External-Memory
Bidirectional Search 1] &

Nathan R. Sturtevant and Jingwei Chen, University of Denver

DANIEL FELIX RITCHIE SCHOOL OF
ENGINEERING & COMPUTER SCIENCE

Moving Al lab

Award 1551406

What is external-memory search?

When main memory is too small, we can
use external memory (e.g. a hard disk) to
store states during a search

External memory has:
* High latency for random access
* High throughput
* High storage (relative to main mem.)

To use external memory, we must engineer
algorithms to avoid random access.

Wheat is bidi
Bidirectional search aims to be more ef-
ficient by searching simultaneously from
the start and the goal. The MM algorithm

(Holte et. al., 2016) guarantees the searches
meet in the middle.

The effectiveness of bidirectional search de-
pends on the heuristic and the state space
distribution.

In external-memory search, the state space
is often split into buckets which can be
loaded into memory for expansions. The
successors of in a bucket may not be in the
same bucket.

Closed Open Unseen

Bidirectional searches must check the op-
posite search frontier to detect if a goal is
found.

Bidirectional Search
Remove NEXT from OPEN
Generate successors of NEXT
Look for duplicates in OPEN/CLOSED
Look for duplicates in opposite frontier
Add NEXT to closed

We call this step solution detection.

How do we combine them?

Solution detection requires random access
to disk, which doesn’t work with external
memory search. To be effective, we must
delay solution detection until it can be effi-
ciently performed on many states at once
(during expansion).
External-Memory Bidirectional Search
Load best bucket from oPEN into memory

Check for duplicates on OPEN/CLOSED

Look for duplicates in opposite frontier

For each state in bucket:

Generate successors
Add successors to OPEN

We show that delaying this check is correct;
it increases the efficiency of solution detec-
tion. But, solution detection is still expen-
sive. Also, we cannot use recent improved
termination rules.

We create a new algorithm, PEMM, which
uses delayed solution detection, delayed du-
plicate detection, and parallel expansions.

We test PEMM on Rubik’s cube using a
variety of heuristics. These illustrate the
trade-offs and need for further work on de-
layed solution detection.

| Closed Open Unseen

Open Closed

Immediately checking successors to see if
they are duplicated in open/closed would
require random access to disk.

External-memory search delays duplicate
detection until it can be efficiently per-
formed on many states at once.

Internal Memory:
generate — remove duplicates — write to OPEN

External Memory:
generate — write to OPEN — remove duplicates

There are many open questions: Bidirec-
tional search requires stronger heuristics
than unidirectional search. Termination and
tie-breaking strategies are not fully under-
stood. Recent work (Holte et. al., Sharon et.
al.) has improved termination conditions.

Closed Open Unseen Open Closed

| | | eEMdp || PEMM | IDA* || pEMM | IDA* || PEMM | [DA* |
I-ﬂlll

-

NIO 0 1N N B~ W —

oo || ssess | iien [35618

PEMM performs fewer node expansions than IDA*
on hard problems / weak heuristics, although it ex-
pands states more slowly than IDA*,

No heuristic: PEMM

T Nehewwerm
(¥ | Depth [Tone) [% Evp [% VO | %DSD | #Esp | Dk_

0O K~ W=

\O

S50 Tonste | 5308 6656 | S697| 3505 | 50T

With no heuristic, PEMM spends significant time
doing solution detection. Current heuristics don’t
significantly improve PEMM’s performance.

