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Abstract

In all-wireless networks minimizing energy consumption is crucial, as int weses the nodes are
battery-operated. We focus on the problem of power-optimal breadoa which it is well known that
the broadcast nature of the radio transmission can be exploited to optingrgyeconsumption. This
problem appears to be difficult to solve [31]. We provide a formal pobdP-completeness for the gen-
eral case and give an NP-completeness result for the geometrjéretiseformer, the network topology
is represented by a generic graph with arbitrary weights, whereas inttedaEuclidean distance is
considered. For the general case, we show that it cannot be appter better tha® (log N), where
N is the total number of nodes. We then describe an approximation algoritttiadhieves th®(log N)
approximation ratio. We also describe a new heuristic, Embedded Windigiisast Advantage. We
show that it compares well with other proposals and we explain how it eatistributed.

Keywords: wireless ad hoc networks, minimum-energy networks, energy effigi@pproximation al-
gorithms, complexity theory

1 Introduction

In recent years, all-wireless networks have attractedfsignt attention due to their potential applications
in civil and military domains [21, 22, 4, 11]. An all-wirelesietwork consists of numerous devices (nodes)
that are equipped with processing, memory and wireless eoriwation capabilities, and are linked via
short-range ad hoc radio connections. This kind of netwak ho pre-installed infrastructure, but all
communication is supported by multi-hop transmissionsnlintermediate nodes relay packets between
communicating parties. Each node in such a network has telinenergy resource (battery) and operates
unattended. Consequently, energy efficiency is an impbdasign consideration for these networks [26,
32].

In this paper, we focus on the source-initiated broadcgstimlata in static all-wireless networks. Data are
distributed from a source node to each node in a network. Gim objective is to construct rainimum-
energy broadcast tree rooted at the source node. Nodes belonging to a broadcastdrebe divided into
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two categoriesrelay nodes andeaf nodes. The relay nodes are those that relay data by forvgpidin
to other nodes (relaying or leaf), and leaf nodes only recdata. Each node can transmit at different
power levels and thus reach a different number of neighbaniodes. Given the source nodewe want

to find a set of relaying nodes and their respective transomidsvels so that all nodes in the network
receive a message senthywhereby the total energy expenditure for this task is minéa. We call this
broadcasting problem thwainimum-energy broadcast problem.

We base our work on the so calledde-based multicast model [31]. In this model there is a trade-off
between reaching more nodes in a single hop thus using mergyeand reaching fewer nodes using less
energy. This trade-off is made possible by bneadcast nature of the wireless channel.

In Section 2, we overview related work concerning the minmimrenergy broadcast problem. In Section 3,
we discuss the system model used. In Section 4, we provetthainimum-energy broadcast problem is
NP-complete and show that it cannot be approximated bater(log N) for a general graph, wherg is

the number of nodes in a network; we also give the NP-compsteresult for the geometric version of the
minimum-energy broadcast problem. Then, in Section 5, vesqmO (log N )-approximation algorithms
for the general graph version and a heuristic algorithm ihatsy to distribute. Performance evaluation
results are presented in Section 6. Finally in Section 7 welcadle.

2 Related work

Minimizing the energy consumption of all-wireless netwdHas received significant attention over the last
few years [1, 24, 9, 14, 33, 15, 25, 12]. We were inspired byetkeiting results related to the problem
of minimum-energy broadcasting in all-wireless networ&8,[30, 5, 13, 19, 20], and in particular by the
work of Wieselthier et al. [31, 32]. In this work they intrackithe node-based multicast model for wireless
networks upon which they have built several broadcast anticast heuristics. One of the most notable
contributions of their work is the Broadcast IncrementalBio(BIP) algorithm. The main objective of BIP
is to construct a minimum-energy broadcast tree rootedeastiirce node. It constructs the tree by first
determining the node that the source can reach with a miniexpanditure of power. BIP constructs a
tree that initially contains a single node; it then detemsiwhich uncovered node can be added to the tree
at aminimum additional cost. At each iteration of BIP, the nodes that have alreasgrenl some node can
further increase their transmission power to reach sonmer gt uncovered node. BIP is similar to Prim’s
algorithm [3] for the formation of minimum spanning treest Wwith the difference that weights, with BIP,
are dynamically updated at each step.

In [30] Wan et al. provide the first analytical results for themimum energy broadcast problem. By explor-
ing geometric structures of an Euclidean minimum spanmieg @MST), they prove that the approximation
ratio of MST is between 6 and 12, and that the approximatitia cd BIP is between16—3 and 12. They also
found that for some instances, BIP fails to use the broaduste of the wireless channel. This happens
because BIP adds only one node at each iteration, the oneathée added at a minimum additional cost.
Thus BIP, although centralized, does not use all the aJailafformation about the network. As a result,
it may construct a broadcast tree that coincides with thetesiopath tree of a network graph, where the
broadcast nature of the media is completely ignored. A ptssipproach to alleviate with this problem is
to add to the tree more than one node at each iteration, amenessarily at a minimum additional cost.
But, in this case, there must be another criterion for thecsiein of nodes. Another difficulty with BIP

is that distributing it is not obvious and according to th¢haus of BIP and of [30], the development of
distributed algorithms is the major challenge for a minimenergy broadcast problem. However, Wan
et al. [30] and Wieselthier et al. [31] do not really addrdss thallenge. In Section 5.2 we present a
heuristic algorithm that achieves the same approximation as BIP for the geometric case, and yet is
easy to distribute.

Li et al., in another closely related work [13], also recagniveaknesses of BIP and propose another
centralized heuristic to tackle the broadcasting problétowever, they do not consider the issue of de-
veloping a distributed algorithm for a minimum energy broast. Li et al. [13] also sketch a proof of the
NP-hardness of a general version of the minimum energy besad

A proof of NP-hardness of the minimum energy broadcast prabih metric space has been proposed
by Egecidjlu et al. [5]. However, in their interpretation of the minim energy broadcast problem, they



restrict nodes transmission ranges a sdanteers, which captures very few instances of the problem in
metric space.

In [16] Liang provide a proof of NP-completeness of the minimenergy broadcast problem, as well as
an approximation algorithm for the problem in general sgttiwhich delivers a feasible solution of cost
O(log® n) times the optimum. The time complexity of the proposed algor isO(kn?logn), wherek is

the total number of power levels at each node. However, [t6kdot provide an answer to the question:
Whether there is an approximation algorithm for the probleitm & constant performance ratio. We do
provide an answer in Section 4 (Theorem 2).

Very recently, it was brought to our attention that more aeskers are also studying the problem of
minimum-energy broadcasting in all-wireless networks[2,

3 System model

We first provide a model of wireless communications. Thengigtias a basis, we develop a graph model,
which will be used to assess the complexity of the minimurargy broadcast problem and to develop an
approximation algorithm.

In our model of a wireless network, nodes are stationaryhis paper, we assume a large availability of
bandwidth resources, i.e. communication channels. We d@sause we focus only on minimum energy
broadcast communication and do not consider issues likeentian for the channel, lack of bandwidth
resources. We also assume that nodes in a network are eduifhpeomnidirectional antennas. Thus due
to the broadcast nature of wireless channels, all nodedahat the transmission range of a transmitting
node can receive its transmission. This property of wigetasdia is calle®Mreless Multicast Advantage,
which we refer to as WMA [31].

In this model, each node can choose to transmit at differameplevels that do not exceed some maximum
valuep,,.x. Let P denote the set of power levels at which a node can transmitn\@imede; transmits at
some power leveb € P, we assign it a weight equal {9 which we call anode power. The connectivity

of the network depends on the transmission power. Naglgaid to beconnected to nodej if node j falls

in the transmission range of nodeThis link is then assignedlank cost ¢;; that is equal to the minimum
power that is necessary to sustain lifiky).

Next we define a graph model for wireless networks, whichwagstimportant properties of wireless media
(including the wireless multicast advantage). An all-lgss network can be modeled by a directed graph
G = (V, E), whereV represents the finite set of nodes dithe set of communication links between the
nodes. Each edge (ar@) j) € E has link cost;; € R, assigned to it, and each notle V' is assigned
avariable node power p?. The variable node power takes a value from the/3eefined above. Initially,
the variable node power assigned to a node is equal to zeris aptito value € P if the node transmits
atp. LetV; denote the set afeighbors of nodei. Nodej is said to be aeighbor of node: if node j falls

in the maximum transmission range of nadevhich is determined by,,.... All nodes; € V; that satisfy

ci; < py are said to beovered by nodei. Thus, if node; transmits at powep,,.«, all the nodes o¥/; will

be covered.

Now that we have the model, we study in detail the intrinsimptexity of the minimum-energy broadcast
problem in the following section.

4 Complexity issues

In this section, we give an in-depth analysis of the compyexd the minimum-energy broadcast problem.
Let us first briefly recall a few concepts from complexity thef8]. The problems polynomially solvable
by deterministic algorithms belong to the P class. Whereas, all the problehaatde bynondeterministic
algorithms belong to the NP class. It can easily be showrRkalNP. Also, there is widespread belief that
P # NP. The theory of complexity is focused decision problems, i.e., problems that have eithges or

no as an answer. Notice that each optimization problem candily stated as the corresponding decision
problem. Informally, a decision problehhis said to be NP-completelif € NP and for all other problems
IT' € NP, there exists a polynomial transformation frdin to IT (we writeIT"  II) [8]. There are two



important properties of the NP-complete class. If any NRyglete problem could be solved in polynomial
time, then all problems in NP could also be solved in polyradtiine. If any problem in NP is intractalle
then so are all NP-complete problems. Presently, theredsge kcollection of problems considered to be
intractable.

In this section, we consider the problem of minimum-energyaldcast in two different graph models,
specifically a general graph and a graph in Euclidean mgidces In general graphs, links are arbitrarily
distributed and have weights arbitrarily chosen from thé>sél his graph model is well suited for modeling
wireless networks in indoor environments. Whereas, forlggap Euclidean metric space, the existence
and the weight of the link between two nodes depends exellyson the distance between the nodes and
their transmission levels. This graph model fits well fordmgr scenarios.

4.1 General graph version

In the following, we show that a general graph version of theimum-energy broadcast problem is in-
tractable, that is, it belongs to the NP-complete classaBsge of its similarity to the well knowset Cover
problem [10] that aims at finding the minimum cost cover foineeg set of nodes, we call it tHdinimum
Broadcast Cover and refer to it as MBC. We convert MBC into a decision problerthie following way:
MINIMUM BROADCAST COVER (MBC)

INSTANCE: A directed graphG = (V, E), a setP consisting of all power levels at which a node can
transmit, edge costs; : E(G) — R4, a source node € V, an assignment operatigti : V(G) — P
and some consta® € R, .

QUESTION: Is there a node power assignment vectoe [p} py ... prv‘} such that it induces the directed

graphG’ = (V, E'), whereE' = {(i,j) € E : ¢;j < p!}, in which there is a path fromto any node of
V' (all nodes are covered), and such that.,, p; < B?

Notice that the above question is the equivalent of askitigeife is a broadcast tree rooted-atith total
costB or less, and such that all nodeslinare included in the tree (covered).

We prove NP-completeness of MBC for a general graph by shpttiat a special case of MBC is NP-
complete. In order to obtain this special case of MBC, we édfire following restriction to be placed on
the instances of MBC: All the links between any nadand its neighborg € V; have the same cost
Consequently, the nodeeither does not transmit or it transmits wijth = c¢. We call this special case
SINGLE POWER MBC. We prove NP-completeness of thenN8LE POWER MBC problem by reduction
from the SET COVER (SC) problem, which is well known to be Nitaplete [8].

SET COVER (SC)

INSTANCE: A set] of m elements to be covered and a collection of sts= I, j € J = {1,...,n}.
Weightsw; for eachj € J,and a constanB € R+.

QUESTION: Is there a subcollection of sefsthat form a cover, i.eljecS; = I and suchtha} ., w; <
B?

First we describe the construction of a graghthat represents any instance of the set cover problem.
The graphG has a vertex set U {vy, va, ..., v, }, that is,G consists of elements df and set vertices;
representing setS; € I, j € J = {1,...,n}. There is an edge between an elemer¢ I and a set
nodew; if the setS; contains the element. Each set nagds assigned the weight, of the setS; the
node represents. All other nodes and all edges are not veeligtiitat is, they have weight of zero. Thus,
G = (V, E) is a bipartite graph, as is illustrated in Figure 1a.

The transformation from SC toi8GLE POWER MBC consists first in adding a source (root) nod® G
and making it adjacent to all the set nodesNote that we use undirected edges here to emphasize that the
links between the soureceand nodes; are bidirectional. We proceed by assigning a zero weight¢oye
edge the root nodeshares with the set nodes. Then, the edges betweepand elements ¢ I are made
directed in order to capture the fact that no elemeat! is ever selected into the cover ggt Finally, the
directed edges the nodg shares with elements € I are assigned the weight;. The resulting graph,
which we denote withG, = (V}, Ep), is illustrated in Figure 1b. It is easy to see that the tramsétion
can be done in polynomial time.

Next we prove the following theorem.

1We refer to a problem as intractable if no polynomial time altyan can possibly solve it.



Figure 1: The reduction of (a) SET COVER to (b) SINGLE POWER MNNWM BROADCAST COVER

Theorem 1 SINGLE POWER MBC is NP-complete.

Proof:
The proof consists first in showing thaiNgLE POwER MBC belongs to the NP class and then in showing
that the above polynomial transformation (Figure 1) redu8€ to SNGLE POWER MBC.
It is easy to see thatiSGLE POWER MBC belongs to the NP class since a nhondeterministic alyorit
needs only to guess a set of transmitting nog&s 0) and to check in polynomial time whether there is
a path from the source noddo any node in a final solution and whether the cost of the fiolait®n is <
B.
We continue the proof by showing that given the minimum boaaticover”;, of G, with costcost(Cy), the
setC, —{r} always corresponds to the minimum set ca¥esf G of the same costfst(C) = cost(Cy)),
and vice versa. Let’ denote the minimum set cover 6f. Let cost(C) = . - w; denote the cost of
this cover. It is easy to see that all nodeg<hfcan also be covered with total castst(C'). This can be
achieved by having the source nadeover all the set nodes;, j € J = {1,...,n} at zero cost and then
by selecting among the covered nodes those correspondihg twdes of+ that satisfyv; € C as new
transmitting nodes, which we refer to @ — {r}. Hence the minimum broadcast cover®f is Cj, with
total costeost(Cy) = cost(C).
Conversely, suppose that we have the minimum broadcast ¢gvef G, with total costcost(Cy). Thus
the minimum set cove€ of G must beC = C, — {r}, i.e,, cost(C) = cost(Cy). We prove this by
contradiction. Let us first assume thatst(C) < cost(Cy,) (henceC # C, — {r}). In this case, with
the same reasoning as befofs, can be covered bg, = C + {r} that satisfiesost(C,) < cost(Cj).
This, however, contradicts the preceding assumptiondhas the minimum broadcast cover 6f,. On
the other hand, let us assume thatt(C,) < cost(C) (henceC # C, — {r}). SinceC} covers all the
elements: € I, we can obtain a set covél for this instance as followst” = C;, — {r}. Now we have
cost(C") = cost(Cy) < cost(C'), which contradicts the optimality @f and concludes the proof.

O
Since the 8\GLE POWER MBC problem is a special case of the MBC problem, and MBC hgddo the
NP class, which can be shown along the similar lines as#& SINGLE POWER MBC problem, we have
the following corollary:

Corollary 1 MINIMUM BROADCAST COVER (MBC) is NP-compl ete.

Another important implication of Theorem 1 is the followittgeorem. LetV denote the total number of
nodes in an instance of MBC.

Theorem 2 There exists a constant ¢ > 0 such that MINIMUM BROADCAST COVER (MBC) cannot be
approximate better than clog N, if P # NP.

Proof: To prove this we recall that there exists a constant 0 such that no polynomial-time approx-
imation algorithm for SC achieves an approximation rati@len thanc logn if P # NP, wheren is the



total number of elements in an instance of SC [29]. We showesiehow any instance of the SC problem
can be transformed to the corresponding instance of MBC., Mesume that we have an approximation
algorithm for MBC with the performance guarantee bettenthaog (N —1). By applying this algorithm

to the instance of MBC obtained from the SC instance, we wgelda solution with a cost lower than
¢ log(n+1—1)-OPT = ¢ logn - OPT. Since this solution is also feasible to the instance of 8, t
would mean that we can approximate SC better thang n, which contradicts the fact that SC is hard to
approximate better than log n. We obtain the theorem by noting thzéﬂog(N — 1) = clog N, where
0<c<c forN >2. O
Fortunately, Theorem 2 does not hold for all instances ofni@mum-energy broadcast problem. By
exploring the geometric structure of the minimum-energyablicast problem, Wan et al. were able to show
that the Euclidean minimum spanning tree approximates themmam-energy broadcast problem within a
factor of 12 [30]. But, whether the geometric instances efrtlinimum-energy broadcast problem can be
solved in polynomial time was left as an open question. Weigsoan answer in the next subsection.

4.2 Geometric version

In this section, we show that the minimum-energy broadoadilem in two-dimensional Euclidean metric
space is intractable. In metric space, the distance betp@iats (nodes) obeys triangle inequality, that is,
di; < dii + dij, Whered,, is the Euclidean distance between nodesndy. We have seen that given
the graph version of the minimum-energy broadcast problencan have arbitrary costs of links between
nodes. This is because we did not have to worry about thendissebetween nodes and all links have been
imposed by a given graph. On the contrary, in metric spanks land their respective costs are dictated
by the distances between nodes and their transmissioniesiefdne cost;; between two nodesand; is
given as

C,;j = k’d% (1)

wherek € RT is constant depending on the environment arid a propagation loss exponent that takes
values between 2 and 5 [23].

We refer to this instance of the minimum-energy broadcasilpm as thé&eometric Minimum Broadcast
Cover (GMBC) problem. The decision problem related to GMBC candyenfulated as follows:
GEOMETRIC MINIMUM BROADCAST COVER (GMBC)

INSTANCE A set of nodesV in the plane, a seP consisting of all power levels at which a node can
transmit, a constarit € R, costs of edges;; = kd;‘j whered;; is the Euclidean distance betweeand

j, areal constant € [2..4] , a source node € V, an assignment operatigfi : V(G) — P and some
constantB € R,..

QUESTION: Is there a node power assignment vectoe [p} ph ... pf’vd such that it induces the directed
graphG = (V, E), with an edge (arc) directed form noéio nodey if and only if¢;; < p¥, in which there

is a path fromr to any node oV (all nodes are covered), and such that_,, p; < B?

Given the above formal definition of the geometric versiothef minimum-energy broadcast problem, we
have the following theorem:

Theorem 3 GEOMETRIC MINIMUM BROADCAST COVER (GMBC) is NP-complete.

The proof of the theorem is in [28]. We proved NP-completeredsGMBC is done by reduction from the
PLANAR 3-SAT problem, which is known to be NP-complete [18].

In the following section, we devise approximation algariththat enable us to find good solutions to the
minimum-energy broadcast problem.

5 Proposed algorithms

In this section, we first present an approximation algorithat achieve® (log N') approximation ratio for
any instance of MBC. Then, we elaborate on the algorithm EWNESigned deliberately for the geomet-
ric version of the minimum energy broadcast problem, and xpdaén how to convert it to a distributed
algorithm.



5.1 O(log N)-approximation algorithm

The MBC problem can be seen as a special case ofiittieg set problem. The hitting set problem is
defined as follows [10]: Given subsefs, ..., S, of a ground sef and given a nonnegative cast for
every element € F, find a minimum-cost subset C F such thatd N S; # () forevery: =1,...,p(i.e.

A hits everys;).

In our case, we are given a connected graph= (V,FE) with positive edge costs and a spe-
cial root noder. The sets to hit are all directed cuts, i.e. the sets of edges of the form
- (S) = {(ti,j) e E: i¢ S je€ S}whereS CV — {r}. Informally, for any subset of
nodesS C V — {r}, we should have at least one transmiitef S that covers at least one noglez S. It

is easy to see that, if this is fulfilled for al C V' — {r}, we obtain a feasible solution for MBC. Conse-
quently, any sef C V — {r} that has no edge incoming to it is said to be violated. For Baity we will

say thatS is not hit while meaning that~ () is not hit. The number of violated sets can be in theory as
large a2!VI~1, i.e. exponential in the total number of nodes. In order tstically reduce this number,
we apply the technique described in [10], where, insteadp$idering all possible violated sets, we take
into account onlyminimal violated sets. Any violatedS is said to be a minimal violated set if there exists
no violatedS” with S" < S. The rule we use to calculate minimal violated sets is defiyeithe following:

Definition 1 The minimal violated set is a strongly connectedomponent (i.e. collection of nodes)
S C V — {r} that contains no directed edge incoming to it.

We next describe an approximation algorithm (Algorithmvihjch achieves a®(log N') approximation
ratio for MBC. LetC denote the set comprising paifis k) wherei € V is transmitter and wherek € P
its respectiveransmission power level. The algorithm iteratively selects the most cost-effecpair (i, k)
and puts it into the sef’ and updates correspondingly the collection of minimalatied sets’, until V is
empty (i.e.C is a feasible solution).

Algorithm 1 O(log N )-approximation algorithm
1 C+—0;t=0
While C'is not feasible
t—t+1; V() Violation(C)

) . ckty—c, (t
(i, k)¢ = argming z) %

2
3
4
5 C—(i,k)y ct)=c)
6
7
8
9

ForallS € S(t)

. ck e
priceg(S) = %

Forj <« t downtol
if C —{(i,k);} is feasibleC' — C — {(i,k);}

At the beginning of the algorithm, the s€tis empty (and thus not feasible). Léblation(C) be an oracle
that calculates the minimal violated sets of the grépfor a givenC'; the oracle does this by following
Definition 1. The seV(¢) holds all the minimal violated sets returned by the oraclthatbeginning of
each iteratiort (line 3). Note that at the very beginning, the humber of maliwiolated sets isV — 1

(i.e. alli € V — {r}). The algorithm selects the most cost-effective gaik) (line 4); here,ct denotes
the cost assigned to the nodéhat transmits at the power levelandc; represents the cost induced by
any previous selection of the nodento the setC. Thus, we allow a node to be selected more than
one time in the final solution, which does not mean that theeraxtually transmits two times or more.
This uniqueness is ensured by the delete step (lines 8 arth®)setS(¢t) C V() is defined as follows
S(t) ={S € V(t): 6 (S)is hitby (i, k): }. Informally, S(¢) comprises the minimal violated sets that are
newly hit at the iteration. The setsS € S(t) are then assigned the price (line 7), which will be used in the
proof of Theorem 4.



In the rest of this section we evaluate the performance gteeaf the algorithm. Leti; denote the event
that a new minimal violated set is induced in iteratioVe first prove the following lemma:

Lemmal

V)| —|S®)|+1, if A,
v+l = { V()| —1S(t)], otherwise.

Proof: Let us consider the iteratiarwith |V (¢)| minimal violated sets. Lefi, k), be selected into the set
C atthis iteration, that igz, k) hits at least one minimal violated setc V(¢). Then we have the following
two possibilities: either by this transmissioproduces no new minimal violated set (strongly connected
component) or it produces one or more. Clearly, in the firseage havéV (¢t + 1)| = |V(t)| — |S(¢)].

In the second case, the nodis included in any strongly connected component (minimalated set) that

it has newly produced. Consequently, there must exist atéidepath from every node of such components
to the nodei, and vice versa, from the noddo any node of these components. This in turn means that
these components belong to the same strongly connectecooemip(i.e. the same minimal violated set).
Therefore; induces, at most, one new minimal violated set, in which ¢ase+ 1)| = |V(¢)| —|S(¢)| + 1.

O

Let us introduce the following indicator variable:

) = 1, ifintanew violated set is induced
o 0, otherwise

Let m denote the total number of iterations of our algorithm, atite total number of minimal violated
sets during the course of the algorithm. Then by using Lemmuadlobserving thd¥’(1)] = N — 1 and
[V(m+1)| =0, we obtainl = >"}" , |S(t)| =>4, I(t) + N — 1.

We next evaluate the bound on the total number of newly géedrainimal violated sets.

Lemma 2

m

Y It) < N-2

t=1

Proof: By Definition 1, every newly created minimal violated set isteongly connected component.
Therefore,y"}" | I(t) is, at most, the number of newly generated strongly condemtenponents. At the
very beginning, the number of eligible nodes (componemsjHe creation of newly strongly connected
components iV — 1. Since each time a new strongly connected component issckaateast two eligible
components are merged, the number of eligible componedecigased by at least 1. Therefore, the total
number of newly created strongly connected componentsnimatN — 2, which concludes the proof]
By applying Lemma 2 to the expression for the total number vfinmal violated sets, we obtain:] =

i |S(#)] < 2N — 3. We can use this inequality to obtain the upper bound on tte tmmber of
iterationsm. Having|S(t)| = 1 in every iteratior¢, we obtainim < 2N — 3. Since the violation oracle
can be implemented to run in polynomial tifpeur algorithm is polynomial in the total number of nodes
N.
Let OPT denote the total cost of the optimal solution. We next prbegfollowing lemma, which is similar
to Lemma 2.3 in [27]:

; ; ci()—c;(t) ~ OPT
Lemma 3 For each (i, k); selected into C, SO S Yo

Proof: In any iteratiort, transmitters from the optimal solution can cover the set®f(¢) at a cost of at
mostOPT. Consequently, the cost-effectiveness of any of thesesitnéters is at mos%. Therefore,
k
by selecting the most cost-effective k), at the iteratiort (i.e. (i, k); = argmin; z) %) we must
d®)-c,(t) - OPT
have ™ < vy o D
Finally, we prove the following theorem on the performanoamgntee of our approximation algorithm.

2For example $RONGLY CONNECTED COMPONENT ALGORITHM given in [29] runs inO(N + |E|), where|E| < N?
(Theorem 2.19).



Theorem 4 Algorithm 1 delivers a feasible solution of cost not larger than clog N - OPT, where ¢ =
2~($ + logLN)< 18 for any N > 2. That is, Algorithm 1 isan O(log N )-approximation algorithm 3,

Proof: Since the cost of each pd'ﬂr k). of the outputC'is evenly distributed among the newly hit minimal
violated setsS(t), cost(C) = Z Lprice(S;) =Y, Z pmce(Sj). Now we have:

- cF(t) — ¢t
cost(C) = Z % 2
t=1 j=1
PR X opr .
I 140]
imm
= 2.0PT (4)
t=1 j=1 2‘1}
m |5()]
< 2. OPTZZ VO 771 |_]+1 )
t=1 j=1
2(N—
< 2-0OPT Z (6)
< 2-[ln(N—1)+ln2+1]-OPT 7)
1 2
< 2-(10g6—|—10gN)~logN-OPT @)

where (3) follows from Lemma 3; (6) follows from LemmayL,,” | |S(¢)| < 2(N—1) and|V(1)| = N—1;
and (7) follows from the inequalit}Y_:;;1 % <Inn+1. O

In this subsection we developed the approximation algoritbr the general graph version (MBC). In the
following two subsections, we first elaborate on a centealizeuristic algorithm deliberately designed for
the geometric version (GMBC). Then, we explain how it can dweverted to a distributed algorithm.

5.2 A heuristic based approach

Let us first present an informal description of the heurisggpropose. We first construct a feasible solution
(aninitial feasible broadcast tree). Then we improve tbigtson by exchanging some existing branches in
the initial tree for new branches so that the total energgssary to maintain the broadcast tree is reduced.
We do it so that the feasibility of the obtained solution rémantact. We call the difference in the total
energies of the trees before and after the branch exchagain.dn our heuristic, the notion of gain is used
as the criterion for the selection of transmitting nodesimhroadcast tree.

We use the link-based minimum spanning tree (MST) as thialifiasible solution. The main reason we
choose MST is that it performs quite well, even as a final gmiub our problem (which can be seen from
the simulation results in Section 6).

We will now describe in detail our algorithm, which we c&imbedded Wireless Multicast Advantage
(EWMA). An example is provided in Figure 2. Let us first intreg@usome notations. L&t denote the
set of covered node$; the set of transmitting nodes of the final broadcast tree fatitk set ofexcluded
nodes. Nodé is said to be amxcluded node if is transmitting node in the initial solution but not in the
final solution (i.e.i ¢ F). Notice that the contents of the above sets change thratghe execution of
the EWMA and that the sets do not hold any information abouMB#. Initially, C = {r}, wherer is the
source node (node 10 in our example), and setnd E are empty.

In this example, we assume a propagation loss expaenenp. After the MST has been built in thaitial-
ization phase, we know which nodes in the MST are transmitting nodddteeir respective transmission
energies. In our example, the transmitting nodes are 10, B, & and their transmission energies are 2,

3log designates base 10 logarithm.



Figure 2: Example of the EWMA algorithm: (a) the initial MS#,(s7 = 23) and (b) the broadcast tree
obtained by EWMA égwra = 17)

8, 5, 4, and 4, respectively. The total energy of the MS&, i = 23. Notice here that we take into
consideration the wireless multicast advantage in theuatian of the cost of the MST. Notice also that
C = {10}, andF' = E = {0}. In the second phase, EWMA starts to build a broadcast tree fiades in
the setC' — F') — E by determining their respective gains. The gain of a nodalefined as the decrease in
the total energy of the broadcast tree obtained by exclustinge of the nodes from the set of transmitting
nodes in MST, in exchange for the increase in noddransmission energy. Notice that this increase of
nodev’s transmission energy has to be sufficient for it to reaclh&inodes that were previously covered
by the nodes that were excluded. Consequently, the feigitifilthe solution is preserved. At this stage of
the algorithm, the séiC' — F') — E contains only the source node 10. Thus for example, in ocdexctlude
node 8, the source node 10 has to increase its transmissogydoy (see Figure 2):

Aed, = 1 =13-2=11
€70 Z_g%gig}{elo,z} €10

The gain ¢,) obtained in this case is:
gfo = €6+€8+69—A€§0 =5+4+8-11=6

wheree;, i = {6,8, 9}, is the energy at which noderansmits in MST. Notice that, in addition to node 8,
the nodes 6 and 9 can also be excluded.

Likewise, g1, = 5, g%, = —2, andg{, = 6. Having the gains for all nodes fro(@ — F') — E, our algorithm
selects the node with the highest positive gain in thesedur algorithm then adds all the nodes that this
node excludes to the sét. Thus the source node 10 is selected in theFs&t transmit with energy that
maximizes its gain, that is:

! i i
€jg = ¢€iot+arg Igax{gm}v 910 =0
€lo

The source node 10 transmits with eneegy: e10 + A efy =2+ 11 = 13 at which it can cover nodes
6, 8, 9 and all theichild nodes in MST. Nodg is said to be a&hild node of node: if node j is included in
the broadcast tree by nodeHence, at this stage we hage= {1,2,4,5,6,7,8,9,10}, E = {6,8,9} and

F = {10}. If none of the nodes from)C' — F') — E has a positive gain, EWMA selects among them the
node that includes its child nodes in the MST at minimum cese(gy).

The above procedure is repeated until all nodes in the nktawar covered. In our example, there is still
one node to be covered, namely node 3. Again, EWMA scans ti{€'setF’) — F = {1,2,4,5,7} and at
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last selects node 1 to be the next forwarding node. When nodm&nhits with energy; = 4, all nodes
are covered@ = {1,2,3,4,5,6,7,8,9,10}) and the algorithm terminates. At the final stage we have
E ={6,8,9} andF = {1, 10}. The resulting tree, shown in Figure 2b, has a egst ;4 = 17. Notice
that our algorithm always results in a broadcast tree withta energy< en;sr, which is, in the case of
Euclidean MST, at mosit2e,,,: [30].

In the next subsection we explain how to convert our cetedlheuristic algorithm to a distributed algo-
rithm.

5.3 Distributed implementation of EWMA

One of the major research challenges, with respect to thedbesting problem, is the development of a
distributed algorithm [31, 30]. In the following we desaibur solution.

Let us first introduce the notations we will be using. Let notlansmit at power level € P. We denote
the set of nodes that are covered by this transmission¥ifiti_et nodej be a neighbor of, that is,j € V;.

We denote witrij the set of nodes belonging ¥’ N V; and call it theoverlapping set. We assume that
each node knows its two-hop neighborhood. So, once rigdeeives a message from naiét can learn
which of the nodes from its neighbor Sét have also received the message by calculating the ovenigippi
setij. The neighbors of nodgthat have not yet received the message are said tmdmwered, and we
denote this set witl/; whereU; = V; — O7’. If node; is a forwarding node in the MST, then the set of yet
uncovered children nodes of noglén the MST is denoted with/;** whereU"** = V"' — O},. Here,
ijst is the set comprising all the children nodegjah the MST. Finally, we denote with’fst the energy
with which nodej transmits in the MST.

Our distributed algorithm is divided into two phases. Infingt phase, all nodes run a distributed algorithm
proposed by Gallager et al. [7] to construataimum-weight spanning tree. The total number of mes-
sages required for a graph [0f| nodes andE| edges is at mosi|V | log, |V| 4+ 2| E|, and the time until
completion isO(|V'|log |V]) [7]. Notice that Gallager et al. considered the link-basedieh, whereas we
use the node-based multicast model, which captures théegdrenulticast advantage property [31]. As a
result, the total number of messages required in our modglbmaonsiderably lower. We require that at
the end of the first phase, each node has information abogbstef its two-hop neighbors related to the
MST built.

]-;1'\3)(
Tprob corr T:u'z
i J Jok k1
Ly Lt Ll
i J
T, T T:
round n round n +1 round n + 2

Figure 3: Synchronization of the second phase of distribE&/MA

In the second phase, the final broadcast tree is built up. Hie difficulty in this distributed setting is the
unavailability of information about which nodes have beeweted, up to a certain moment. In order to
cope with this problem, we apply two techniques. First, wgaaize this second phase in rounds. Second,
we require that the identities of the nodes on the transorisgiain from the source to a given node, along
with their respective transmission powers are propagdtedydhat chain to the node in question (source
routing technique).

Each round of the second phaselis., long. Rounds are additionally divided into three time pésio
namely, aprobation period (I},,0), acorrection period (I.-), and aractive period (y.:), which are all
known by network nodes (Figure 3). Let nodansmit atl’’ time from the beginning of the active period
of roundn. Nodej receives this message and begins the following update guoee It calculates the
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overlapping set for the sendémland for other transmitters on this chain of transmitting esébr which
nodej has neighbors in common (recall that this information isppigated along the chain). If node

j is a forwarding node in the MST and it finds that the set of ueced nodeéjjmst is empty for the
received message, it will not re-broadcast the messager@se, (i.e. ifUJmSt is non-empty orj was a
leaf node in the MST), it calculates the gains it can achigvedvering yet uncovered nodes (based on
locally available information), and selects the maximurngg max. In the casgy; max > 0, nodej can
contribute to the decrease of the total cost of the broadoestand its transmission energy increases as
follows: e; = e; + arg maxal {gé-}, otherwise §; max < 0) its transmission energy remains unchanged.

At this stage, nodg waits for some time period? before possibly re-broadcasting the message. The
waiting period is given as follows:

T = Tpaw+T) T

whereT? = gﬁ}ax if gjmax > 0, andTy = Ay - e; if gjmax < 0ande; > 0. In the first case the
waiting period7? is reciprocal to the gain, in order to give priority to nodestmhigher positive gains
over nodes with lower positive gains. In the second casewtiting period7? is proportional to the
transmission energy in order to give priority to nodes witvér transmission energies over nodes with
higher transmission energies. Additionally, the nodes \pibsitive gains are given priority to the nodes
with low transmission energies (i'%ﬁﬁ < As - e;). This property is ensured by setting appropriately
the constanté\; andA,.

Since nodej calculates the gains based on only locally available in&diom, in the calculation of the
gains, nodg can try to exclude already excluded nodes. In order to ptetés) node;j transmits a probe
message during the probation perifgl.., of roundn + 1. Note that by knowindl,.. and 7}’ (which j
received from)) node; actually knows when round + 1 starts. The probe message carries the addresses
of all the nodes by exclusion of which nogeattainsg; . > 0, and it carries the starting time of the
correction period. If some of these nodes have already bedtnded, they will respond back to noge
during the correction period. Nodewill accordingly update its gain and the waiting peribg by taking
into account the already elapsed time of the waiting peridte duration of the probation and correction
periods should be such that any potential forwarding nod&ven the chance to test its prospect of actually
being the forwarding node.

Finally, node; enters into the active period. Again, based on the knowledde,.., andT¢,,,, nodej
knows when the active period of roumd+ 1 starts. If during that period and before expiration of the
waiting period7? nodej receives a duplicate message, it repeats the update precaioiove, otherwise,
upon expiration ofl7, it re-broadcasts the message with energystores this value and marks itself as
the forwarding node. In our example shown in Figure 3, npdiecides to be the forwarding node and
broadcasts a message at powerBy doing so, it initiates the update procedure at nddasd! that repeat
the whole process.

Next we show under which conditions the waiting periBfl expires solely during the active period of
roundn + 1. From Figure 3 we can see that this happerg/itonforms to the following conditions:

Tg Z 7jmax - T;
Tg S ﬂnax + Tact - T»,Z
From the first inequality and the definition ®f we obtain thatly > 0, which is always satisfied. Along
the same lines, from the second inequality we obtainthax 7,.;. Consequently, we define the active
period as follows:

Toet = TJ

act Ijnea;,({ r}
= Ao - e
max{Az - e;}

where the second equality follows from the fact ti}é%— < Aj - e;. Now, since we already have

decided onA; and A,, we only have to find the cost of the most expensive edge in t8&.Mlote that
this information can be obtained from the first phase of tgerhm. This, in addition to the appropriate
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selection of the period¥},,., and T, ensures a synchronous execution of the second phase of the
distributed algorithm.

The duration of the second phase is boundedAly- T,,.., WhereF is the set of the forwarding nodes

at the end of the second phase. Thus, at the end of the secasd, fthe broadcast tree is built (i.e. we
have a set of forwarding nodésand their respective transmission energies for a givercequwde). Any
subsequent broadcast message originating from the soadseaan be disseminated along the tree in an
asynchronous way (i.e. forwarding nodes may re-broadaagtssage immediately upon receiving it).

6 Performance evaluation

We performed a simulation study to evaluate our centrakitgdrithm (EWMA) and its distributed version.
We compared the centralized version of our algorithm (EWMAhwBIP and MST algorithms. We per-
formed simulations using networks of four different siz&€;, 30, 50 and 100 nodes. The nodes in the
networks are distributed according to a spatial Poissdrildigion over the same deployment region. Thus,
the higher the number of nodes, the higher the network denEhe source node for each simulation is
chosen randomly from the overall set of nodes. The maximansmission range is chosen such that each
node can reach all other nodes in the network. The transmniggwer used by a node in transmission
(d*) depends on the reached distanigevhere the propagation loss exponenis varied. Similarly to
Wieselthier et al. in [31], we ran 100 simulations for eaahwdation setup consisting of a network of a
specified size, a propagation loss exponerdand an algorithm.

The performance metric used is the total power of the brcsidiese. Here we use the idea of theemalized

tree power [31]. Letp;(m) denote the total power of the broadcast tree for a netwot&ieem, generated

by algorithmi = {EW M A, BIP, MST}. Letp, be the power of the lowest-power broadcast tree among
the set of algorithms performed and all network instanc@®® (b our case). Then the normalized tree
power associated with algorithirand network instance: is defined as followsp;(m) = %

Let us first consider the performance of the algorithms shiovifigure 4. We can see the average normal-
ized tree power (shown on the vertical axis) achieved by liy@rishms on networks of different sizes (the
horizontal axis) for (ayx = 2, (b) « = 4. To estimate the average power, we used an interval estimate
with a confidence interval of 95%. The figure shows that thetsmis for the broadcast tree obtained
by EWMA have, on the average, lower costs than the solutiorBl®fand MST. (This is also true for

a = 3, which is not shown in the figure). However, we notice thattfer propagation loss exponent of
a = 4, the confidence intervals of the algorithms overlap foraiartases, which means that the solutions
obtained by the algorithms are not significantly differefibus the figure also reveals that the difference
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Figure 5: Normalized tree power as a function of the propagdbss exponent

in performance decreases as the propagation loss expor@aases. This is better seen in Figure 5,
where the difference in the average normalized tree powetigden EWMA (BIP) and MST algorithms
(Aave(j) = AVG(pysr(m)) — AVG(p;(m)), j = {BIP, EW M A}) is shown for different values of
the propagation loss exponent (the horizontal axis). Ndi&re that the larger the differente v (), the
lower the cost of the broadcast tree. The main reason forlseichviour is that by increasing the propaga-
tion loss exponent, the cost of using longer links increasesell. Consequently, EWMA and BIP select
their transmitting nodes to transmit using lower power leverhich is typical for the transmitting nodes
of MST. Hence, in a sense, EWMA and BIP’s broadcast toeaegerge to the MST tree whem increases.
This indicates that in scenarios whergakes higher values, MST performs quite well.

We also conducted a simulation study of the distributedrélym presented in Section 5.3. The perfor-
mance metric used here is the same as in the case of the zauralgorithm and is based again on the
normalized tree power. However, here we do not considerdbliadf building a broadcast tree, but only the
cost of the final tree produced by the distributed algoritAine performance of the distributed algorithm
is compared to that of the centralized algorithms, and isvehin Figure 6. We can see that broadcast trees
produced by distributed EWMA have, on the average, lowerscibstn those obtained by the centralized
BIP and MST. Also, we can see that distributed EWMA perfornmscat as well as its centralized coun-
terpart. Note that the results for the centralized algorghiffer between Figure 4(a) and Figure 6. This
is because here we run another set of simulations for alllfeithms, and for each network the source
node is chosen at random.

Based on our simulation results, we conclude that EWMA @tilithe wireless multicast advantage property
at least as well as BIP. The main problem with BIP is that itdseasy to distribute. On the other hand, we
showed here that EWMA can be easily distributed.

7 Conclusion

We have provided novel contributions on several relevapéets of power-efficient broadcasting in all-
wireless networks. First, we studied the complexity of tihebfem: we discussed two configurations,
represented each by a specific graph - a general graph angtaigr&uclidean space (geometric case).
For both, we showed that the problem is NP-complete. Furtheg, we showed that the general version
cannot be approximate better th@flog V).

Second, we elaborated an approximation algorithm for threeige version that achieves approximation
ratio of 18log N. Then we elaborated a new algorithm called Embedded Wgdlasdticast Advantage
(EWMA) that compares well with the existing proposals. Hinale explained how centralized EWMA
can be converted to a distributed algorithm, which is alnasstnergy-efficient as its centralized counter-
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In future work we intend to study how to cope with the mobiliti/the nodes and study the minimum-
energy multicast problem.
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