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Aubrun-Sablik look suspiciously like an old theorem from Higman on
finitely generated groups

This analogy can be pushed further to obtain more results.

Warning: only an analogy in this talk! First part is informal!!
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Finitely generated groups

By Gn we denote the “set” of all groups with generators g1 . . . gn.
The “largest” group in Gn is Fn, the free group on n generators.
Every other group with n generators is a quotient of Fn: G = Fn/N
where N is a normal subgroup of Fn.
A presentation of G is a subset R of N that generates N (as a
normal subgroup). We write

G = 〈g1,g2 . . . gn|R〉

G is somehow the largest group generated by g1 . . . gn in which all
relations of R hold.
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Finitely generated groups

Let G =
〈
a,b|aba−1b−1〉

G is the largest group in which aba−1b−1 = 1 , i.e. ab = ba.
G ' Z2.

A group G is finitely presented if it can be given by a finite set R.
A group G is recursively presented if it can be given by a recursively
enumerable set R.
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f.g. groups vs subshifts

The construction of groups with presentations is the same as the
construction of subshifts.

Identify a group with the set of all identities in the group
Identify a subshift with its forbidden language

In both cases, we start from a set of relations, and we see all relations
we can obtain as consequences of these relations.
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Semigroups with zero

Let S be the subshift that forbids ab and bba.
We can write

S = 〈a,b|ab = 0,bba = 0〉

Then the set of all words of value 0 are (not) exactly the forbidden
language of S!
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The analogy

Groups Shifts
Groups with n generators Subshifts of {1,2, . . . ,n}Z
Free group on n generators Full shift on n letters
Finitely presented group SFT
Recursively presented group Effectively closed shift
G1 ⊆ G2 L(S1) = L(S2) ∩ A?

Let’s look at theorems on groups using this correspondence!
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Plan

1 First Higman Theorem

2 Second Higman Theorem

3 Third Higman Theorem

4 Conclusion
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First Higman Theorem

Theorem (Higman 1961 [Hig61])
G is recursively presented iff there exists a finitely presented group H
s.t. G ⊆ H.
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First Higman Theorem for subshifts

Theorem

S ⊆ AZ is effectively closed iff there exists a SFT S2 ⊆ BZ2
s.t.

L(S) = L(S2) ∩ A?

Note: L(S2) is a language of bidimensional words: we extract from it
the one-dimensional words on the alphabet A.
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Proof

If S2 is a SFT:
L(S2) is corecursively enumerable
L(S2) ∩ A? is corecursively enumerable
L(S) is corecursively enumerable
S is effectively closed.

Suppose S ⊆ AZ is effectively closed.
Use Aubrun-Sablik to obtain a Z2 SFT X over the alphabet A× B
s.t. SZ = π(X ) where π : (a,b)→ a is the canonical projection
Rewrite X as a Z2 SFT with every other row in A and every other
row in B

Note: the result is apriori weaker than Aubrun-Sablik.
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Second Higman Theorem

Theorem (Boone-Higman-Thompson 1974-1980 [BH74, Tho80])
G has a recursive word problem iff there exists f.g. H1,H2 s.t.
G ⊆ H1 ⊆ H2 with H1 simple and H2 finitely presented.

G has a recursive word problem iff G ⊆ H for some recursively
presented, simple group H.
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Second Higman Theorem for subshifts

Theorem (J.-Vanier 2017)
Let S ⊆ AZ be a subshift.
Then L(S) is recursive iff there exists an effectively closed minimal
2D-subshift S1 s.t. L(S) = L(S1) ∩ A?

Corollary (Durand-Romashchenko 2017)
Let S ⊆ AZ be a subshift.
Then L(S) is recursive iff there exists a minimal 3D-SFT S2 s.t.
L(S) = L(S2) ∩ A?.

Minimality plays the role of Simplicity.
Why is the corollary not immediate ?
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Proof

We prove already that if X is effectively closed and minimal, then L(X )
is recursive. Therefore L(S) = L(X ) ∩ A? is also recursive.
For the converse, we first ask:

What does it mean for a minimal X to be effectively closed ?
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Minimal subshifts

Theorem
X minimal is effectively closed iff it contains a recursive point and its
quasiperiodicity function is recursive.

f (n) =least m s.t. every n × n pattern in L(X ) appear in all m ×m
patterns in L(X ).

Suppose X is effectively closed and minimal. Then L(X ) is
recursive. Therefore:

X has a recursive point (actually a dense subset of recursive points)
f is computable by definition.

Suppose x ∈ X is computable and f is computable
Then D(X ) is exactly the set of n × n patterns that do not appear in
the square of size f (n)× f (n) around the origin of x .
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Proof

Let L(S) be computable. How to do a two-dimensional minimal
subshift where every word of L(S) appear ?
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Proof
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Idea

Starting from a subshift S with computable language, we create a
configuration x :

Every row has a level: The level of the row j × 2n, with j odd, is n.
Rows of level n contains periodically all patterns of L(S) of size
n + 1, separated by a # symbol.
Row of level 0 contains any infinite word

This configuration x is computable (provided some care is done for
level 0) and the subshift generated by x is minimal.

Problem: the quasiperiodicity function is not computable.
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Realization

Row of level n contains periodically all possible pairs of patterns
u#v for u, v ∈ L(S) of size pn

Ensures that patterns of small size that appear in row of large level
also appear in rows of small level.

pn − 1 is precisely the size of the period of the rows of level n− 1.
The # symbol will be synchronized.

No pictures!
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Going further

L(S) = L(S2) ∩ A? is not very nice, what about a factor map ?

Theorem (Tentative Theorem)
Let S ⊆ AZ be a subshift.
Then L(S) is recursive iff it is a factor of a minimal SFT.
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Going further

This does not work:
If S is a factor of a minimal system, then S has dense minimal
points.

Not every recursive subshift can be obtained this way
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Going further

If S is a recursive 1D subshift, then
S ∩ AZ is not always recursive.
L(S) ∩ A? is recursive.

The theorem is about finite words, not infinite words.

Corollary
Let S ⊆ AZ be a subshift.
Then S is effectively closed iff there exists a minimal 3D-SFT S2 s.t.
S = rows(S2) ∩ AZ
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Plan

1 First Higman Theorem

2 Second Higman Theorem

3 Third Higman Theorem

4 Conclusion

E. Jeandel, CASD, Part III: Higman theorems 24/45



Finitely presented in

Definition
G is finitely presented in H if G is obtained from H by adding finitely
many generators and finitely many relations.

(The definition usually also requires that H ⊆ G)
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Third Higman Theorem

Theorem (Ziegler, CF Miller III)
G is a subgroup of a finitely presented group in H iff WP(G) ≤e WP(H)

Recall what ≤e means:
From an enumeration of the word problem of H, I can enumerate
the word problem of G.
From an enumeration of the words w s.t. w = 1 in H, I can
enumerate all words w s.t. w = 1 in G.

What is the equivalent for subshifts ?
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SFT in

Definition
S is a SFT in T if S is obtained from T by adding finitely many letters
and finitely many forbidden words.
More precisely S = XD(T )∪F for some finite set F .

We also add the possibilty for S to be in a higher dimension than T .
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Example(s)

Let T be a subshift over the alphabet A in dimension 1

Let S be the subshift over the alphabet A in dimension 2 with the
same forbidden patterns. What does S look like ?
We forbid different letters in vertically adjacents positions. What
does S look like now ?
Let S be the subshift over the alphabet A ∪ {#} in dimension 1
with the same forbidden patterns. What does S look like ?
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Third Higman theorem

Theorem (J.-Vanier 2017)
Let S,T be two subshifts over disjoint alphabets A and B.
Then D(S) ≤e D(T ) iff L(S) = L(S1) ∩ A? for some subshift S1 that is a
SFT over T .

Corollary
Start from a subshift T and apply some of the following operations:

Change the alphabet (add letters, or rename them)
Add some forbidden pattern
Change the dimension (up or down)

The subshifts we obtain are exactly all subshifts S s.t. D(S) ≤e D(T ).
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Warning

This theorem is very similar to a theorem of Aubrun and Sablik 2009
[AS09]

Same operations (plus product and factor), except we cannot add
letters
Different conclusion: D(S) ≤s D(T ), where s is strong reducibility

However, the proof in the article are completely wrong in both
directions.
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Idea of the proof

One direction is OK.
Other direction: Start from D(S) ≤e D(T ). Suppose S and T are
one-dimensional to simplify, and S is over {0,1}.

This is a statement about finite words rather than infinite words
Extract L(T ) from T
Deduce the words of L(S) from L(T )
Recombine L(S) into S.
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Two steps

First part: Starting from T , we build a 1D subshift S1 s.t. configurations
of S1 :

Either contain at most one letter #

Or are periodic of the form #w1#w2 . . .w2n where each wi is in
L(S) and of length n.

Second part: Starting from S1, we build S.
How to do the second part ?
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Same construction, different semantics

Row of level n contains (periodically) 2n words of size n.
Each factor of a word in level i ∈ [1,+∞] appears in level j for
j < i .

The subshift generated by these configurations is effectively closed.
(Why ?)

Suppose now that each row is in S1.
Then necessarily the only rows with no # symbols are in S.
We can extract these rows with down + Forbidden patterns.
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First Part

First part: Starting from T , we build a 1D subshift S1 s.t. configurations
of S1 :

Either contain at most one letter #

Or are periodic of the form #w1#w2 . . .w2n where each wi is in
L(S) and of length n.

We know that D(S) ≤e D(T ). What does it mean for L(S) relatively to
L(T ) ?
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Suppose that D(S) ≤e D(T ). Then there exists a recursive function F
s.t. on input p and u outputs a finite set F (p,u) of words s.t.

u ∈ D(S) ⇐⇒ ∃p,F (p,u) ⊆ D(T )

u ∈ L(S) ⇐⇒ ∀p,F (p,u) ∩ L(T ) 6= ∅
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First part

Build a 2D subshift s.t. rows are either over the alphabet {0,1,#} or
the alphabet A ∪ {]} (A is the alphabet of T ) s.t:

There is at most one row with elements in {0,1,#}
If this row contains two # symbols, then

it is periodic of the form #w1#w2 . . .w2n where each wi is of length
n.
The p-th row above this row contains a periodic word of the form
]u1]u2 . . . ]u2n where ui ∈ F (p,wi )

This subshift is clearly effectively closed (why ?)

Now suppose that all rows over A ∪ {]} actually contains T], the
shift T with the additional ] letter.
Then the row over {0,1,#} should be in L(S)!

S1 can therefore be obtained by down + forbidden patterns.

E. Jeandel, CASD, Part III: Higman theorems 37/45



Plan

1 First Higman Theorem

2 Second Higman Theorem

3 Third Higman Theorem

4 Conclusion
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Generalizations

Can we obtain other new theorems by this correspondence?

How(What is the best way) to formalize this correspondence?
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The fourth Higman theorem

What about the fourth Higman theorem ?
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Realization

Definition
Let S be a subshift over an alphabet A Let ui , vi be a finite set of
patterns over the alphabet A ∪ X .
A subshift T over an alphabet A ∪ B realizes (S,ui , vi) if, up to a
renaming of the letters of X into the letters of B:

S = T ∩ AZ.
All patterns ui are forbidden in T , all patterns vi appear in T .

A tuple (ui , vi ,S) is realizable if there exists a subshift that realizes it.
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Examples

Let S be the subshift that forbids 01p0 for p prime.

Let u1 = 0x0 and v1 = 1x1.

Then the subshift T over {0,1,2} that forbids 01p0 and 020 realizes
(S,u1, v1).
Actually, any subshift T ′ ⊆ T also realizes (S,u1, v1) as long as it
contains S and the pattern 121 is allowed.
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e.c. Shift

Definition
A subshift T ⊆ ∆Z is existentially closed if every realizable tuple is
realized:

For every subshift S = T ∩ AZ for some finite alphabet A, and
every realizable tuple (S,ui , vi), the subshift T realizes (S,ui , vi)

∆ is an infinite alphabet!

Theorem (Tentative theorem)
S is recursive iff it is included in any existentially closed subshift.
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