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ABSTRACT
This paper presents a parameterized family of equilibrium strat-
egy profiles for three-player Kuhn poker. This family illustrates
an important feature of three-player equilibrium profiles that is not
present in two-player equilibrium profiles - the ability of one player
to transfer utility to a second player at the expense of the third
player, while playing a strategy in the profile family. This fam-
ily of strategy profiles was derived analytically and the proof that
the members of this family are equilibrium profiles is an analytic
one. In addition, the problem of selecting a robust strategy from an
equilibrium profile is discussed.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games

General Terms
Theory, Economics

Keywords
Game theory; Nash equilibrium; Poker

1. INTRODUCTION
Many problems that involve multiple interacting agents can be

modeled as extensive-form games. Poker has been a testbed for
studying solution techniques on extensive-form games for over 60
years. The game incorporates two features that occur frequently
in multi-agent problems, stochastic events (chance cards) and im-
perfect information (hidden cards). Poker is complex enough that
good solution strategies are usually non-obvious and include mul-
tiple types of bluffing, such as acting aggressively with weak hands
and slow-playing with strong hands.

In game theory, the most popular solution concept is the Nash
equilibrium, where an agent cannot increase utility by varying
its strategy unilaterally. The tree sizes of popular poker variants
(3 × 1014 information sets for two-player limit Texas Hold’em
poker and 5 × 1017 information sets for three-player limit Texas
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Hold’em) are too large to solve analytically. Instead, insights into
the general nature of good strategies are often discovered by study-
ing smaller poker games. Two-player Kuhn poker [9] is arguably
the most popular of these small poker games. Although the game
is complex enough that the equilibrium solutions support bluffing,
the game is small enough that Kuhn discovered all equilibrium so-
lutions analytically. These and other analytic solutions to small
games have contributed to the discovery and evaluation of many
artificial intelligence techniques. For example, Hoehn et al.[7] di-
rectly used the Kuhn poker analytical solutions to develop strong
exploitive algorithms. In addition, Ganzfried and Sandholm [4]
exploited aspects of the equilibrium structure in small games to
develop new algorithms for solving certain classes of games and
improve endgame performance in two-player limit Texas Hold’em.
Other advances have come in the areas of opponent modeling [14],
new representations and solution techniques for extensive-form
games [8], abstraction techniques [5], and general reinforcement
learning algorithms [15].

Recently, Abou Risk and Szafron [1] introduced a three-player
version of Kuhn poker to study the performance of the Counterfac-
tual Regret Minimization (CFR) [16] algorithm in games with more
than two players. While CFR is guaranteed to converge to a Nash
equilibrium in two-player zero-sum games, this guarantee does not
hold for general sum games [1, Table 2]. Despite this, Abou Risk
and Szafron found CFR to compute approximate Nash equilibria
for three-player Kuhn poker, as well as winning strategies in the
three-player Texas Hold’em events of the Annual Computer Poker
Competition [6]. No insight into the structure or behavior of these
profiles, however, was provided. From both an analytical and com-
putational standpoint, two-player games are well understood, while
three-player games remain much less understood.

In this paper, we describe a parameterized family of strategy
profiles for three-player Kuhn poker and prove that they are Nash
equilibria. These profiles exhibit an interesting behavior where one
player can transfer utility from one opponent to the other without
departing from equilibrium. To our knowledge, this is one of the
largest three-player games to be solved analytically to date. The
analytically-derived family of equilibrium strategy profiles for two-
player Kuhn poker have contributed to our deeper understanding
of Nash equilibrium profiles and solvers in two-player zero-sum
games. The discovery of parameterized families of equilibrium
strategy profiles in three-player Kuhn poker may have a similar im-
pact on research into many-player games. Our hope is that these
profiles will be useful to a variety of researchers who are studying
a wide range of problems that rely on equilibrium profiles in three
or more agent scenarios.
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Figure 1: A partial three-player Kuhn poker game tree.

2. THREE-PLAYER KUHN POKER
Three-player Kuhn poker [1] is played with a deck of 4 cards,

denoted 1, 2, 3 and 4. To begin, each player must ante one chip
into the pot so that the players have incentive to play. Play then
proceeds according to the (partial) game tree shown in Figure 1
(ignore the Ø symbols for now). Chance deals each player a hand
containing a single card and at the showdown, the player with the
highest card (4 > 3 > 2 > 1) who has not folded wins all the
chips in the pot. Each edges to an immediate child node is marked
with three digits signifying the card held by each player, P1, P2

and P3 respectively. For brevity, only 4 of the 24 different hand
combinations and the sub-nodes of the 124 node are shown.

Each player then acts in turn, starting with P1, who may check
(K) and put no additional chips in the pot, or bet (B) and put one
additional chip in the pot. If P1 checked, then P2 may also check or
bet. However, if P1 bet, then P2 may either fold (F ) and abandon
any chance of winning the pot, or call (C) and put one additional
chip in the pot to match the bet. It is then P3’s turn. If no bet
has been made by either P1 or P2, then P3 may check or bet. If a
bet was made by either P1 or P2, then P3 may fold or call. If no
player bet, the showdown takes place between all three players and
the winner wins three chips. If P1 bet, then there is a showdown
between P1 and any players who called the bet. If no one called,
then P1 wins the pot. If P1 did not bet and P2 bet, then after P3

has acted, P1 has the opportunity to either fold or call. Then a
showdown takes place between P2 and any callers. The final case
is where neither P1 nor P2 bet, but P3 bet. In this case, both P1

and P2 can fold or call in order and then the showdown takes place.
Each terminal node of Figure 1 is marked with three integer val-

ues. These values are the number of chips won or lost byP1, P2 and
P3 respectively. For example, consider the leaf node marked a13
(this marking is explained in the following section). Each player
contributed 1 chip as an ante so the pot size was 3. Then, tracing
the path from the root down to this node, P1 checked, P2 bet 1 chip
to make the pot size 4 and then P3 folded. Finally, P1 contributed
1 chip by calling to make the pot size 5. In the showdown between
P1 and P2, P2 wins since the card 2 is greater than the card 1. This
means that the utility of P1 is−2, the utility of P2 is 5−2 = 3 and
the utility of P3 is −1.

Table 1: Betting situations in three-player Kuhn poker.
Situation P1 P2 P3

1 - K KK

2 KKB B KB

3 KBF KKBF BF

4 KBC KKBC BC

3. GAME THEORY BACKGROUND
Three-player Kuhn poker is an example of an extensive-form

game [10] that contains a game tree with nodes corresponding
to histories of actions h ∈ H and edges corresponding to ac-
tions a ∈ A(h) available to player P (h) ∈ N ∪ {Chance}
(where N is the set of players). In three-player Kuhn, we have
N = {P1, P2, P3} and only one node belongs to Chance (the root).
Terminal nodes correspond to terminal histories z ∈ Z ⊆ H that
have associated utilities ui(z) for each player Pi. The utilities in
three-player Kuhn poker are simply the number of chips won or
lost at the end of the game. Non-terminal histories for Pi are par-
titioned into information sets I ∈ Ii representing the different
game states that Pi cannot distinguish between. Figure 2 shows an
example of an information set (dashed box) for P3, where all his-
tories differing only in the private cards held by the opponents are
in the same information set. The action setsA(h) must be identical
for all h ∈ I , and we denote this set byA(I). In three-player Kuhn
poker, we have A(I) = {K,B} or A(I) = {F,C} depending on
the information set I .

A (behavioral) strategy for Pi, σi, is a function that maps each
information set I ∈ Ii to a probability distribution over A(I). A
strategy profile σ is a collection of strategies σ = (σ1, ..., σ|N|),
one for each player. We let σ−i refer to the strategies in σ excluding
σi, and ui(σ) to be the expected utility for Pi when players play
according to σ.

In Figures 1 and 2, ajk, bjk, and cjk denote the action proba-
bilities for players P1, P2 and P3 respectively when holding card
j and taking an aggressive action (B or C) in situation k. The
situations denote previous betting actions and are summarized in
Table 1. For example, c42 is the probability of P3 holding the 4
and taking the aggressive action C after the previous actions were
K followed by B. Since each player selects from exactly two ac-
tions everywhere in the game tree, the probability of taking the
less aggressive action (K or F ) is 1 − ajk, 1 − bjk and 1 − cjk
respectively. As there are exactly four cards and exactly four sit-
uations per player, a strategy profile σ in three-player Kuhn poker
is fully defined by assigning action probabilities to the 48 indepen-
dent parameters {ajk, bjk, cjk | j, k = 1..4}. The expected utility
for Pi is computed by summing the probabilities of reaching each
leaf node times the utility for Pi at that leaf node. For example,
from Figure 1, the contribution of the a13 leaf node to u1 would be
−2κ(1− a11)b21(1− c42)a13, where κ = 1/24 is the probability
of each set of hands being dealt.

The most common solution concept in games is the Nash equi-
librium first proposed by John Nash [12]. A strategy profile σ is a
Nash equilibrium if no player can unilaterally deviate from σ to
increase their expected utility; i.e.,

max
σ′
i

ui(σ
′
i, σ−i) ≤ ui(σ) for all i = 1, 2, ..., |N |.
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Figure 2: An information set for P3 in a partial three-player
Kuhn game tree.

While computing an equilibrium of a two-player zero-sum game
can be achieved in polynomial time [8], computing a Nash equilib-
rium profile in a three-or-more-player game is hard and belongs to
the PPAD-complete class of problems [3].

4. NECESSARY PARAMETER VALUES
We now begin our analysis of deriving a family of Nash equilib-

rium profiles for three-player Kuhn poker. For a strategy parameter
xjk, we will denote the information set for which xjk is relevant as
I(xjk). For example, the information set indicated by the dashed
box in Figure 2 is denoted I(c43).

In this section, we provide necessary values for 21 of the 48 strat-
egy parameters needed for a strategy profile to be in equilibrium,
provided the parameters are “reached:”

DEFINITION 1. Given a strategy profile σ, xjk is a reached
strategy parameter if the probability πσ(I(xjk)) of reaching its
information set I(xjk), when the players play according to strategy
profile σ, is non-zero. If a strategy parameter is not reached in a
strategy profile, it is called a non-reached strategy parameter.

For example, consider the strategy parameter c43 in three-player
Kuhn poker. From Figure 2, the probability of reaching I(c43) is:

πσ(I(c43)) = κ [a11(1− b22) + a11(1− b32) + a21(1− b12)
+a21(1− b32) + a31(1− b12) + a31(1− b22)] .

(1)

In any strategy profile for which this expression is zero, c43 is a
non-reached strategy parameter. Intuitively, if an information set
is never reached when playing according to a strategy profile, then
the part of the strategy at that information set is not important, since
that part of the strategy will never be used.

Table 2 defines values for 21 strategy parameters that, if reached,
must be assigned the corresponding value for a profile to be in equi-
librium. Intuitively, these values ensure that trivial, dominated er-
rors are necessarily avoided by an equilibrium profile. For exam-
ple, a12 = a13 = a14 = 0 means that P1 should never call a bet
when holding the lowest card since it is a guaranteed loss for P1

in a showdown. Also, a24 = 0 insists that P1 never calls with the
second lowest card when faced with a bet and a call from the oppo-
nents, as now at least one opponent is guaranteed to have a higher
card in the showdown. Furthermore, a42 = a43 = a44 = 1 means
that P1 should always call any bet when holding the highest card
since it is a guaranteed win for P1 in a showdown. Similar argu-
ments hold for P2 and P3’s necessary strategy parameter values.

Table 2: The 21 necessary strategy parameter values in three-
player Kuhn poker.

P1 P2 P3

a12 = a13 =
a14 = a24 = 0

b12 = b13 =
b14 = b24 = 0

c12 = c13 =
c14 = c24 = 0

a42 = a43 =
a44 = 1

b42 = b43 =
b44 = 1

c42 = c43 =
c44 = 1

THEOREM 1. P1 (P2, P3) cannot gain utility by unilaterally
changing any of the seven ajk (seven bjk, seven cjk) parameters
shown in Table 2 from the given values. Every equilibrium strategy
profile of three- player Kuhn poker has the parameter values listed
in Table 2 unless a parameter is a non-reached strategy parameter
in the equilibrium profile.

The proof of Theorem 1 can be found in the Appendix at the end
of the paper. All the nodes that appear in Figure 1, but can never
be reached if no player plays a strategy that violates the constraints
of Table 2, are marked with a Ø in Figure 1. Naturally, child nodes
of a marked node cannot be reached either if no player violates the
constraints in Table 2. Note, however, that reached nodes in Figure
1 will differ according to the private cards that are dealt. Theorem 1
leaves 27 independent parameters to consider for equilibrium strat-
egy profiles.

5. A PARAMETERIZED FAMILY OF
EQUILIBRIUM PROFILES

Table 2 and Table 3 together, define a family of parameterized
equilibrium strategy profiles for three-player Kuhn poker. The pa-
rameters listed in Table 3 were discovered through careful exam-
ination of a set of solutions produced by a Monte Carlo sampling
variant of Counterfactual Regret Minimization [11] with different
random seeds. There are actually three sub-families of equilibrium
profiles defined by: c11 = 0, c11 = 1/2 and 0 < c11 < 1/2.

The c11 = 0 sub-family is the simplest of the three sub-families.
There are four independent parameters, b11, b21, b32 and c33, so
the parameter space is a 4-dimensional convex volume. The ranges
of the four independent parameters are: b21 ≤ 1/4, b11 ≤ b21,
b32 ≤ (2 + 3b11 + 4b21)/4, and 1/2− b32 ≤ c33 ≤ 1/2− b32 +
(3b11 + 4b21)/4. The dependent parameters have values, b23 = 0,
b33 = (1 + b11 + 2b21)/2, b41 = 2b11 + 2b21, and c21 = 1/2.
As shown in Table 3, the utilities depend only on β = b21. Figure
3 shows a graphical representation for the domains of b11, b21 and
b32. The valid domains form the interior of the volume. Figure 4
shows a graphical representation for the domains of b11, b21 and
c33 for three values of b32. For b32 = 7/8, the domains form a
very small polyhedron with c33 in the interval [0, 1/16 = 0.0625]
when b11 = b21 = 1/4. For the largest value of b32 = 15/16, the
polyhedron reduces to a single point, b11 = b21 = 1/4, c33 = 0
(not shown in Figure 4).

The 0 < c11 < 1/2 sub-family is the next simplest. There are
four independent parameters, b11, b32, c11 and c33, so the param-
eter space is a convex 4-dimensional volume. The ranges of the
four independent parameters are: b11 ≤ 1/4, b32 ≤ (2 + 7b11)/4,
c11 < 1/2 when b11 ≤ 1/6 and c11 ≤ (2− b11)/(3+ 4b11) when
1/6 < b11 ≤ 1/4, and 1/2 − b32 ≤ c33 ≤ 1/2 − b32 + 7b11/4.
The dependent parameters have values, b21 = b11, b23 = 0,



Table 3: Parameter values and utilities for a three-player Kuhn
family of equilibrium profiles, where β = max{b11, b21} and
κ = 1/24 is the probability of each set of hands.

P1 P2 P3

a11 = 0
b11 ≤ b21 if c11 = 0 c11 ≤ min{ 1

2
, (2−

b11 ≤ 1
4

if c11 6= 0 b11)/(3+2b11+2b21)}

a21 = 0

b21 ≤ 1
4

if c11 = 0

c21 = 1
2
− c11b21 = b11 if

0 < c11 <
1
2

b21 ≤
min{b11, 1

2
− 2b11} if

c11 = 1
2

a22 = 0 b22 = 0 c22 = 0

a23 = 0 b23 ≤ max{0, (b11 −
b21)/2(1− b21)}

c23 = 0

a31 = 0 b31 = 0 c31 = 0

a32 = 0 b32 ≤
1
2
+ 3

4
(b11 + b21) +

β
4

c32 = 0

a33 = 1
2

b33 = 1
2
+ 1

2
(b11 +

b21)+
β
2
−b23(1−b21)

1
2
− b32 ≤ c33 ≤ 1

2
−

b32+
3
4
(b11+ b21)+

β
4

a34 = 0 b34 = 0 0 ≤ c34 ≤ 1

a41 = 0 b41 = 2b11 + 2b21 c41 = 1

u1 = −κ
u2 = −κ(1

2
) u3 = κ(1 + β)

(1
2
+ β)

b33 = (1 + 3b11)/2, b41 = 4b11, and c21 = 1/2 − c11. The
utilities depend only on β = b11. Figure 5 shows a graphical rep-
resentation for the domains of b11, b32 and c33. Figure 6 shows the
b11 and c11 domains.

The c11 = 1/2 sub-family is the most complex. There are five
independent parameters, b11, b21, b23, b32 and c33, so the parameter
space is a convex 5-dimensional volume. The ranges of the five
independent parameters are: b11 ≤ 1/4, b21 ≤ b11 when b11 ≤
1/6 and b21 ≤ 1/2− 2b11 when 1/6 ≤ b11 ≤ 1/4, b23 ≤ (b11 −
b21)/2(1 − b21), b32 ≤ (2 + 4b11 + 3b21)/4, and 1/2 − b32 ≤
c33 ≤ 1/2 − b32 + (4b11 + 3b21)/4. The dependent parameters
have values b33 = (1 + b11 + 2b21)/2, b41 = 2b11 + 2b21, and
c21 = 0. The utilities depend only on β = b11. Figure 7 shows the
domains of b11, b21, b23, and b32. By symmetry, Figure 4 shows
the domains of b11, b21, and c33 for three values of b32, except that
the b11 and b21 axes in Figure 4 must be swapped to switch from
the c11 = 0 sub-family to the c11 = 1/2 sub-family.

All of these equilibrium strategy profiles share some common
features. First, the utility of P2 is fixed and negative. Second the
utility of P1 is always less than or equal to P2’s utility. Third, P2

completely controls an amount of utility, κβ, that can be transferred
from P1 to P3 by changing a single strategy parameter. If P3 plays
the c11 = 0 strategy, the parameter is b21. Otherwise, it is b11. In
either case, P2 can transfer the maximum utility by playing b11 =
b21 = 1/4 and transfer the minimum utility by playing b11 =
b21 = 0. In the entire family of equilibrium profiles, P1 always

Figure 3: Sub-family c11 = 0 domains for parameters b11,
b21 and b32.

Figure 4: Sub-family c11 = 0 domains for parameters b11,
b21 and c33 for three parameter values in 0 ≤ b32 ≤ 15/16.

checks as the first action (a11 = a21 = a31 = a41 = 0). If P2

then bets with a weak card (1 or 2), the uncertainty translates to a
positive outcome for P3 at the expense of P1.

We summarize the main result of this paper in the following the-
orem. The proof is in the Appendix.

THEOREM 2. The strategy profiles defined by the parameter
values and constraints shown in Table 2 and Table 3 comprise equi-
librium strategy profiles for three-player Kuhn poker.

6. EQUILIBRIUM SELECTION
While in two-person zero-sum games equilibrium strategies are

fully interchangeable without changing the payoff of the game, this
is not the case in multi-player and non-zero-sum games [12]. If
all players switch from one equilibrium profile to another, the pay-
off for each player can change. If players are playing strategies
from different equilibrium profiles, the combined strategies do not
necessarily form an equilibrium profile. This problem arises in the
three-player Kuhn poker equilibrium profiles that we derived. For
example, consider the three-player Kuhn non-equilibrium strategy
profile defined by the parameter values listed in Table 2 and Ta-
ble 4. Here, P2 has chosen a strategy from the c11 = 1/2 sub-
family of Table 3. However, P3 is playing a c11 = 0 strategy. This
combination of strategies results in a profile where P2’s utility is



Figure 5: The 0 < c11 < 1/2 sub-family domains of param-
eters b11, b32 and c33.

Figure 6: The 0 < c11 < 1/2 sub-family domains of param-
eters b11 and c11.

−κ(1/2 + β), which is κβ less than what P2 earns in the equilib-
rium profile families. Note that this resulting profile is not a Nash
equilibrium since P2 can unilaterally deviate to a strategy in the
c11 = 0 sub-family and gain κβ in utility.

This example shows that some strategies from equilibrium pro-
files may not guarantee their equilibrium value, even when the other
players are also following strategies from other equilibrium pro-
files. However, some strategies from Table 3 are more robust than
others. We now prescribe strategies for each player that guaran-
tee the best worst-case payoff, assuming that all players must play
some strategy listed in Table 2 and Table 3.

First off, P1 has no free parameters in Table 3, and so P1’s strat-
egy σ1 is fixed. Recall that P1 never bets with any card to begin the
game as a11 = a21 = a31 = a41 = 0. This, in particular, makes
c33 a non-reached strategy parameter, and thus P3’s choice for c33
is irrelevant when computing players’ utilities.

Secondly, for P2, since every profile in Table 3 gives u2 =
−κ/2, P2’s best worst-case payoff is at most −κ/2. P2 can
guarantee this payoff by picking any strategy σ2 from Table 3
where b11 = b21. This is because from (4), the partial deriva-
tive of u2 with respect to P3’s remaining free parameter, c11, is
∂u2/∂c11 = κ[8b23(1 − b21)]/2 > 0, and thus u2 is minimized
when P3 chooses any strategy σ3 from Table 3 with c11 = 0. How-
ever, one can easily check that (σ1, σ2, σ3) is an equilibrium profile
from Table 3 (except possibly at the non-reached parameter c33),
and so u2 = −κ/2.

Thirdly, P3 can guarantee a best worst-case payoff of at most
κ. This is because any equilibrium profile from Table 3 where P2

Figure 7: The c11 = 1/2 sub-family domains of parameters
b11, b21, b23 and b32.

Table 4: Parameter values and utilities for a three-player Kuhn
non-equilibrium strategy profile, where each player is playing
a strategy from a different equilibrium profile. Again, κ =
1/24 is the probability of each set of hands.

P1 P2 P3

a11 = 0 β = b11 = 1
4

c11 = 0

a21 = 0 b21 = 0 c21 = 1
2

a22 = 0 b22 = 0 c22 = 0

a23 = 0 b23 = 1
8

c23 = 0

a31 = 0 b31 = 0 c31 = 0

a32 = 0 b32 = 0 c32 = 0

a33 = 1
2

b33 = 5
8

c33 = 1
4

a34 = 0 b34 = 0 c34 = 0

a41 = 0 b41 = 1
2

c41 = 1

u1 = −κ(1
2
) u2 = −κ(1

2
+ β) u3 = κ(1 + β)

chooses β = 0 gives u3 = κ. P3 can guarantee this payoff by
picking any strategy σ3 from Table 3 where c11 = 0. This is be-
cause the partial derivatives of u3 with respect to each of P2’s free
parameters are all at least zero, as one can easily check from (3).
Thus, P2 minimizes P3’s payoff by selecting the strategy σ′2 from
Table 3 where b11 = b21 = b23 = b32 = 0. Finally, (σ1, σ

′
2, σ3)

is an equilibrium profile from Table 3 (except possibly at c33) with
β = 0, and so u3 = κ.

In summary, when all players are playing some strategy from
Table 2 and Table 3, to guarantee the best worst-case payoffs, P1’s
parameters are fixed, P2 should choose any strategy with b11 = b21
and P3 should choose c11 = 0.

7. RELATED WORK
As one might expect, the parameterized family of equilibrium

profiles for three-player Kuhn poker found here are quite complex
compared to those for two-player Kuhn poker. In contrast, the two-
player family of equilibrium profiles have just one free parameter
γ ∈ [0, 1] that defines the probability of the first player betting with
the highest card. The choice of this parameter then fixes the first



player’s other action probabilities. Much like P1 in three-player
Kuhn poker, the second player has no free strategy parameters.

We are not the first to solve a three-player game analytically.
Nash and Shapley [13] find equilibrium profiles (which they call
equilibrium points) for a three-player game where there are two
kinds of cards High and Low in the deck. However, the game differs
in two fundamental ways from real poker games, one is that the
cards are sampled with replacement and the other is that the antes
are returned if no one bets. The first factor is significant since it
reduces the inferences that can be made by the players about what
cards the opponents hold. In addition, Chen and Ankenman [2,
Example 29.2] construct an end-game scenario of a three-player
poker game and discuss the equilibrium profiles that arise. In fact,
their example was construed so that one player could transfer utility
between the two opponents while remaining in equilibrium, much
like P2 can in the three-player Kuhn profiles that we derive. Our
results show that this interesting behavior can arise naturally and
unintentionally in real games.

8. CONCLUSION
This paper has analytically derived a family of Nash equilibrium

profiles for three-player Kuhn poker. To our knowledge, this is the
largest game with more than two players to be solved analytically
to date. It remains open as to whether there exist other three-player
Kuhn equilibrium profiles that do not belong to this family.

The equilibrium profiles exhibit an interesting property whereP2

can shift utility between P1 and P3 by adjusting a free parameter
β, all while staying in equilibrium. We hope that the profiles pre-
sented here for three-player Kuhn poker provide future insights into
behaviors in other environments involving more than two agents.
In addition, these analytical solutions should enable research about
learning in two-player Kuhn poker to be extended to three players.
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Appendix
In this appendix, we prove Theorems 1 and 2. Much of the proofs
make repeated use of the following lemma:

LEMMA 1. Let x be a, b or c, when i = 1, 2 or 3 respectively.
Then Pi cannot gain utility by unilaterally changing the value of
xjk if and only if one of the following is true: 1) xjk = 0 and
∂ui/∂xjk ≤ 0, or 2) xjk = 1 and ∂ui/∂xjk ≥ 0 or 3) 0 <
xjk < 1 and ∂ui/∂xjk = 0.

PROOF. Since ui is linear in each xjk, ui = yxjk + z for some
y, z. Also, xjk is a probability so either 1) xjk = 0, or 2) xjk = 1
or 3) 0 < xjk < 1.

Case 1) Assume xjk = 0.
(Forward proof): Assume ∂ui/∂xjk ≤ 0, then y ≤ 0. Assume

Pi unilaterally changes the value of xjk so that x′jk > 0. Then, the
new utility, u′i = yx′jk+ z ≤ y(0)+ z (since y ≤ 0 and x′jk > 0 )
= yxjk + z (since xjk = 0 ) = ui. Therefore, when Pi unilaterally
changes the value of xjk from zero, the new utility cannot increase.

(Backward proof): Instead assume that Pi cannot gain utility by
unilaterally changing the value of xjk. Then y ≤ 0 so ∂ui/∂xjk ≤
0.

The proofs for the other two cases are similar.

PROOF. (of Theorem 1). Here is a proof for c43. The other 20
proofs are similar.

∂u3/∂c43 = 4κ [a11(1− b22) + a11(1− b32) + a21(1− b12)
+a21(1− b32) + a31(1− b12) + a31(1− b22)] ≥ 0.

(2)

(Forward direction): First assume c43 = 1, then from (2), P3

cannot gain utility by unilaterally changing c43.
(Backward direction): Instead assume P3 cannot gain utility by

unilaterally changing c43. Assume c43 6= 1. Then by Lemma
1 ∂u3/∂c43 ≤ 0, but we have shown ∂u3/∂c43 ≥ 0. There-
fore ∂u3/∂c43 = 0. However, from (1) and (2), ∂u3/∂c43 =



4πσ(I(c43)). Therefore either c43 = 1 by contradiction or c43 is a
non-reached parameter.

We will now prove Theorem 2 according to the following out-
line. We first compute the general utilities of each player u1, u2

and u3 from the extensive-form game tree as a function of the 48
independent parameters. The expressions for u1, u2 and u3 con-
tain 333, 457 and 457 terms respectively. We then use Table 2 to set
21 of these parameters, leaving 27 independent parameters. From
Theorem 1, Pi (for i = 1, 2, 3) cannot gain utility by changing the
appropriate values from Table 2. The expressions for u1, u2 and
u3 now contain 134, 158 and 167 terms respectively. Next, we set
the parameters in Table 3 for P1 and P2, but do not set parameters
for P3 from Table 3. The utility for P3 is:

u3 = κ [4c11b21b23 − c31b21b23 − b11 − b21 − 4c31 + 2c21

+ 2c11 + 2b23c41 + 2b33c41 − b21c32 − b11c32 − b11c22
− 4c21b33 − 4c11b33 + c31b23 − 4c11b23 + 5b21c31

+ 2b11c21 + 4b21c21 + 5b11c31 + 4b11c11 + 2b21c11

−4b21c22 − 2b21b23c41] . (3)

For the family of strategy profiles defined by Table 2 and Table 3
to be an equilibrium strategy profile, it is necessary to show that
changing the parameter values of P3 from the values listed in Table
3 cannot increase u3. Similarly it is also necessary to show that the
value of u2 computed by setting the parameters for P1 and P3 from
Table 3 (but not P2’s parameters) cannot be increased by changing
the values of P2 from the values listed in Table 3, where:

u2 =
κ

2
[4b21b23 + b31b34 − 1− 5b31 − 4b23 − b34

−8c11b21b23 + 8c11b23] . (4)

Finally, it is necessary to show the analogous result P1, where

u1 =
κ

2
[−1− 4a31b21a32 + 8b11c11a32 + 6a31b11c11 − 2a41

+ 4a11 − 4a22 + 4a21 + 4a41b32 − 8a11b32 − 8a21b32

− 6a31b21c11 − 8a11c33 − 8a21c33 + 4c11b11a22

− 2b21a34 − 2b11a21a22 + 8a21b21a23 + 4a41c33 − 2b21

− 5a31 − a32 + 2b11a31a34 + 2b21a31a34 − 8b21a23

− 3b11a41 + a31a32 + 2b11a22 + 4b21a32 − 4b21a41

+ 6c11a22 − 6c11a22a21 + 2c11b21a41 − 2b11a41c11

− 4c11b11a21a22 − 4c11a21b21a22 − 2b11a34 − 4b11c11

+ 4b21c11 + 4a21a22 − 8a31b11c11a32 + 8a31b21c11a32

−8b21c11a32 + 4c11b21a22 + 3a31b11 + 6a31b21] . (5)

However, showing all these 3 necessary conditions is also sufficient
based on the definition of equilibrium profiles. To prove Theorem
2, we divide the proof into four lemmas.

LEMMA 2. The P2 constraints in Table 3 imply that b11 ≤ 1/4
and b21 ≤ 1/4.

PROOF. One can easily verify the lemma by checking all three
cases for c11 = 0, 0 < c11 < 1/2, and c11 = 1/2.

LEMMA 3. P3 cannot increase u3 by changing the parameter
values listed in Table 2 and Table 3.

PROOF. We use (3) to compute the partial derivative of u3 with
respect to each of the listed P3 parameters. Recall that all parame-
ters are probabilities in the range [0, 1].

∂u3/∂c23, ∂u3/∂c33, ∂u3/∂c34 = 0

⇒ P3 cannot change c23, c33 or c34 to increase u3.

∂u3/∂c22 = κ(−b11 − 4b21) ≤ 0

⇒ P3 cannot change c22 from 0 to increase u3.

∂u3/∂c32 = κ(−b11 − b21) ≤ 0

⇒ P3 cannot change c32 from 0 to increase u3.

∂u3/∂c31 = κ(−4 + 5b11 + 5b21 + b23 − b21b23)
≤ κ(−4 + 5/4 + 5/4 + 1− b21b23) by Lemma 2
= κ(−1/2− b21b23) < 0

⇒ P3 cannot change c31 from 0 to increase u3.

∂u3/∂c41 = κ(2b33 + 2b23(1− 2b21)) ≥ 0

⇒ P3 cannot change c41 from 1 to increase u3.

∂u3/∂c21 = κ(2 + 2b11 + 4b21 − 4b33)

= κ[2 + 2b11 + 4b21 − 4(1/2 + (b11 + b21)/2

+ β/2− b23(1− b21))] by Table 3 b33 constraint
= κ(2b21 − 2β + 4b23(1− b21)).

∂u33/∂c11 = κ(2 + 4b11 + 2b21 − 4b23(1− b21)− 4b33)

= κ[2 + 4b11 + 2b21 − 4b23(1− b21)− 4(1/2

+ (b11 + b21)/2 + β/2− b23(1− b21))]
by Table 3 b33 constraint

= κ(2b11 − 2β).

The rest of the proof depends on the family constraints.
If c11 = 0, then from the b11 entry of Table 3, b11 ≤ b21, so the

b23 entry of Table 3 yields b23 = 0 and β = b21. Therefore,

∂u3/∂c21 = κ(2b21 − 2b21 + 4(0)(1− b21)) = 0

⇒ P3 cannot change c21 to increase u3.

∂u3/∂c11 = κ(2b11 − 2b21) ≤ 0

⇒ P3 cannot change c11 from 0 to increase u3.
If c11 = 1/2, then from the b21 entry of Table 3, b21 ≤ b11, so

the b23 entry of Table 3 yields b23 ≤ (b11− b21)/(2(1− b21)) and
β = b11. Therefore,

∂u3/∂c21 ≤ κ(2b21 − 2b11 + 4(1/2)(b11 − b21)) = 0

⇒ P3 cannot change c21 from 0 to increase u3.

∂u3/∂c11 = κ(2b11 − 2b11) = 0

⇒ P3 cannot change c11 to increase u3.
If 0 < c11 < 1/2, then from the b21 entry of Table 3, b21 = b11,

so the b23 entry of Table 3 yields b23 = 0 and β = b11 = b21.
Therefore,

∂u3/∂c21 = κ(2b21 − 2b21 + 4(0)(1− b21)) = 0

⇒ P3 cannot change c21 to increase u3.

∂u3/∂c11 = κ(2b11 − 2b11) = 0

⇒ P3 cannot change c11 to increase u3.

LEMMA 4. P2 cannot increase u2 by changing the parameter
values listed in Table 2 and Table 3.



PROOF. We use (4) to compute the partial derivative of u2 with
respect to each of the listed P2 parameters.

∂u2/∂b11, ∂u2/∂b22, ∂u2/∂b32, ∂u2/∂b33, ∂u2/∂b41 = 0

⇒ P2 cannot change b11, b22, b32, b33 or b41 to increase u2.

∂u2/∂b31 = κ(−5 + b34)/2 < 0

⇒ P2 cannot change b31 from 0 to increase u2.

∂u2/∂b34 = κ(−1 + b31)/2 ≤ 0

⇒ P2 cannot change b34 from 0 to increase u2.

∂u2/∂b23 = 2κ(1− b21)(1− 2c11).

∂u2/∂b21 = 2κb23(1− 2c11).

The rest of the proof depends on the sub-family constraints.
If c11 = 0, then

∂u2/∂b23 = −2κ(1− b21) ≤ 0

⇒ P2 cannot change b23 from 0 to increase u2. Therefore, we can
assume b23 = 0.

∂u2/∂b21 = 2κb23 = 0

⇒ P2 cannot change b21 to increase u2.
If c11 = 1/2, then

∂u2/∂b23 = ∂u2/∂b21 = 0

⇒ P2 cannot change b23 or b21 to increase u2.
If 0 < c11 < 1/2, then

∂u2/∂b23 = −2κ(1− b21)(1− 2c11) ≤ 0

⇒ P2 cannot change b23 from 0 to increase u2. Therefore, we can
assume b23 = 0.

∂u2/∂b21 = 2κ(0)(1− 2c11) = 0

⇒ P2 cannot change b21 to increase u2.

LEMMA 5. P1 cannot increase u1 by changing the parameter
values listed in Table 2 and Table 3.

PROOF. We use (5) to compute the partial derivative of u1 with
respect to each of the P1 parameters.

∂u1/∂a33 = 0

⇒ P1 cannot change a33 to increase u1.

∂u1/∂a23 = 4κ(−1 + a21)b21 ≤ 0

⇒ P1 cannot change a23 from 0 to increase u1. Assume a23 = 0.

∂u1/∂a34 = κ(−1 + a31)(b11 + b21) ≤ 0

⇒ P1 cannot change a34 from 0 to increase u1.

∂u1/∂a11 = κ(2− 4b32 − 4c33) ≤ 0

by Table 3 constraint 1/2 − b32 ≤ c33 ⇒ P1 cannot change a11
from 0 to increase u1.

∂u1/∂a22 = κ(1− a21)(b11 + 2(b11 + b21)c11 + 3c11 − 2) ≤ 0

by Table 3 constraint c11 ≤ (2 − b11)/(3 + 2(b11 + b21))⇒ P1

cannot change a22 from 0 to increase u1. So, assume a22 = 0.

∂u1/∂a21 = κ(2− 4b32 − 4c33 + 2a22 + 4a23b21 − a22b11
− 2a22(b11 + b21)c11 − 3a22c11)

= κ(2− 4b32 − 4c33) since a22 = a23 = 0

≤ 0 by Table 3 constraint 1/2− b32 ≤ c33
⇒ P1 cannot change a21 from 0 to increase u1. Therefore, we can
assume a21 = 0.

∂u1/∂a32 = κ(1− a31)(−1 + 4b21 + 8c11(b11 − b21))/2.

∂u1/∂a41 = κ(−2c11(b11 − b21)− 2− 4b21 − 3b11 + 4b32

+ 4c33)/2

≤ κ[−2c11(b11 − b21)− 2− 4b21 − 3b11 + 4b32

+ (2− 4b32 + 3(b11 + b21) + β)]/2 by Table 3
constraint c33 ≤ 1/2− b32 + 3(b11 + b21)/4 + β/4

= κ(−2c11(b11 − b21)− b21 + β)/2.

The next part of the proof depends on the sub-family constraints.
If c11 = 0, then

∂u1/∂a32 = κ(1− a31)(−1 + 4b21 + 8(0)(b11 − b21))/2 ≤ 0

since b21 ≤ 1/4 by Lemma 2⇒ P1 cannot change a32 from 0 to
increase u1. From the b11 entry of Table 3, b11 ≤ b21, so β = b21.

∂u1/∂a41 ≤ κ(−2(0)(b11 − b21)− b21 + b21)/2 = 0

⇒ P1 cannot change a41 from 0 to increase u1.
If c11 = 1/2, then

∂u1/∂a32 = κ(1− a31)(−1 + 4b21 + 8(1/2)(b11 − b21))/2
= κ(1− a31)(−1 + 4b11)/2

≤ 0 since b11 ≤ 1/4 from Lemma 2

⇒ P1 cannot change a32 from 0 to increase u1. From the b21 entry
of Table 3, b21 ≤ b11, so β = b11. Therefore,

∂u1/∂a41 ≤ κ(−2(1/2)(b11 − b21)− b21 + b11)/2 = 0

⇒ P1 cannot change a41 from 0 to increase u1.
If 0 < c11 < 1/2, then from the b21 entry of Table 3, b21 = b11.

Therefore,

∂u1/∂a32 = κ(1− a31)(−1 + 4b21)/2 ≤ 0

since b21 ≤ 1/4 by Lemma 2 ⇒ P1 cannot change a32 from 0
to increase u1. From the b21 entry of Table 3, b21 = b11 and so
β = b11.

∂u1/∂a41 ≤ κ(−2c11(b11 − b21)− b21 + b11)/2 = 0

⇒ P1 cannot change a41 from 0 to increase u1.
Now that we have shown a32 = a41 = 0, we can assume a32 =

0 and complete the proof by showing that a31 = 0.

∂u1/∂a31 = κ[−5 + 8a32(b21 − b11)c11 + 2a34(b11 + b21) + 3b11

+ 6b21 + a32 + 6b11c11 − 6b21c11 − 4a32b21]/2

= κ(−5 + 3b11 + 6b21 + 6b11c11 − 6b21c11)/2

since a32 = a34 = 0

≤ κ(−5 + 3(1/4) + 6(1/4) + 6(1/4)(1/2)− 0)/2

by Table 3 constraint c11 ≤ 1/2 and by Lemma 2
= κ(−2)/2 < 0

⇒ P1 cannot change a31 from 0 to increase u1.
PROOF. (of Theorem 2). From Theorem 1 and Lemmas 3, 4 and

5, no individual player can increase utility by unilaterally varying
their strategy from the profiles listed in Table 2 and Table 3. There-
fore, by the definition of Nash equilibrium, Table 2 and Table 3
define a family of Nash equilibrium profiles.


