(x), f4(x), . . . , f2n−2(x)}.

Now, assume n is even, and that x has least period n for f2. Then, f i(x) 6= x
for all even i with 1 < i < 2n; in particular, fn(x) 6= x since n is even. To
prove x has least period 2n for f , we need only to prove that f i(x) 6= x for all
odd i less than 2n. Consider any such i. There are two cases: either 1 ≤ i < n
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or n < i < 2n. (i cannot equal n since n is even!) If f i(x) = x, then clearly
f2i(x) = f i(f i(x)) = x. If 1 ≤ i < n, then 2i is even and less than 2n, and so we
have a contradiction. If n < i < 2n, then 2i > 2n, so we don’t have an immedi-
ate contradiction. However, we can write f2i(x) = f2i−2n(f2nx) = f2i−2n(x),
and 2i − 2n is even and less than 2n, and so we again have a contradiction.
We’ve then shown that f i(x) 6= x for all odd i less than 2n, so x has least
period 2n for f .

Finally, assume n is odd, and that x has least period n for f2. Again, f i(x) 6= x
for all even i with 1 < i < 2n. The only change in the above proof is now that
it is possible to have i = n (since n is odd), and so the case fn(x) = x does not
lead to a contradiction. This means that the least period for x under f in this
case is either 2n OR n, which is exactly what we were trying to prove.

4. Prove Sharkovsky’s Theorem for all k of the form 2nj, j odd and greater
than 1, from the proof of Sharkovsky’s Theorem for k odd and greater than 1
given in class.

Proof: We begin with the case n = 1. Consider any number of the form k = 2j,
j odd and greater than 1, and assume that f has a point x of least period k = 2j.
Then, by problem 1.5, x has least period j for f2. Then, since j is odd, by the
proof of Sharkovsky’s Theorem for odd numbers, we know that f2 has points of
all least periods less than j in the Sharkovsky ordering, i.e. all integers in the
set S = {1, 2, 4, 6, 8, . . . , j − 1, j, j + 1, j + 2, . . .} = N \ {3, 5, 7, . . . , j − 2}.

Then, we want to go back and conclude something about least periods for
points under f . For any even element m of S, problem 1.5 implies that since
f2 has a point of least period m, f has a point of least period 2m. But for odd
elements m of S other than 1 (such as j + 2), all that we know from problem
3 is that since f2 has a point of least period m, f has either a point of least
period m or a point of least period 2m. However, since m is odd and not 1
and 2m is even, 2m is less than m in the Sharkovsky ordering. Therefore, if
f has a point of least period m, it also has a point of least period 2m by the
proof of Sharkovsky’s Theorem for odd k. This means that no matter what, for
every m ∈ S except m = 1, f has a point of least period 2m. Therefore, f has
points of all least periods in the set 2(S \ {1}) = 2N \ {2, 6, 10, 14, . . . , 2(j− 2)}.
Finally, we note that this is almost exactly the set of numbers less than k = 2j
in the Sharkovsky ordering; the only difference is that 1, 2 are less than 2j and
1, 2 /∈ 2(S \ {1}). However, we proved in class that any function with a periodic
nonfixed point has points of least periods 1, 2, and so f has points of least peri-
ods 1, 2 as well. Since 2(S \{1})∪{1, 2} = 2S∪{1} is exactly the set of integers
less than k = 2j in the Sharkovsky ordering, and we’ve proved that all numbers
in 2S ∪{1} are least periods of some points under f , we’ve proved Sharkovsky’s
theorem for k = 2j.

Now, we need a proof for larger n. Assume that we’ve already proved
Sharkovsky’s theorem for all numbers of the form k = 2nj, n ≥ 1. Consider
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k = 2n+1j, j odd and greater than 1, and assume that f has a point x of least
period k = 2n+1j. Again, this means that x has least period 2nj under f2, and
so that f2 has points of all least periods less than 2nj in the Sharkovsky or-
dering by the assumption that we’ve proved Sharkovsky’s theorem for numbers
of the form k = 2nj. Denote by S the set of all integers less than 2nj in the
Sharkovsky ordering. Since n ≥ 1, 2nj is even, so all elements of S are even
except for 1. Therefore, by problem 3, for any element m of S \{1}, since f2 has
a point of least period m, f has a point of least period 2m. We’ve then shown
that f has points of all least periods in 2(S \ {1}). Again, it’s easily checked
that the set of numbers less than 2n+1j in the Sharkovsky ordering (i.e. the set
of least periods we are trying to achieve) is just 2S ∪ {1} = 2(S \ {1}) ∪ {1, 2}.
We then need only verify that f has points of least periods 1 and 2, but we
note again that this special case was proved in class. We’ve then shown that f
has points of all least periods less than k = 2n+1j in the Sharkovsky ordering,
completing the induction and the proof.

5. Prove Sharkovsky’s Theorem for all k of the form 2n by using the fact,
proved in class, that any f with a non-fixed periodic point contains a point of
least period 2.

Proof: We proceed by induction. For n = 0, Sharkovsky’s theorem says noth-
ing since 2n = 1 is the smallest number in the Sharkovsky ordering already. For
n = 1, Sharkovsky’s theorem states only that if f has a point of least period 2,
then it has a fixed point, which is a corollary of a result proved in class. Now,
suppose that n ≥ 1 and that Sharkovsky’s theorem holds for 2n, i.e. that if a
function f has a point of least period 2n, then it automatically has points of all
least periods 2j for j < n. We wish to prove Sharkovsky’s theorem for 2n+1, so
assume that f is a continuous function and that f has a point x of least period
2n+1. Then, by problem 3, x has least period 2n for f2. Then, by the inductive
hypothesis, there are points with all least periods 2j for j < n for f2. Then, if
j > 0, a point y with least period 2j for f2 is a point with least period 2j+1 for
f , since 2j is even. Therefore, f has points of all least periods 2 · 2j = 2j+1 for
0 < j < n, or all least periods 2k for 1 < k < n + 1. It remains only to show
that f has points with least periods 20 = 1 and 21 = 2. However, n ≥ 1, so
2n ≥ 2, so we assumed that f had a point of least period 2n ≥ 2. From results
in class, this implies that f has points of least periods 2 and 1, completing the
induction, and the proof.
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