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Abstract

In all-wireless networks minimizing energy consumption is crucial, as in most cases the nodes are
battery-operated. We focus on the problem of power-optimal broadcast, for which it is well known that
the broadcast nature of the radio transmission can be exploited to optimize energy consumption. This
problem appears to be difficult to solve [31]. We provide a formal proof of NP-completeness for the gen-
eral case and give an NP-completeness result for the geometric case; in the former, the network topology
is represented by a generic graph with arbitrary weights, whereas in the latter a Euclidean distance is
considered. For the general case, we show that it cannot be approximated better thanO(log N), where
N is the total number of nodes. We then describe an approximation algorithm that achieves theO(log N)
approximation ratio. We also describe a new heuristic, Embedded WirelessMulticast Advantage. We
show that it compares well with other proposals and we explain how it can be distributed.

Keywords: wireless ad hoc networks, minimum-energy networks, energy efficiency, approximation al-
gorithms, complexity theory

1 Introduction

In recent years, all-wireless networks have attracted significant attention due to their potential applications
in civil and military domains [21, 22, 4, 11]. An all-wireless network consists of numerous devices (nodes)
that are equipped with processing, memory and wireless communication capabilities, and are linked via
short-range ad hoc radio connections. This kind of network has no pre-installed infrastructure, but all
communication is supported by multi-hop transmissions, where intermediate nodes relay packets between
communicating parties. Each node in such a network has a limited energy resource (battery) and operates
unattended. Consequently, energy efficiency is an important design consideration for these networks [26,
32].
In this paper, we focus on the source-initiated broadcasting of data in static all-wireless networks. Data are
distributed from a source node to each node in a network. Our main objective is to construct aminimum-
energy broadcast tree rooted at the source node. Nodes belonging to a broadcast tree can be divided into
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two categories:relay nodes andleaf nodes. The relay nodes are those that relay data by forwarding it
to other nodes (relaying or leaf), and leaf nodes only receive data. Each node can transmit at different
power levels and thus reach a different number of neighboring nodes. Given the source noder, we want
to find a set of relaying nodes and their respective transmission levels so that all nodes in the network
receive a message sent byr, whereby the total energy expenditure for this task is minimized. We call this
broadcasting problem theminimum-energy broadcast problem.
We base our work on the so callednode-based multicast model [31]. In this model there is a trade-off
between reaching more nodes in a single hop thus using more energy and reaching fewer nodes using less
energy. This trade-off is made possible by thebroadcast nature of the wireless channel.
In Section 2, we overview related work concerning the minimum-energy broadcast problem. In Section 3,
we discuss the system model used. In Section 4, we prove that the minimum-energy broadcast problem is
NP-complete and show that it cannot be approximated better thanO(log N) for a general graph, whereN is
the number of nodes in a network; we also give the NP-completeness result for the geometric version of the
minimum-energy broadcast problem. Then, in Section 5, we presentO(log N)-approximation algorithms
for the general graph version and a heuristic algorithm thatis easy to distribute. Performance evaluation
results are presented in Section 6. Finally in Section 7 we conclude.

2 Related work

Minimizing the energy consumption of all-wireless networks has received significant attention over the last
few years [1, 24, 9, 14, 33, 15, 25, 12]. We were inspired by theexciting results related to the problem
of minimum-energy broadcasting in all-wireless networks [26, 30, 5, 13, 19, 20], and in particular by the
work of Wieselthier et al. [31, 32]. In this work they introduce the node-based multicast model for wireless
networks upon which they have built several broadcast and multicast heuristics. One of the most notable
contributions of their work is the Broadcast Incremental Power (BIP) algorithm. The main objective of BIP
is to construct a minimum-energy broadcast tree rooted at the source node. It constructs the tree by first
determining the node that the source can reach with a minimumexpenditure of power. BIP constructs a
tree that initially contains a single node; it then determines which uncovered node can be added to the tree
at aminimum additional cost. At each iteration of BIP, the nodes that have already covered some node can
further increase their transmission power to reach some other yet uncovered node. BIP is similar to Prim’s
algorithm [3] for the formation of minimum spanning trees, but with the difference that weights, with BIP,
are dynamically updated at each step.
In [30] Wan et al. provide the first analytical results for theminimum energy broadcast problem. By explor-
ing geometric structures of an Euclidean minimum spanning tree (MST), they prove that the approximation
ratio of MST is between 6 and 12, and that the approximation ratio of BIP is between136 and 12. They also
found that for some instances, BIP fails to use the broadcastnature of the wireless channel. This happens
because BIP adds only one node at each iteration, the one thatcan be added at a minimum additional cost.
Thus BIP, although centralized, does not use all the available information about the network. As a result,
it may construct a broadcast tree that coincides with the shortest path tree of a network graph, where the
broadcast nature of the media is completely ignored. A possible approach to alleviate with this problem is
to add to the tree more than one node at each iteration, and notnecessarily at a minimum additional cost.
But, in this case, there must be another criterion for the selection of nodes. Another difficulty with BIP
is that distributing it is not obvious and according to the authors of BIP and of [30], the development of
distributed algorithms is the major challenge for a minimumenergy broadcast problem. However, Wan
et al. [30] and Wieselthier et al. [31] do not really address this challenge. In Section 5.2 we present a
heuristic algorithm that achieves the same approximation ration as BIP for the geometric case, and yet is
easy to distribute.
Li et al., in another closely related work [13], also recognize weaknesses of BIP and propose another
centralized heuristic to tackle the broadcasting problem.However, they do not consider the issue of de-
veloping a distributed algorithm for a minimum energy broadcast. Li et al. [13] also sketch a proof of the
NP-hardness of a general version of the minimum energy broadcast.
A proof of NP-hardness of the minimum energy broadcast problem in metric space has been proposed
by Eğeciŏglu et al. [5]. However, in their interpretation of the minimum energy broadcast problem, they
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restrict nodes transmission ranges a set ofintegers, which captures very few instances of the problem in
metric space.
In [16] Liang provide a proof of NP-completeness of the minimum-energy broadcast problem, as well as
an approximation algorithm for the problem in general setting, which delivers a feasible solution of cost
O(log3 n) times the optimum. The time complexity of the proposed algorithm isO(kn2 log n), wherek is
the total number of power levels at each node. However, [16] does not provide an answer to the question:
Whether there is an approximation algorithm for the problem with a constant performance ratio. We do
provide an answer in Section 4 (Theorem 2).
Very recently, it was brought to our attention that more researchers are also studying the problem of
minimum-energy broadcasting in all-wireless networks [2,6].

3 System model

We first provide a model of wireless communications. Then using it as a basis, we develop a graph model,
which will be used to assess the complexity of the minimum-energy broadcast problem and to develop an
approximation algorithm.
In our model of a wireless network, nodes are stationary. In this paper, we assume a large availability of
bandwidth resources, i.e. communication channels. We do sobecause we focus only on minimum energy
broadcast communication and do not consider issues like contention for the channel, lack of bandwidth
resources. We also assume that nodes in a network are equipped with omnidirectional antennas. Thus due
to the broadcast nature of wireless channels, all nodes thatfall in the transmission range of a transmitting
node can receive its transmission. This property of wireless media is calledWireless Multicast Advantage,
which we refer to as WMA [31].
In this model, each node can choose to transmit at different power levels that do not exceed some maximum
valuepmax. Let P denote the set of power levels at which a node can transmit. When a nodei transmits at
some power levelp ∈ P , we assign it a weight equal top, which we call anode power. The connectivity
of the network depends on the transmission power. Nodei is said to beconnected to nodej if nodej falls
in the transmission range of nodei. This link is then assigned alink cost cij that is equal to the minimum
power that is necessary to sustain link(i, j).
Next we define a graph model for wireless networks, which captures important properties of wireless media
(including the wireless multicast advantage). An all-wireless network can be modeled by a directed graph
G = (V,E), whereV represents the finite set of nodes andE the set of communication links between the
nodes. Each edge (arc)(i, j) ∈ E has link costcij ∈ R+ assigned to it, and each nodei ∈ V is assigned
a variable node power pv

i . The variable node power takes a value from the setP defined above. Initially,
the variable node power assigned to a node is equal to zero andis set to valuep ∈ P if the node transmits
atp. Let Vi denote the set ofneighbors of nodei. Nodej is said to be aneighbor of nodei if nodej falls
in the maximum transmission range of nodei, which is determined bypmax. All nodesj ∈ Vi that satisfy
cij ≤ pv

i are said to becovered by nodei. Thus, if nodei transmits at powerpmax, all the nodes ofVi will
be covered.
Now that we have the model, we study in detail the intrinsic complexity of the minimum-energy broadcast
problem in the following section.

4 Complexity issues

In this section, we give an in-depth analysis of the complexity of the minimum-energy broadcast problem.
Let us first briefly recall a few concepts from complexity theory [8]. The problems polynomially solvable
by deterministic algorithms belong to the P class. Whereas, all the problems solvable bynondeterministic
algorithms belong to the NP class. It can easily be shown thatP⊆ NP. Also, there is widespread belief that
P 6= NP. The theory of complexity is focused ondecision problems, i.e., problems that have eitheryes or
no as an answer. Notice that each optimization problem can be easily stated as the corresponding decision
problem. Informally, a decision problemΠ is said to be NP-complete ifΠ ∈ NP and for all other problems
Π

′

∈ NP, there exists a polynomial transformation fromΠ
′

to Π (we writeΠ
′

∝ Π) [8]. There are two
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important properties of the NP-complete class. If any NP-complete problem could be solved in polynomial
time, then all problems in NP could also be solved in polynomial time. If any problem in NP is intractable1,
then so are all NP-complete problems. Presently, there is a large collection of problems considered to be
intractable.
In this section, we consider the problem of minimum-energy broadcast in two different graph models,
specifically a general graph and a graph in Euclidean metric space. In general graphs, links are arbitrarily
distributed and have weights arbitrarily chosen from the set P . This graph model is well suited for modeling
wireless networks in indoor environments. Whereas, for graphs in Euclidean metric space, the existence
and the weight of the link between two nodes depends exclusively on the distance between the nodes and
their transmission levels. This graph model fits well for outdoor scenarios.

4.1 General graph version

In the following, we show that a general graph version of the minimum-energy broadcast problem is in-
tractable, that is, it belongs to the NP-complete class. Because of its similarity to the well knownSet Cover
problem [10] that aims at finding the minimum cost cover for a given set of nodes, we call it theMinimum
Broadcast Cover and refer to it as MBC. We convert MBC into a decision problem in the following way:
M INIMUM BROADCAST COVER (MBC)
INSTANCE: A directed graphG = (V,E), a setP consisting of all power levels at which a node can
transmit, edge costscij : E(G) → R+, a source noder ∈ V , an assignment operationpv

i : V (G) → P
and some constantB ∈ R+.
QUESTION: Is there a node power assignment vectorA = [pv

1 pv
2 . . . pv

|V |] such that it induces the directed

graphG
′

= (V,E
′

), whereE
′

= {(i, j) ∈ E : cij ≤ pv
i }, in which there is a path fromr to any node of

V (all nodes are covered), and such that
∑

i∈V pv
i ≤ B?

Notice that the above question is the equivalent of asking ifthere is a broadcast tree rooted atr with total
costB or less, and such that all nodes inV are included in the tree (covered).
We prove NP-completeness of MBC for a general graph by showing that a special case of MBC is NP-
complete. In order to obtain this special case of MBC, we define the following restriction to be placed on
the instances of MBC: All the links between any nodei and its neighborsj ∈ Vi have the same costc.
Consequently, the nodei either does not transmit or it transmits withpv

i = c. We call this special case
SINGLE POWER MBC. We prove NP-completeness of the SINGLE POWER MBC problem by reduction
from the SET COVER (SC) problem, which is well known to be NP-complete [8].
SET COVER (SC)
INSTANCE: A set I of m elements to be covered and a collection of setsSj ∈ I, j ∈ J = {1, ..., n}.
Weightswj for eachj ∈ J ,and a constantB ∈ R

+.
QUESTION: Is there a subcollection of setsC that form a cover, i.e.,∪j∈CSj = I and such that

∑

j∈C wj ≤
B?
First we describe the construction of a graphG that represents any instance of the set cover problem.
The graphG has a vertex setI ∪ {v1, v2, ..., vn}, that is,G consists of elements ofI and set verticesvj

representing setsSj ∈ I, j ∈ J = {1, ..., n}. There is an edge between an elemente ∈ I and a set
nodevi if the setSi contains the element. Each set nodevi is assigned the weightwi of the setSi the
node represents. All other nodes and all edges are not weighted, that is, they have weight of zero. Thus,
G = (V,E) is a bipartite graph, as is illustrated in Figure 1a.
The transformation from SC to SINGLE POWER MBC consists first in adding a source (root) noder to G
and making it adjacent to all the set nodesvj . Note that we use undirected edges here to emphasize that the
links between the sourcer and nodesvj are bidirectional. We proceed by assigning a zero weight to every
edge the root noder shares with the set nodesvj . Then, the edges betweenvj and elementse ∈ I are made
directed in order to capture the fact that no elemente ∈ I is ever selected into the cover setC. Finally, the
directed edges the nodevj shares with elementse ∈ I are assigned the weightwj . The resulting graph,
which we denote withGb = (Vb, Eb), is illustrated in Figure 1b. It is easy to see that the transformation
can be done in polynomial time.
Next we prove the following theorem.

1We refer to a problem as intractable if no polynomial time algorithm can possibly solve it.
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Figure 1: The reduction of (a) SET COVER to (b) SINGLE POWER MINIMUM BROADCAST COVER

Theorem 1 SINGLE POWER MBC is NP-complete.

Proof:
The proof consists first in showing that SINGLE POWERMBC belongs to the NP class and then in showing
that the above polynomial transformation (Figure 1) reduces SC to SINGLE POWER MBC.
It is easy to see that SINGLE POWER MBC belongs to the NP class since a nondeterministic algorithm
needs only to guess a set of transmitting nodes (pv

i > 0) and to check in polynomial time whether there is
a path from the source noder to any node in a final solution and whether the cost of the final solution is≤
B.
We continue the proof by showing that given the minimum broadcast coverCb of Gb with costcost(Cb), the
setCb−{r} always corresponds to the minimum set coverC of G of the same cost (cost(C) = cost(Cb)),
and vice versa. LetC denote the minimum set cover ofG. Let cost(C) =

∑

j∈C wj denote the cost of
this cover. It is easy to see that all nodes ofGb can also be covered with total costcost(C). This can be
achieved by having the source noder cover all the set nodesvj , j ∈ J = {1, ..., n} at zero cost and then
by selecting among the covered nodes those corresponding tothe nodes ofG that satisfyvj ∈ C as new
transmitting nodes, which we refer to asCb − {r}. Hence the minimum broadcast cover ofGb is Cb with
total costcost(Cb) = cost(C).
Conversely, suppose that we have the minimum broadcast cover Cb of Gb with total costcost(Cb). Thus
the minimum set coverC of G must beC = Cb − {r}, i.e., cost(C) = cost(Cb). We prove this by
contradiction. Let us first assume thatcost(C) < cost(Cb) (henceC 6= Cb − {r}). In this case, with
the same reasoning as before,Gb can be covered byC

′

b = C + {r} that satisfiescost(C
′

b) < cost(Cb).
This, however, contradicts the preceding assumption thatCb is the minimum broadcast cover ofGb. On
the other hand, let us assume thatcost(Cb) < cost(C) (henceC 6= Cb − {r}). SinceCb covers all the
elementse ∈ I, we can obtain a set coverC

′

for this instance as follows:C
′

= Cb − {r}. Now we have
cost(C

′

) = cost(Cb) < cost(C), which contradicts the optimality ofC and concludes the proof.
¤

Since the SINGLE POWER MBC problem is a special case of the MBC problem, and MBC belongs to the
NP class, which can be shown along the similar lines as forTHE SINGLE POWER MBC problem, we have
the following corollary:

Corollary 1 MINIMUM BROADCAST COVER (MBC) is NP-complete.

Another important implication of Theorem 1 is the followingtheorem. LetN denote the total number of
nodes in an instance of MBC.

Theorem 2 There exists a constant c > 0 such that MINIMUM BROADCAST COVER (MBC) cannot be
approximate better than c log N , if P 6= NP.

Proof: To prove this we recall that there exists a constantc
′

> 0 such that no polynomial-time approx-
imation algorithm for SC achieves an approximation ratio smaller thanc

′

log n if P 6= NP, wheren is the
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total number of elements in an instance of SC [29]. We showed above how any instance of the SC problem
can be transformed to the corresponding instance of MBC. Now, assume that we have an approximation
algorithm for MBC with the performance guarantee better than c

′

log (N −1). By applying this algorithm
to the instance of MBC obtained from the SC instance, we wouldget a solution with a cost lower than
c
′

log(n + 1 − 1) · OPT = c
′

log n · OPT . Since this solution is also feasible to the instance of SC, this
would mean that we can approximate SC better thanc

′

log n, which contradicts the fact that SC is hard to
approximate better thanc

′

log n. We obtain the theorem by noting thatc
′

log(N − 1) = c log N , where
0 < c ≤ c

′

for N > 2. ¤

Fortunately, Theorem 2 does not hold for all instances of theminimum-energy broadcast problem. By
exploring the geometric structure of the minimum-energy broadcast problem, Wan et al. were able to show
that the Euclidean minimum spanning tree approximates the minimum-energy broadcast problem within a
factor of 12 [30]. But, whether the geometric instances of the minimum-energy broadcast problem can be
solved in polynomial time was left as an open question. We provide an answer in the next subsection.

4.2 Geometric version

In this section, we show that the minimum-energy broadcast problem in two-dimensional Euclidean metric
space is intractable. In metric space, the distance betweenpoints (nodes) obeys triangle inequality, that is,
dij ≤ dik + dkj , wheredxy is the Euclidean distance between nodesx andy. We have seen that given
the graph version of the minimum-energy broadcast problem we can have arbitrary costs of links between
nodes. This is because we did not have to worry about the distances between nodes and all links have been
imposed by a given graph. On the contrary, in metric space, links and their respective costs are dictated
by the distances between nodes and their transmission energies. The costcij between two nodesi andj is
given as

cij = kdα
ij (1)

wherek ∈ R
+ is constant depending on the environment andα is a propagation loss exponent that takes

values between 2 and 5 [23].
We refer to this instance of the minimum-energy broadcast problem as theGeometric Minimum Broadcast
Cover (GMBC) problem. The decision problem related to GMBC can be formulated as follows:
GEOMETRIC M INIMUM BROADCAST COVER (GMBC)
INSTANCE: A set of nodesV in the plane, a setP consisting of all power levels at which a node can
transmit, a constantk ∈ R+, costs of edgescij = kdα

ij wheredij is the Euclidean distance betweeni and
j, a real constantα ∈ [2..4] , a source noder ∈ V , an assignment operationpv

i : V (G) → P and some
constantB ∈ R+.
QUESTION: Is there a node power assignment vectorA = [pv

1 pv
2 . . . pv

|V |] such that it induces the directed
graphG = (V,E), with an edge (arc) directed form nodei to nodej if and only if cij ≤ pv

i , in which there
is a path fromr to any node ofV (all nodes are covered), and such that

∑

i∈V pv
i ≤ B?

Given the above formal definition of the geometric version ofthe minimum-energy broadcast problem, we
have the following theorem:

Theorem 3 GEOMETRIC MINIMUM BROADCAST COVER (GMBC) is NP-complete.

The proof of the theorem is in [28]. We proved NP-completeness of GMBC is done by reduction from the
PLANAR 3-SAT problem, which is known to be NP-complete [18].
In the following section, we devise approximation algorithms that enable us to find good solutions to the
minimum-energy broadcast problem.

5 Proposed algorithms

In this section, we first present an approximation algorithmthat achievesO(log N) approximation ratio for
any instance of MBC. Then, we elaborate on the algorithm EWMA,designed deliberately for the geomet-
ric version of the minimum energy broadcast problem, and we explain how to convert it to a distributed
algorithm.
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5.1 O(log N)-approximation algorithm

The MBC problem can be seen as a special case of thehitting set problem. The hitting set problem is
defined as follows [10]: Given subsetsS1, . . . , Sp of a ground setE and given a nonnegative costce for
every elemente ∈ E, find a minimum-cost subsetA ⊆ E such thatA ∩ Si 6= ∅ for everyi = 1, . . . , p (i.e.
A hits everySi).
In our case, we are given a connected graphG = (V,E) with positive edge costs and a spe-
cial root noder. The sets to hit are allr directed cuts, i.e. the sets of edges of the form
δ− (S) = {(i, j) ∈ E : i /∈ S, j ∈ S} whereS ⊆ V − {r}. Informally, for any subset of
nodesS ⊆ V − {r}, we should have at least one transmitteri /∈ S that covers at least one nodej ∈ S. It
is easy to see that, if this is fulfilled for allS ⊆ V − {r}, we obtain a feasible solution for MBC. Conse-
quently, any setS ⊆ V − {r} that has no edge incoming to it is said to be violated. For simplicity, we will
say thatS is not hit while meaning thatδ− (S) is not hit. The number of violated sets can be in theory as
large as2|V |−1, i.e. exponential in the total number of nodes. In order to drastically reduce this number,
we apply the technique described in [10], where, instead of considering all possible violated sets, we take
into account onlyminimal violated sets. Any violatedS is said to be a minimal violated set if there exists
no violatedS

′

with S
′

⊂ S. The rule we use to calculate minimal violated sets is definedby the following:

Definition 1 The minimal violated set is a strongly connectedcomponent (i.e. collection of nodes)
S ⊆ V − {r} that contains no directed edge incoming to it.

We next describe an approximation algorithm (Algorithm 1),which achieves anO(log N) approximation
ratio for MBC. LetC denote the set comprising pairs(i, k) wherei ∈ V is transmitter and wherek ∈ P
its respectivetransmission power level. The algorithm iteratively selects the most cost-effective pair(i, k)
and puts it into the setC and updates correspondingly the collection of minimal violated setsV, until V is
empty (i.e.C is a feasible solution).

Algorithm 1 O(log N)-approximation algorithm

1 C ← ∅; t = 0

2 WhileC is not feasible

3 t ← t + 1; V(t) ← V iolation(C)

4 (i, k)t = arg min(i,k)
ck

i (t)−ci(t)

|S(t)|

5 C ← (i, k)t; ci(t) = ck
i (t)

6 For allS ∈ S(t)

7 price(S) =
ck

i (t)−ci(t)

|S(t)|

8 Forj ← t downto1

9 if C − {(i, k)j} is feasibleC ← C − {(i, k)j}

At the beginning of the algorithm, the setC is empty (and thus not feasible). LetViolation(C) be an oracle
that calculates the minimal violated sets of the graphG for a givenC; the oracle does this by following
Definition 1. The setV(t) holds all the minimal violated sets returned by the oracle atthe beginning of
each iterationt (line 3). Note that at the very beginning, the number of minimal violated sets isN − 1
(i.e. all i ∈ V − {r}). The algorithm selects the most cost-effective pair(i, k) (line 4); here,ck

i denotes
the cost assigned to the nodei that transmits at the power levelk andci represents the cost induced by
any previous selection of the nodei into the setC. Thus, we allow a node to be selected more than
one time in the final solution, which does not mean that the node actually transmits two times or more.
This uniqueness is ensured by the delete step (lines 8 and 9).The setS(t) ⊆ V(t) is defined as follows
S(t) = {S ∈ V(t) : δ−(S) is hit by (i, k)t}. Informally,S(t) comprises the minimal violated sets that are
newly hit at the iterationt. The setsS ∈ S(t) are then assigned the price (line 7), which will be used in the
proof of Theorem 4.
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In the rest of this section we evaluate the performance guarantee of the algorithm. LetAt denote the event
that a new minimal violated set is induced in iterationt. We first prove the following lemma:

Lemma 1

|V(t + 1)| =

{

|V(t)| − |S(t)| + 1, if At

|V(t)| − |S(t)|, otherwise.

Proof: Let us consider the iterationt with |V(t)| minimal violated sets. Let(i, k)t be selected into the set
C at this iteration, that is,(i, k)t hits at least one minimal violated setS ∈ V(t). Then we have the following
two possibilities: either by this transmissioni produces no new minimal violated set (strongly connected
component) or it produces one or more. Clearly, in the first case we have|V(t + 1)| = |V(t)| − |S(t)|.
In the second case, the nodei is included in any strongly connected component (minimal violated set) that
it has newly produced. Consequently, there must exist a directed path from every node of such components
to the nodei, and vice versa, from the nodei to any node of these components. This in turn means that
these components belong to the same strongly connected component (i.e. the same minimal violated set).
Therefore,i induces, at most, one new minimal violated set, in which case|V(t+1)| = |V(t)|− |S(t)|+1.
¤

Let us introduce the following indicator variable:

I(t) =

{

1, if in t a new violated set is induced
0, otherwise.

Let m denote the total number of iterations of our algorithm, andl the total number of minimal violated
sets during the course of the algorithm. Then by using Lemma 1and observing that|V(1)| = N − 1 and
|V(m + 1)| = 0, we obtain:l =

∑m
t=1 |S(t)| =

∑m
t=1 I(t) + N − 1.

We next evaluate the bound on the total number of newly generated minimal violated sets.

Lemma 2
m

∑

t=1

I(t) ≤ N − 2

Proof: By Definition 1, every newly created minimal violated set is astrongly connected component.
Therefore,

∑m
t=1 I(t) is, at most, the number of newly generated strongly connected components. At the

very beginning, the number of eligible nodes (components) for the creation of newly strongly connected
components isN − 1. Since each time a new strongly connected component is created at least two eligible
components are merged, the number of eligible components isdecreased by at least 1. Therefore, the total
number of newly created strongly connected components is atmostN − 2, which concludes the proof.¤
By applying Lemma 2 to the expression for the total number of minimal violated setsl, we obtain:l =
∑m

t=1 |S(t)| ≤ 2N − 3. We can use this inequality to obtain the upper bound on the total number of
iterationsm. Having |S(t)| = 1 in every iterationt, we obtain:m ≤ 2N − 3. Since the violation oracle
can be implemented to run in polynomial time2, our algorithm is polynomial in the total number of nodes
N .
LetOPT denote the total cost of the optimal solution. We next prove the following lemma, which is similar
to Lemma 2.3 in [27]:

Lemma 3 For each (i, k)t selected into C, ck
i (t)−ci(t)

|S(t)| ≤ OPT
|V(t)| .

Proof: In any iterationt, transmitters from the optimal solution can cover the sets fromV(t) at a cost of at
mostOPT . Consequently, the cost-effectiveness of any of these transmitters is at mostOPT

|V(t)| . Therefore,

by selecting the most cost-effective(i, k)t at the iterationt (i.e. (i, k)t = arg min(i,k)
ck

i (t)−ci(t)

|S(t)| ), we must

haveck
i (t)−ci(t)

|S(t)| ≤ OPT
|V(t)| . ¤

Finally, we prove the following theorem on the performance guarantee of our approximation algorithm.

2For example STRONGLY CONNECTED COMPONENT ALGORITHM given in [29] runs inO(N + |E|), where |E| < N2

(Theorem 2.19).
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Theorem 4 Algorithm 1 delivers a feasible solution of cost not larger than c log N · OPT , where c =

2·
(

1
log e

+ 2
log N

)

< 18 for any N ≥ 2. That is, Algorithm 1 is an O(logN)-approximation algorithm 3.

Proof: Since the cost of each pair(i, k)t of the outputC is evenly distributed among the newly hit minimal
violated setsS(t), cost(C) =

∑l
j=1 price(Sj) =

∑m
t=1

∑|S(t)|
j=1 price(Sj). Now we have:

cost(C) =

m
∑

t=1

|S(t)|
∑

j=1

ck
i (t) − ci(t)

|S(t)|
(2)

≤
m

∑

t=1

|S(t)|
∑

j=1

OPT

|V(t)|
(3)

= 2 · OPT

m
∑

t=1

|S(t)|
∑

j=1

1

2|V(t)|
(4)

≤ 2 · OPT

m
∑

t=1

|S(t)|
∑

j=1

1

2|V(t)| − j + 1
(5)

< 2 · OPT

2(N−1)
∑

i=1

1

i
(6)

≤ 2 · [ln(N − 1) + ln 2 + 1] · OPT (7)

< 2 ·
( 1

log e
+

2

log N

)

· log N · OPT (8)

where (3) follows from Lemma 3; (6) follows from Lemma 1,
∑m

t=1 |S(t)| < 2(N−1) and|V(1)| = N−1;
and (7) follows from the inequality

∑n

j=1
1
j
≤ lnn + 1. ¤

In this subsection we developed the approximation algorithm for the general graph version (MBC). In the
following two subsections, we first elaborate on a centralized heuristic algorithm deliberately designed for
the geometric version (GMBC). Then, we explain how it can be converted to a distributed algorithm.

5.2 A heuristic based approach

Let us first present an informal description of the heuristicwe propose. We first construct a feasible solution
(an initial feasible broadcast tree). Then we improve this solution by exchanging some existing branches in
the initial tree for new branches so that the total energy necessary to maintain the broadcast tree is reduced.
We do it so that the feasibility of the obtained solution remains intact. We call the difference in the total
energies of the trees before and after the branch exchange again. In our heuristic, the notion of gain is used
as the criterion for the selection of transmitting nodes in the broadcast tree.
We use the link-based minimum spanning tree (MST) as the initial feasible solution. The main reason we
choose MST is that it performs quite well, even as a final solution to our problem (which can be seen from
the simulation results in Section 6).
We will now describe in detail our algorithm, which we callEmbedded Wireless Multicast Advantage
(EWMA). An example is provided in Figure 2. Let us first introduce some notations. LetC denote the
set of covered nodes,F the set of transmitting nodes of the final broadcast tree, andE the set ofexcluded
nodes. Nodei is said to be anexcluded node if is transmitting node in the initial solution but not in the
final solution (i.e.i /∈ F ). Notice that the contents of the above sets change throughout the execution of
the EWMA and that the sets do not hold any information about theMST. Initially, C = {r}, wherer is the
source node (node 10 in our example), and setsF andE are empty.
In this example, we assume a propagation loss exponentα = 2. After the MST has been built in theinitial-
ization phase, we know which nodes in the MST are transmitting nodes and their respective transmission
energies. In our example, the transmitting nodes are 10, 9, 6, 1, 8, and their transmission energies are 2,

3log designates base 10 logarithm.
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Figure 2: Example of the EWMA algorithm: (a) the initial MST (eMST = 23) and (b) the broadcast tree
obtained by EWMA (eEWMA = 17)

8, 5, 4, and 4, respectively. The total energy of the MST iseMST = 23. Notice here that we take into
consideration the wireless multicast advantage in the evaluation of the cost of the MST. Notice also that
C = {10}, andF = E = {∅}. In the second phase, EWMA starts to build a broadcast tree from nodes in
the set(C−F )−E by determining their respective gains. The gain of a nodev is defined as the decrease in
the total energy of the broadcast tree obtained by excludingsome of the nodes from the set of transmitting
nodes in MST, in exchange for the increase in nodev’s transmission energy. Notice that this increase of
nodev’s transmission energy has to be sufficient for it to reach allthe nodes that were previously covered
by the nodes that were excluded. Consequently, the feasibility of the solution is preserved. At this stage of
the algorithm, the set(C−F )−E contains only the source node 10. Thus for example, in order to exclude
node 8, the source node 10 has to increase its transmission energy by (see Figure 2):

4e8
10 = max

i∈{2,5}
{e10,i} − e10 = 13 − 2 = 11

The gain (g8
10) obtained in this case is:

g8
10 = e6 + e8 + e9 −4e8

10 = 5 + 4 + 8 − 11 = 6

whereei, i = {6, 8, 9}, is the energy at which nodei transmits in MST. Notice that, in addition to node 8,
the nodes 6 and 9 can also be excluded.
Likewise,g1

10 = 5, g6
10 = −2, andg9

10 = 6. Having the gains for all nodes from(C−F )−E, our algorithm
selects the node with the highest positive gain in the setF . Our algorithm then adds all the nodes that this
node excludes to the setE. Thus the source node 10 is selected in the setF to transmit with energy that
maximizes its gain, that is:

e
′

10 = e10 + arg max
4ei

10

{gi
10}, gi

10 ≥ 0

The source node 10 transmits with energye
′

10 = e10 + 4 e8
10 = 2 + 11 = 13 at which it can cover nodes

6, 8, 9 and all theirchild nodes in MST. Nodej is said to be achild node of nodei if nodej is included in
the broadcast tree by nodei. Hence, at this stage we haveC = {1, 2, 4, 5, 6, 7, 8, 9, 10}, E = {6, 8, 9} and
F = {10}. If none of the nodes from(C − F ) − E has a positive gain, EWMA selects among them the
node that includes its child nodes in the MST at minimum cost (energy).
The above procedure is repeated until all nodes in the network are covered. In our example, there is still
one node to be covered, namely node 3. Again, EWMA scans the set(C − F )−E = {1, 2, 4, 5, 7} and at
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last selects node 1 to be the next forwarding node. When node 1 transmits with energye1 = 4, all nodes
are covered (C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) and the algorithm terminates. At the final stage we have
E = {6, 8, 9} andF = {1, 10}. The resulting tree, shown in Figure 2b, has a costeEWMA = 17. Notice
that our algorithm always results in a broadcast tree with a total energy≤ eMST , which is, in the case of
Euclidean MST, at most12eopt [30].
In the next subsection we explain how to convert our centralized heuristic algorithm to a distributed algo-
rithm.

5.3 Distributed implementation of EWMA

One of the major research challenges, with respect to the broadcasting problem, is the development of a
distributed algorithm [31, 30]. In the following we describe our solution.
Let us first introduce the notations we will be using. Let nodei transmit at power levelp ∈ P . We denote
the set of nodes that are covered by this transmission withV p

i . Let nodej be a neighbor ofi, that is,j ∈ Vi.
We denote withOp

ij the set of nodes belonging toV p
i ∩ Vj and call it theoverlapping set. We assume that

each node knows its two-hop neighborhood. So, once nodej receives a message from nodei, it can learn
which of the nodes from its neighbor setVj have also received the message by calculating the overlapping
setOp

ij . The neighbors of nodej that have not yet received the message are said to beuncovered, and we
denote this set withUj whereUj = Vj −Op

ij . If nodej is a forwarding node in the MST, then the set of yet
uncovered children nodes of nodej in the MST is denoted withUmst

j whereUmst
j = V mst

j − Op
ij . Here,

V mst
j is the set comprising all the children nodes ofj in the MST. Finally, we denote withemst

j the energy
with which nodej transmits in the MST.
Our distributed algorithm is divided into two phases. In thefirst phase, all nodes run a distributed algorithm
proposed by Gallager et al. [7] to construct aminimum-weight spanning tree. The total number of mes-
sages required for a graph of|V | nodes and|E| edges is at most5|V | log2 |V | + 2|E|, and the time until
completion isO(|V | log |V |) [7]. Notice that Gallager et al. considered the link-based model, whereas we
use the node-based multicast model, which captures the wireless multicast advantage property [31]. As a
result, the total number of messages required in our model may be considerably lower. We require that at
the end of the first phase, each node has information about thecost of its two-hop neighbors related to the
MST built.

max
T

probT
corrT actT

i j k lj k l

j

aT
j

rT
i

rT

nround 1+nround 2+nround

Figure 3: Synchronization of the second phase of distributed EWMA

In the second phase, the final broadcast tree is built up. The main difficulty in this distributed setting is the
unavailability of information about which nodes have been covered, up to a certain moment. In order to
cope with this problem, we apply two techniques. First, we organize this second phase in rounds. Second,
we require that the identities of the nodes on the transmission chain from the source to a given node, along
with their respective transmission powers are propagated along that chain to the node in question (source
routing technique).
Each round of the second phase isTmax long. Rounds are additionally divided into three time periods,
namely, aprobation period (Tprob), a correction period (Tcorr), and anactive period (Tact), which are all
known by network nodes (Figure 3). Let nodei transmit atT i

r time from the beginning of the active period
of roundn. Nodej receives this message and begins the following update procedure. It calculates the
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overlapping set for the senderi and for other transmitters on this chain of transmitting nodes for which
nodej has neighbors in common (recall that this information is propagated along the chain). If node
j is a forwarding node in the MST and it finds that the set of uncovered nodesUmst

j is empty for the
received message, it will not re-broadcast the message. Otherwise, (i.e. ifUmst

j is non-empty orj was a
leaf node in the MST), it calculates the gains it can achieve by covering yet uncovered nodes (based on
locally available information), and selects the maximum gain gj max. In the casegj max > 0, nodej can
contribute to the decrease of the total cost of the broadcasttree and its transmission energy increases as
follows: ej = ej + arg max4el

j
{gl

j}, otherwise (gj max ≤ 0) its transmission energy remains unchanged.

At this stage, nodej waits for some time periodT j
a before possibly re-broadcasting the message. The

waiting period is given as follows:

T j
a = Tmax + T j

r − T i
r

whereT j
r = ∆1

gj max

if gj max > 0, andT j
r = ∆2 · ej if gj max ≤ 0 andej > 0. In the first case the

waiting periodT j
a is reciprocal to the gain, in order to give priority to nodes with higher positive gains

over nodes with lower positive gains. In the second case, thewaiting periodT j
a is proportional to the

transmission energy in order to give priority to nodes with lower transmission energies over nodes with
higher transmission energies. Additionally, the nodes with positive gains are given priority to the nodes
with low transmission energies (i.e.∆1

gj max

¿ ∆2 · ej). This property is ensured by setting appropriately
the constants∆1 and∆2.
Since nodej calculates the gains based on only locally available information, in the calculation of the
gains, nodej can try to exclude already excluded nodes. In order to prevent this, nodej transmits a probe
message during the probation periodTprob of roundn + 1. Note that by knowingTact andT i

r (which j
received fromi) nodej actually knows when roundn + 1 starts. The probe message carries the addresses
of all the nodes by exclusion of which nodej attainsgj max > 0, and it carries the starting time of the
correction period. If some of these nodes have already been excluded, they will respond back to nodej
during the correction period. Nodej will accordingly update its gain and the waiting periodT j

a by taking
into account the already elapsed time of the waiting period.The duration of the probation and correction
periods should be such that any potential forwarding node isgiven the chance to test its prospect of actually
being the forwarding node.
Finally, nodej enters into the active period. Again, based on the knowledgeof Tprob andTcorr, nodej
knows when the active period of roundn + 1 starts. If during that period and before expiration of the
waiting periodT j

a nodej receives a duplicate message, it repeats the update procedure above, otherwise,
upon expiration ofT j

a , it re-broadcasts the message with energyej , stores this value and marks itself as
the forwarding node. In our example shown in Figure 3, nodej decides to be the forwarding node and
broadcasts a message at powerej . By doing so, it initiates the update procedure at nodesk andl that repeat
the whole process.
Next we show under which conditions the waiting periodT j

a expires solely during the active period of
roundn + 1. From Figure 3 we can see that this happens ifT j

a conforms to the following conditions:

T j
a ≥ Tmax − T i

r

T j
a ≤ Tmax + Tact − T i

r

From the first inequality and the definition ofT j
a we obtain thatT j

r ≥ 0, which is always satisfied. Along
the same lines, from the second inequality we obtain thatT j

r ≤ Tact. Consequently, we define the active
period as follows:

Tact = max
j∈F

{T j
r }

= max
j∈F

{∆2 · ej}

where the second equality follows from the fact that∆1

gj max

¿ ∆2 · ej . Now, since we already have
decided on∆1 and∆2, we only have to find the cost of the most expensive edge in the MST. Note that
this information can be obtained from the first phase of the algorithm. This, in addition to the appropriate
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Figure 4: Normalized tree power comparison: (a)α = 2 and (b)α = 4

selection of the periodsTprob and Tcorr, ensures a synchronous execution of the second phase of the
distributed algorithm.
The duration of the second phase is bounded by|F | · Tmax, whereF is the set of the forwarding nodes
at the end of the second phase. Thus, at the end of the second phase, the broadcast tree is built (i.e. we
have a set of forwarding nodesF and their respective transmission energies for a given source node). Any
subsequent broadcast message originating from the source node can be disseminated along the tree in an
asynchronous way (i.e. forwarding nodes may re-broadcast amessage immediately upon receiving it).

6 Performance evaluation

We performed a simulation study to evaluate our centralizedalgorithm (EWMA) and its distributed version.
We compared the centralized version of our algorithm (EWMA) with BIP and MST algorithms. We per-
formed simulations using networks of four different sizes:10, 30, 50 and 100 nodes. The nodes in the
networks are distributed according to a spatial Poisson distribution over the same deployment region. Thus,
the higher the number of nodes, the higher the network density. The source node for each simulation is
chosen randomly from the overall set of nodes. The maximum transmission range is chosen such that each
node can reach all other nodes in the network. The transmission power used by a node in transmission
(dα) depends on the reached distanced, where the propagation loss exponentα is varied. Similarly to
Wieselthier et al. in [31], we ran 100 simulations for each simulation setup consisting of a network of a
specified size, a propagation loss exponentα, and an algorithm.
The performance metric used is the total power of the broadcast tree. Here we use the idea of thenormalized
tree power [31]. Letpi(m) denote the total power of the broadcast tree for a network instancem, generated
by algorithmi = {EWMA,BIP,MST}. Let p0 be the power of the lowest-power broadcast tree among
the set of algorithms performed and all network instances (100 in our case). Then the normalized tree
power associated with algorithmi and network instancem is defined as follows:p

′

i(m) = pi(m)
p0

.
Let us first consider the performance of the algorithms shownin Figure 4. We can see the average normal-
ized tree power (shown on the vertical axis) achieved by the algorithms on networks of different sizes (the
horizontal axis) for (a)α = 2, (b) α = 4. To estimate the average power, we used an interval estimate
with a confidence interval of 95%. The figure shows that the solutions for the broadcast tree obtained
by EWMA have, on the average, lower costs than the solutions ofBIP and MST. (This is also true for
α = 3, which is not shown in the figure). However, we notice that forthe propagation loss exponent of
α = 4, the confidence intervals of the algorithms overlap for certain cases, which means that the solutions
obtained by the algorithms are not significantly different.Thus the figure also reveals that the difference
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Figure 5: Normalized tree power as a function of the propagation loss exponentα

in performance decreases as the propagation loss exponent increases. This is better seen in Figure 5,
where the difference in the average normalized tree powers between EWMA (BIP) and MST algorithms
(∆AV G(j) = AV G(p

′

MST (m)) − AV G(p
′

j(m)), j = {BIP,EWMA}) is shown for different values of
the propagation loss exponent (the horizontal axis). Notice here that the larger the difference∆AV G(j), the
lower the cost of the broadcast tree. The main reason for suchbehaviour is that by increasing the propaga-
tion loss exponent, the cost of using longer links increasesas well. Consequently, EWMA and BIP select
their transmitting nodes to transmit using lower power levels, which is typical for the transmitting nodes
of MST. Hence, in a sense, EWMA and BIP’s broadcast treesconverge to the MST tree whenα increases.
This indicates that in scenarios whereα takes higher values, MST performs quite well.
We also conducted a simulation study of the distributed algorithm presented in Section 5.3. The perfor-
mance metric used here is the same as in the case of the centralized algorithm and is based again on the
normalized tree power. However, here we do not consider the cost of building a broadcast tree, but only the
cost of the final tree produced by the distributed algorithm.The performance of the distributed algorithm
is compared to that of the centralized algorithms, and is shown in Figure 6. We can see that broadcast trees
produced by distributed EWMA have, on the average, lower costs than those obtained by the centralized
BIP and MST. Also, we can see that distributed EWMA performs almost as well as its centralized coun-
terpart. Note that the results for the centralized algorithms differ between Figure 4(a) and Figure 6. This
is because here we run another set of simulations for all the algorithms, and for each network the source
node is chosen at random.
Based on our simulation results, we conclude that EWMA utilizes the wireless multicast advantage property
at least as well as BIP. The main problem with BIP is that it is not easy to distribute. On the other hand, we
showed here that EWMA can be easily distributed.

7 Conclusion

We have provided novel contributions on several relevant aspects of power-efficient broadcasting in all-
wireless networks. First, we studied the complexity of the problem: we discussed two configurations,
represented each by a specific graph - a general graph and a graph in Euclidean space (geometric case).
For both, we showed that the problem is NP-complete. Furthermore, we showed that the general version
cannot be approximate better thanO(log N).
Second, we elaborated an approximation algorithm for the general version that achieves approximation
ratio of 18 log N . Then we elaborated a new algorithm called Embedded Wireless Multicast Advantage
(EWMA) that compares well with the existing proposals. Finally, we explained how centralized EWMA
can be converted to a distributed algorithm, which is almostas energy-efficient as its centralized counter-
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part.
In future work we intend to study how to cope with the mobilityof the nodes and study the minimum-
energy multicast problem.
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