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T
he cost and development time of software
could be significantly reduced if only there
were a widely used component industry.
Even the best programmers can churn out
only 10 lines of code per day. With systems

like those used in cellular telephones—some consist-
ing of 300,000 lines of code—custom software devel-
opment can become very expensive.1 If developers
could purchase 100,000 lines of code, they could save
10,000 programmer-days, creating less expensive soft-
ware and moving it to market more quickly.

The savings for developers could be staggering. If a
world-class programmer costs $500 per day, pur-
chasing 100,000 lines of code would result in saving
$5 million (minus licensing fees). Companies produc-
ing components would also see great rewards. If 
$1 million were an acceptable licensing fee for 100,000
lines of code, then only five licenses would pay for that
component, and the producer would profit on subse-
quent sales. Admittedly, this simple analysis ignores a
number of variables, but it does show the potential for
components in the software industry.

Of course, many other industries use components—
for automobiles, radios, bridges, and so forth. Each of
these products relies on interchangeable parts. The soft-
ware industry is analogous to other industries because
most software today is built from smaller software
objects. The software industry differs, however, in that
it lacks the ability to confidently swap components in
and out of systems. Developers are not now sure if a
replacement component is as reliable or more reliable—
in terms of logical quality—than the replaced compo-
nent. If reliability could be gauged, software component
commerce would flourish, and designing and repairing
systems would become less expensive.

Developers need to know two things about a com-
ponent: whether the component itself is reliable and
whether the system will tolerate the component. When
a component’s reliability cannot be determined, peo-
ple often assume that more expensive components are

more reliable because they have undergone more test-
ing. But sometimes less expensive components are more
reliable simply because they have seen more usage.
However, even if the reliability of a component could
be known, there is never any assurance that it will fit
smoothly into the system and not cause problems. 

Software components are often delivered in “black
boxes” as executable objects whose licenses forbid
decompilation back to source code. Often source code
can be licensed, but the cost makes doing so prohibi-
tive. We therefore have developed a methodology for
determining the quality of off-the-shelf (OTS) com-
ponents using a set of black-box analyses. This
methodology will provide developers with informa-
tion useful for choosing components and for defend-
ing themselves legally against someone else’s imperfect
OTS components.

FIVE SCENARIOS
When considering a candidate component, devel-

opers need to ask three key questions:

• Does component C fill the developer’s needs?
• Is the quality of component C high enough?
• What impact will component C have on system S?

As shown in Table 1, the answers to these questions
create five basic scenarios. They emphasize that the
OTS quality problem is not just a matter of compo-
nent quality, but also a matter of integration compat-
ibility. Even a dozen highly reliable components
combined together do not guarantee a highly reliable
system.

Determining which scenario a component falls into
is subjective. For example, the only difference between
scenarios 1 and 3 is component quality. If a compo-
nent has good but not perfect quality, which scenario
would apply? (If this were easy to decide, there would-
n’t be dozens of software reliability models that all give
different results.) A good certification methodology,
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then, will determine which scenario a candidate com-
ponent falls into.

Today there are various approaches to software cer-
tification. One popular approach is simply to require
the developer to take oaths concerning the develop-
ment standards and processes used. Our certification
methodology, however, is not based on this honor sys-
tem. We assume that only a description of what the
component does is available and that buyers must
themselves determine whether the component is what
they want. Our scheme doesn’t even use information
provided by the component vendor on exhaustive
OTS testing and verification. Our methodology is
based on the belief that totally independent certifica-
tion is the only safe approach for component buyers.

Figure 1 shows our methodology’s basic steps. The
first step is to decide whether the component has the
functionality needed. Any component that does not
meet the developer’s needs can be ignored. The three
pivotal decision points, however, are labeled A, B, and
C. Decision A helps developers ask whether the com-
ponent’s quality is sufficient. Decisions B and C help
developers ask whether the system can tolerate the
component.

Our certification methodology uses automated tech-
nologies like black-box testing and fault injection to
determine whether the component fits into scenario
1, 2, 3, or 4. A component in scenario 4 would be of
poor quality and have a negative impact on the sys-
tem. A component in scenario 3 would be of poor
quality but would have a positive impact on the sys-
tem (which contradicts the popular idea in software
engineering that imperfect software is always bad). A
component in scenario 2 would be like a rejected
transplanted organ: It would have the right function-
ality and be of high quality, yet it would be unsuitable
for the system. Finally, a component in scenario 1
would enjoy the best of all worlds, being of high qual-
ity and appropriate for the system. 

Determining whether a candidate component
belongs to scenario 5 simply requires finding out
whether the specifications of the component match
the requirements of the system. Although matching
must be done manually, mistakes are unlikely if devel-
opers make a reasonable effort to assess what the com-
ponent does and how it connects to its environment. 

Once the methodology determines the correct sce-
nario for a candidate component, the developer can
decide whether to adopt it in its current form, modify
the functionality of the system or the component, or
simply find a new component.

CERTIFICATION TECHNIQUES
Our methodology uses three quality assessment

techniques to determine the suitability of a candidate
OTS component. Black-box component testing is
used to determine whether the component is of high
enough quality—a consideration of decision A in
Figure 1. System-level fault injection is used to deter-
mine how well a system will tolerate a failing com-
ponent. Operational system testing is used to
determine how well the system will tolerate a prop-
erly functioning component. Even these components
can create system wide problems. System-level fault
injection and operational system testing are used for
decisions B and C in Figure 1.

Black-box component testing
Black-box testing comprises software testing tech-

niques that select test cases regardless of the software’s
syntax. Black-box testing requires an executable com-
ponent, an input, and an oracle, which is a manual or
automated technique that determines if failure has
occurred by examining the output for each program
input. In contrast, white-box testing considers the
code when selecting test cases. Since source code will
not be available to OTS component buyers, white-
box testing techniques will be of little help. 

Our methodology uses black-box testing based on
the system’s operational profile—its distribution of
test cases when the software is put to use—to deter-
mine the quality of components that can execute on
their own.2 Black-box testing should be used even
when the OTS supplier has already tested the com-
ponent because it is never clear how rigorous that test-
ing was and what generic profile was used.

Black-box testing, however, can fail to exercise sig-
nificant portions of the code, which is worrisome to
developers attempting to certify components. Also, the
value of black-box testing depends on accurate ora-
cles, because faulty ones can allow certification of bad
software and prevent certification of good software.

Our certification methodology depends on accurate
oracles, but we know that some component buyers
will have problems finding them. We recommend that
buyers develop their own oracle according to what
they want the component to do. Buyers then can test
the quality of the component against what it is required
to do and not necessarily against the vendor’s claims.

Black-box testing has already been used by B.P.
Miller and associates in their Fuzz model.3 Fuzz pro-
vides a low-resolution approximation of the robust-
ness of particular Unix utilities like ls. Fuzz works by

Table 1. Key questions concerning the use of component C in system S.

Scenario Is C what is needed for S? Is C of high enough quality? Does C have a positive impact on S?

1 Yes Yes Yes
2 Yes Yes No
3 Yes No Yes
4 Yes No No
5 No N/A N/A
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generating random black-box inputs, feeding them to
Unix system functions, and watching for core dumps.
The core dump, or crash, provides a crude way of
determining whether the software has problems.

One serious problem with OTS software is that it
can have unknown, malicious functionality, including,
for example, Trojan horses. Only one test case might
find it, and that test case probably won’t be used 
during black-box testing. It is wrong, then, to assume
that black-box testing will catch such serious prob-
lems. Black-box testing plays an important—though
limited—role in assessing component quality.

The cost of black-box testing must also be consid-
ered. Buyers must generate inputs, create an oracle,

and probably build a test driver, all of which are
expensive tasks. However, these costs are minor com-
pared to the potential cost and time savings of OTS
components. 

System-level fault injection
Even if a buyer knows that a component is free of

Trojan horses and is of high stand-alone quality, the
certification process is not yet complete. The next step
is system-level fault injection, which tests systems by
creating errors in them. Quality components can still
result in unreliable systems, and poor quality compo-
nents may cause no system problems; the system may
simply ignore the faults. System-level fault injection
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does not explicitly show how reliable the system is,
but, rather, predicts how badly the system might
behave if a component fails.

There are many types of fault injection, and the
underlying ideas are not new, having been applied in
hardware system validation, hardware design valida-
tion, and software testing.4-7 Our certification method-
ology uses the fault-injection technique called interface
propagation analysis (IPA).8,9 IPA perturbs, or cor-
rupts, the states propagated through interfaces
between components. To perturb states, the buyer
must have access to the interfaces that components
use for communication. Our methodology uses a small
software routine called a perturbation function to
replace the original state with a corrupt state during
software execution.

In our methodology, IPA (as well as operational sys-
tem testing) determines the answer for the last column
in Table 1: Does component C have a positive impact
on system S? By corrupting data moving from a pre-
decessor component to a successor component, IPA
stimulates failure of the predecessor component. In
this way, IPA determines whether the system can tol-
erate anomalies in a component.

To determine the impact of a component failure,
IPA must know what component failure modes to
inject and what system failure modes to look for.
System failure modes include faulty system output
data, faulty global system data, and corrupted data
flowing between successive components. Since OTS
component buyers are system builders, they should
know what constitutes a system failure. System inte-
grators, however, are less likely to know which com-
ponent failure modes to simulate with IPA.

Therefore, our methodology uses an approach sim-
ilar to input generation in Fuzz, but it uses a pseudo-
random number generator to modify data in various,
sometimes random, ways. If a system can tolerate
totally random failures, it likely can tolerate real com-
ponent failures. Our tools corrupt data and simulate
component failures using generic, low-level fault injec-
tion algorithms.8

As an example of this analysis, Figure 2 shows sys-
tem S composed of two components, C1 and C2. The
output of C1 is the input of C2. Figure 3 shows a new
version of S in which an OTS component C3 has been
inserted between C1 and C2. In this example, the
component buyer has already used black-box testing
to determine the quality of C3 but now needs to know
how the system will react to it. The buyer learns this
through system-level fault injection, which will cause
corrupt data to flow between C1 and C2, simulating
a situation where C3 fails, as shown in Figure 4.

We have applied this analysis to systems relying on
operating system utilities. One tool automates IPA for
AIX operating systems and standard C library func-
tion calls. The key to applying fault injection to function
calls or calls to the operating system is determining how
the call returns information. The way a function is
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Figure 2. The system S made from components C1 and C2.

Figure 3. The system S augmented with OTS component C3.

Figure 4. Simulating the failure of candidate component C3.
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declared defines what interfaces must be worked with.
The output from an AIX function may be

• a return value,
• a changed value in an argument that is passed by

reference to the AIX utility, or 
• a combination of the two.

The buyer applies fault injection to the information
returned to the calling application from the C library
functions, simulating a failure of the entity that pro-
duced the information without worrying about how
exactly the information got corrupted.

In AIX, double cos(double x) indicates that
the cos() function receives a double integer (con-
tained in variable x) and returns a double integer. This
declaration defines the information flow into and out
of the function. Because of C’s language constraints,
the only output from the cos() function is the
returned value, and hence that is all that fault injection
should corrupt. This declaration does not, however,
specify what the function should do.

As mentioned earlier, IPA can be fine-tuned to sim-
ulate precise failure classes or simply random corrup-
tions. For instance, based on common trigonometric
mistakes, it would be reasonable to force the result of
cos() to take on the values of NaN and Infinity. It
would also be reasonable to employ 0, because this is
a common incorrect result from cosine implementa-
tions. To see how this analysis is handled inside an
application using cos(), consider the following:

if (cos(a) > THRESHOLD) {
// do something

}

When perturbing the return value, the following
instrumentation characterizes the process:

if (PERTURB(cos(a)) > THRESHOLD) {
// do something

}

The buyer adds the fault injection instrumentation to
the source application before the application is com-
piled. When the modified application is executed, a fault
injection management process collects statistics on how
tolerant the application was to forced corruptions.

Another example is the strcpy() function:

char *strcpy(char *s1, char *s2)

The strcpy() function copies the characters con-
tained in string s2 into string s1. The value strcpy()
returns is the pointer s1. To see how this OTS function is
handled during fault injection, consider the following call:

strcpy(old, new)

For this function, corruption is performed
upon exit of the original call:

strcpy(old, new)
old = PERTURB(old)

After the call to strcpy(), the result con-
tained in old is replaced with a different string
of the same size. As with the cos() function,
we can take advantage of information about
common faults occurring in string copy implementa-
tions (for example, by employing an empty string,
which mimics incorrect handling of a dropout condi-
tion in the strcpy() logic). Since it is rare to ever
use the value returned by this function, the pointer
would typically not get corrupted. If, however, we did
want to corrupt the pointer, we could do this:

PERTURB(strcpy(old, new))

In summary, system-level fault injection provides a
means for assessing how well an application can
recover after receiving bad results from OTS compo-
nents. The beauty of this approach is that it concen-
trates on making the system more robust rather than
on determining why returned information is bad. 

Operational system testing
Operational system testing—which embeds an OTS

component and executes the full system to determine
how well the system will tolerate the component—
complements system-level fault injection. Unlike fault
injection, operational system testing does not employ
functions to perturb states, because it executes origi-
nal states without modifying output information.

An advantage of operational system testing is that
the system actually experiences component failure,
which provides a more accurate assessment of system
tolerance. The downside is that an enormous amount
of system-level testing is needed for components that
rarely fail. Operational system testing, though, should
be performed to ensure that a component is a good
match for the system.

DEFENSE THROUGH WRAPPING
Even when testing shows that a system will not tol-

erate a component, a buyer may still decide to use the
component, perhaps because it is all that is available.
In this case, the buyer needs to make the best of a less-
than-perfect situation—usually by modifying the sys-
tem or the component.  One way to modify the
component is through wrapping, or putting a soft-
ware “wrapper” around it to limit what it can do.
Wrappers anticipate undesirable outputs and keep
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them from occurring. Wrappers do not directly mod-
ify the component’s source code (like removing lines
of code) but instead indirectly modify and limit the
component’s functionality.

There are two types of wrappers. One keeps certain
inputs from reaching the component, preventing it
from executing on them and thus limiting the com-
ponent’s output range. Another type of wrapper cap-
tures the output before the component releases it,
checking the output to ensure it meets certain con-
straints and passing it on if it qualifies. Both can be
used at the same time.

Wrappers are not foolproof. As Figure 5 shows, ille-
gal outputs can sometimes bypass a wrapper. For
example, if it is not known that a component can call
the operating system to delete a file, the wrapper prob-
ably won’t be designed to prevent it. If, however, it is
known that the component needs to delete temporary
files that it creates, the wrapper can be designed to
allow only file delete requests pertaining to those tem-
porary files. The value of wrappers, then, depends on
how well they are designed. They cannot protect
against events unanticipated by developers—such as
those events caused by Trojan horses.

Wrapper design can be aided by fault injection
because it determines what outputs need to be pro-
tected against. By knowing what classes of compo-
nent failure the system cannot tolerate, designers can
create wrappers to filter outputs in those classes.
Designers should also reapply black-box testing to the
component to ensure that the installed wrapper is fil-
tering correctly. This should be followed by another

round of fault injection to confirm that the wrapper
has improved system tolerance.

CERTIFICATION DECISIONS
If after applying black-box testing, IPA, operational

system testing, and defense building, component C is
in scenario 1 or 3, then it should be certified for use in
system S. If it is in scenario 2, however, the decision is
slightly more difficult because we know that compo-
nent failures will be infrequent, but when they occur,
S cannot tolerate them. Of course, any component in
scenario 4 or 5 cannot be certified.

Most developers will choose to embed only OTS
components that are in scenarios 1 or 3. For those com-
ponents in scenario 2, they will either modify the sys-
tem, find a better component, or accept the risk that
the component will cause the system to fail.

C ommerce in off-the-shelf software components
is gradually becoming a reality. What is now
keeping widespread adoption from occurring

overnight is, first, not knowing the quality of com-
ponents and, second, not knowing how systems will
tolerate them. If these problems can be overcome,
then developers will be better able to determine the
opportunity costs of selecting one component over
another or over creating custom software.

Our three-part methodology can help developers
decide whether a component is right for their system.
It is best performed during the evaluation period that
most vendors provide. The process shows developers
how much of someone else’s mistakes they can tol-
erate. If they find that there are too many mistakes
and the component won’t work well in their system,
the methodology provides several options they can
take.

Our approach is not foolproof and perhaps not
right for everyone. For example, our methodology
does not certify a component for use in all systems.
We have been conservative: Until we know how to
assess components in a manner that accounts for all
undesirable behaviors that could be forced into any
system, it is prudent only to certify components for
the idiosyncrasies of each system.

To foster an emerging software component mar-
ketplace, we believe that it must be clear for buyers
whether a component’s impact is positive or nega-
tive. Ideally, buyers would have this information
before buying a component. Component buyers
could then choose an appropriate component and
apply static and dynamic techniques to determine its
impact on the system. With this information, system
builders could make better design decisions and be
less fearful of liability concerns. And component ven-
dors could expect a growing marketplace for their
products. ❖
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