Reducibilities relations with applications to symbolic dynamics Part III: Higman theorems

E. Jeandel

LORIA (Nancy, France)

Aubrun-Sablik look suspiciously like an old theorem from Higman on finitely generated groups

This analogy can be pushed further to obtain more results.

Warning: only an analogy in this talk! First part is informal!!

- By \mathfrak{G}_n we denote the "set" of all groups with generators $g_1 \dots g_n$.
- The "largest" group in \mathfrak{G}_n is \mathbb{F}_n , the free group on *n* generators.
- Every other group with *n* generators is a quotient of \mathbb{F}_n : $G = F_n/N$ where *N* is a normal subgroup of F_n .
- A presentation of *G* is a subset *R* of *N* that generates *N* (as a normal subgroup). We write

$$G = \langle g_1, g_2 \dots g_n | R \rangle$$

• *G* is somehow the largest group generated by $g_1 \dots g_n$ in which all relations of *R* hold.

Let $G = \langle a, b | aba^{-1}b^{-1} \rangle$

G is the largest group in which aba⁻¹b⁻¹ = 1, i.e. ab = ba.
G ≃ Z².

A group *G* is finitely presented if it can be given by a finite set *R*. A group *G* is recursively presented if it can be given by a recursively enumerable set R. The construction of groups with presentations is the same as the construction of subshifts.

- Identify a group with the set of all identities in the group
- Identify a subshift with its forbidden language

In both cases, we start from a set of relations, and we see all relations we can obtain as consequences of these relations.

Let *S* be the subshift that forbids *ab* and *bba*. We can write

$$S = \langle a, b | ab = 0, bba = 0 \rangle$$

Then the set of all words of value 0 are (not) exactly the forbidden language of S!

Shifts
Subshifts of $\{1, 2, \ldots, n\}^{\mathbb{Z}}$
Full shift on <i>n</i> letters
SFT
Effectively closed shift
$L(S_1) = L(S_2) \cap A^\star$

Let's look at theorems on groups using this correspondence!

First Higman Theorem

- 2 Second Higman Theorem
- 3 Third Higman Theorem
- Onclusion

Theorem (Higman 1961 [Hig61])

G is recursively presented iff there exists a finitely presented group *H* s.t. $G \subseteq H$.

Theorem

 $S \subseteq A^{\mathbb{Z}}$ is effectively closed iff there exists a SFT $S_2 \subseteq B^{\mathbb{Z}^2}$ s.t. $L(S) = L(S_2) \cap A^*$

Note: $L(S_2)$ is a language of bidimensional words: we extract from it the one-dimensional words on the alphabet *A*.

If S₂ is a SFT:

- $L(S_2)$ is corecursively enumerable
- $L(S_2) \cap A^*$ is corecursively enumerable
- L(S) is corecursively enumerable
- S is effectively closed.
- Suppose $S \subseteq A^{\mathbb{Z}}$ is effectively closed.
 - Use Aubrun-Sablik to obtain a Z² SFT X over the alphabet A × B s.t. S^Z = π(X) where π : (a, b) → a is the canonical projection
 - Rewrite X as a \mathbb{Z}^2 SFT with every other row in A and every other row in B

Note: the result is apriori weaker than Aubrun-Sablik.

First Higman Theorem

3 Third Higman Theorem

Onclusion

Theorem (Boone-Higman-Thompson 1974-1980 [BH74, Tho80])

G has a recursive word problem iff there exists f.g. H_1 , H_2 s.t. $G \subseteq H_1 \subseteq H_2$ with H_1 simple and H_2 finitely presented.

G has a recursive word problem iff $G \subseteq H$ for some recursively presented, simple group *H*.

Theorem (J.-Vanier 2017)

Let $S \subseteq A^{\mathbb{Z}}$ be a subshift. Then L(S) is recursive iff there exists an effectively closed minimal 2D-subshift S_1 s.t. $L(S) = L(S_1) \cap A^*$

Corollary (Durand-Romashchenko 2017)

Let $S \subseteq A^{\mathbb{Z}}$ be a subshift. Then L(S) is recursive iff there exists a minimal 3D-SFT S_2 s.t. $L(S) = L(S_2) \cap A^*$.

Minimality plays the role of Simplicity. Why is the corollary not immediate ? We prove already that if X is effectively closed and minimal, then L(X) is recursive. Therefore $L(S) = L(X) \cap A^*$ is also recursive. For the converse, we first ask:

What does it mean for a minimal *X* to be effectively closed ?

Theorem

X minimal is effectively closed iff it contains a recursive point and its quasiperiodicity function is recursive.

f(n) =least *m* s.t. every $n \times n$ pattern in L(X) appear in all $m \times m$ patterns in L(X).

- Suppose *X* is effectively closed and minimal. Then *L*(*X*) is recursive. Therefore:
 - X has a recursive point (actually a dense subset of recursive points)
 - f is computable by definition.
- Suppose $x \in X$ is computable and f is computable
 - Then D(X) is exactly the set of n × n patterns that do not appear in the square of size f(n) × f(n) around the origin of x.

Let L(S) be computable. How to do a two-dimensional minimal subshift where every word of L(S) appear ?

00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#101#000#001#010#101# 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 -0#1#0#1#0#1#0#1

00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#101#000#001#010#101# 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010

00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#101#000#001#010#101# 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 -0#1#0#1#0#1#0#1

00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#101#000#001#010#101# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101# 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101# 00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 -0#1#0#1#0#1#0#1

00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#101#000#001#010#101# 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 -0#1#0#1#0#1#0#1

00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#101#000#001#010#101# 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 Starting from a subshift S with computable language, we create a configuration x:

- Every row has a level: The level of the row $j \times 2^n$, with *j* odd, is *n*.
- Rows of level *n* contains periodically all patterns of *L*(*S*) of size *n* + 1, separated by a # symbol.
- Row of level 0 contains any infinite word

This configuration x is computable (provided some care is done for level 0) and the subshift generated by x is minimal.

Problem: the quasiperiodicity function is not computable.

- Row of level *n* contains periodically all possible pairs of patterns *u*#*v* for *u*, *v* ∈ *L*(*S*) of size *p_n*
 - Ensures that patterns of small size that appear in row of large level also appear in rows of small level.
- $p_n 1$ is precisely the size of the period of the rows of level n 1.
 - The # symbol will be *synchronized*.

No pictures!

$L(S) = L(S_2) \cap A^*$ is not very nice, what about a factor map ?

Theorem (Tentative Theorem)

Let $S \subseteq A^{\mathbb{Z}}$ be a subshift. Then L(S) is recursive iff it is a factor of a minimal SFT. This does not work:

- If *S* is a factor of a minimal system, then *S* has dense minimal points.
 - Not every recursive subshift can be obtained this way

If S is a recursive 1D subshift, then

- $S \cap A^{\mathbb{Z}}$ is not always recursive.
- $L(S) \cap A^*$ is recursive.

The theorem is about finite words, not infinite words.

Corollary

Let $S \subseteq A^{\mathbb{Z}}$ be a subshift. Then S is effectively closed iff there exists a minimal 3D-SFT S₂ s.t. $S = rows(S_2) \cap A^{\mathbb{Z}}$

First Higman Theorem

Second Higman Theorem

4 Conclusion

Definition

G is finitely presented in H if G is obtained from H by adding finitely many generators and finitely many relations.

(The definition usually also requires that $H \subseteq G$)

Theorem (Ziegler, CF Miller III)

G is a subgroup of a finitely presented group in *H* iff $WP(G) \leq_{e} WP(H)$

Recall what \leq_e means:

- From an enumeration of the word problem of *H*, I can enumerate the word problem of *G*.
- From an enumeration of the words w s.t. w = 1 in H, I can enumerate all words w s.t. w = 1 in G.

What is the equivalent for subshifts ?

Definition

S is a SFT in T if S is obtained from T by adding finitely many letters and finitely many forbidden words.

More precisely $S = X_{D(T)\cup F}$ for some finite set *F*.

We also add the possibility for S to be in a higher dimension than T.

Let T be a subshift over the alphabet A in dimension 1

- Let *S* be the subshift over the alphabet *A* in dimension 2 with the same forbidden patterns. What does *S* look like ?
- We forbid different letters in vertically adjacents positions. What does *S* look like now ?
- Let S be the subshift over the alphabet A ∪ {#} in dimension 1 with the same forbidden patterns. What does S look like ?

Theorem (J.-Vanier 2017)

Let *S*, *T* be two subshifts over disjoint alphabets A and B. Then $D(S) \leq_e D(T)$ iff $L(S) = L(S_1) \cap A^*$ for some subshift S_1 that is a SFT over *T*.

Corollary

Start from a subshift T and apply some of the following operations:

- Change the alphabet (add letters, or rename them)
- Add some forbidden pattern
- Change the dimension (up or down)

The subshifts we obtain are exactly all subshifts S s.t. $D(S) \leq_e D(T)$.

This theorem is very similar to a theorem of Aubrun and Sablik 2009 [AS09]

- Same operations (plus product and factor), except we cannot add letters
- Different conclusion: $D(S) \leq_{s} D(T)$, where *s* is strong reducibility

However, the proof in the article are *completely wrong* in both directions.

One direction is OK.

Other direction: Start from $D(S) \leq_e D(T)$. Suppose *S* and *T* are one-dimensional to simplify, and *S* is over $\{0, 1\}$.

- This is a statement about finite words rather than infinite words
 - Extract L(T) from T
 - Deduce the words of L(S) from L(T)
 - Recombine L(S) into S.

First part: Starting from *T*, we build a 1D subshift S_1 s.t. configurations of S_1 :

- Either contain at most one letter #
- Or are periodic of the form $\#w_1 \# w_2 \dots w_{2^n}$ where each w_i is in L(S) and of length *n*.

Second part: Starting from S_1 , we build S. How to do the second part ?

00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#100#101#000#001#010#101#000#001#010#101# 0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100#0101#1000#1001#1010#0000#0001#0010#0100# 00000#00001#00010#00100#00101#01000#01001#01001#10000#10001#10010#1010#1010#10101#00000#00001#00010#0010

- Row of level *n* contains (periodically) 2^{*n*} words of size *n*.
- Each factor of a word in level $i \in [1, +\infty]$ appears in level j for j < i.

The subshift generated by these configurations is effectively closed. (Why ?)

- Suppose now that each row is in S_1 .
- Then necessarily the only rows with no # symbols are in *S*.
- We can extract these rows with down + Forbidden patterns.

First part: Starting from *T*, we build a 1D subshift S_1 s.t. configurations of S_1 :

- Either contain at most one letter #
- Or are periodic of the form #w₁#w₂...w_{2ⁿ} where each w_i is in L(S) and of length n.

We know that $D(S) \leq_e D(T)$. What does it mean for L(S) relatively to L(T)?

Suppose that $D(S) \leq_e D(T)$. Then there exists a recursive function *F* s.t. on input *p* and *u* outputs a finite set F(p, u) of words s.t.

 $u \in D(S) \iff \exists p, F(p, u) \subseteq D(T)$

$$u \in L(S) \iff \forall p, F(p, u) \cap L(T) \neq \emptyset$$

First part

Build a 2D subshift s.t. rows are either over the alphabet $\{0, 1, \#\}$ or the alphabet $A \cup \{\#\}$ (*A* is the alphabet of *T*) s.t:

- There is at most one row with elements in {0, 1, #}
- If this row contains two # symbols, then
 - it is periodic of the form $\#w_1 \# w_2 \dots w_{2^n}$ where each w_i is of length *n*.
 - The *p*-th row above this row contains a periodic word of the form *µ*₁ *µ*₂ . . . *µ*_{2ⁿ} where *u_i* ∈ *F*(*p*, *w_i*)

This subshift is clearly effectively closed (why ?)

- Now suppose that all rows over A ∪ {♯} actually contains T_♯, the shift T with the additional ♯ letter.
- Then the row over $\{0, 1, \#\}$ should be in L(S)!

 \mathcal{S}_1 can therefore be obtained by down + forbidden patterns.

- First Higman Theorem
- Second Higman Theorem
- 3 Third Higman Theorem
- 4 Conclusion

Can we obtain other new theorems by this correspondence?

How(What is the best way) to formalize this correspondence?

What about the fourth Higman theorem ?

Definition

Let *S* be a subshift over an alphabet *A* Let u_i , v_i be a finite set of patterns over the alphabet $A \cup X$.

A subshift *T* over an alphabet $A \cup B$ realizes (S, u_i, v_i) if, up to a renaming of the letters of *X* into the letters of *B*:

•
$$S = T \cap A^{\mathbb{Z}}$$
.

• All patterns u_i are forbidden in T, all patterns v_i appear in T.

A tuple (u_i, v_i, S) is realizable if there exists a subshift that realizes it.

Let *S* be the subshift that forbids 01^p0 for *p* prime.

• Let
$$u_1 = 0x0$$
 and $v_1 = 1x1$.

Then the subshift *T* over $\{0, 1, 2\}$ that forbids 01^p0 and 020 realizes (S, u_1, v_1) .

Actually, any subshift $T' \subseteq T$ also realizes (S, u_1, v_1) as long as it contains *S* and the pattern 121 is allowed.

Definition

A subshift $T \subseteq \Delta^{\mathbb{Z}}$ is existentially closed if every realizable tuple is realized:

 For every subshift S = T ∩ A^ℤ for some finite alphabet A, and every realizable tuple (S, u_i, v_i), the subshift T realizes (S, u_i, v_i)

 Δ is an infinite alphabet!

Theorem (Tentative theorem)

S is recursive iff it is included in any existentially closed subshift.

Bibliography I

- Nathalie Aubrun and Mathieu Sablik, An order on sets of tilings corresponding to an order on languages, 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, 2009, pp. 99–110.
- William W. Boone and Graham Higman, An algebraic characterization of groups with soluble word problem, Journal of the Australian Mathematical Society 18 (1974), no. 1, 41–53.
- Graham Higman, *Subgroups of Finitely Presented Groups*, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences **262** (1961), no. 1311, 455–475.

Richard J. Thompson, *Embeddings into finitely generated simple groups which preserve the word problem*, Word Problems II (Sergei I. Adian, William W. Boone, and Graham Higman, eds.), Studies in Logic and the Foundations of Mathematics, vol. 95, North Holland, 1980, pp. 401–441.