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Abstract
Recent research on external-memory search has
shown that disks can be effectively used as sec-
ondary storage when performing large breadth-
first searches. We introduce the Write-Minimizing
Breadth-First Search (WMBFS) algorithm which
is designed to minimize the number of writes per-
formed in an external-memory BFS. WMBFS is
also designed to store the results of the BFS for
later use. We present the results of a BFS on a
single-agent version of Chinese Checkers and the
Rubik’s Cube edge cubes, state spaces with about
1 trillion states each. In evaluating against a com-
parable approach, WMBFS reduces the I/O for the
Chinese Checkers domain by over an order of mag-
nitude. In Rubik’s cube, in addition to reducing I/O,
the search is also 3.5 times faster. Analysis of the
results suggests the machine and state-space prop-
erties necessary for WMBFS to perform well.

1 Introduction and Motivation
While it was once thought that hard disk drives are too slow
for practical computational usage, work on external-memory
search algorithms [Robinson et al., 2007; Korf, 2008b; Zhou
and Hansen, 2011] has shown that careful design of algo-
rithms can avoid random read and writes and effectively use
disks for large breadth-first searches (BFS). In particular, se-
quential disk access is far faster than random access, so disk
can be effectively used as long as all disk accesses are per-
formed sequentially. The use of disk extends the limits of
problems that can be solved, as available disk is usually one
to two orders of magnitude larger than available RAM, and
the cost of disk is less than that of RAM.

This work describes a new algorithm for external memory
search, Write-Minimizing Breadth-First Search (WMBFS),
which makes the following contributions. (1) WMBFS works
to minimize writes to external storage. (2) WMBFS stores the
results of the computation for later use. (3) Several general
techniques for reducing CPU usage are introduced, includ-
ing a low-resolution open list, called a “coarse” open list. (4)
Experimental results compare our WMBFS to the the exist-
ing state-of-art algorithm showing that we reduce I/O by over
and order of magnitude. WMBFS has comparable execution

speed in Chinese Checkers, and is 3.5 times faster in Rubik’s
Cube.

WMBFS is motivated by several observations:

First, most large-scale BFSs have been performed to ver-
ify the diameter (the number of unique depths at which states
can be found) or the width (the maximum number of states at
any particular depth) of a state space, after which any com-
puted data is discarded. There are, however, many scenarios
in which the results of a large BFS can be later used for other
computation. In particular, a breadth-first search is the under-
lying technique for building pattern databases (PDBs), which
are used as heuristics for search. PDBs require that the depth
of each state in the BFS be stored for later usage. The largest
PDBs have used both lossy and non-lossy compression [Fel-
ner et al., 2004; Breyer and Korf, 2010] to bring the size of
the PDB into that of available memory. The use of external
memory directly for search has been limited [Schaeffer, 1997;
Hatem et al., 2011], but is an important potential application
for this work.

Second, hard disk drives (HDD) have been the dominant
form of media used for external memory search. But, prices
have dropped and capacities have grown on solid states drives
(SSDs), suggesting that SSDs may eventually replace HDDs,
or they may also form an intermediate layer between external
memory solutions, much as caches are used between the CPU
and main memory. Because SSDs are not rotating disks, they
do not have the same sequential restrictions as HDDs. So,
their random read access is significantly faster than HDDs,
but they also have a limited number of writes before they
wear out [Ajwani et al., 2009]. It is unclear if these limits
will grow in the future, but they provide motivation behind
the question of how to minimize writes in external memory
search. Writes are strongly correlated with reads, as every-
thing written to disk must later be read again, so minimizing
writes is an effective way to reduce overall I/O. Data integrity
is another concern, where increasing I/O increases the chance
of a bit error and an incorrect computation.

Finally, there have been significant changes in available
parallelism in the last few years. The number of processors
available for computation is quickly growing, and efficient
parallel algorithms are important for extending the size of
problems that can be solved.



2 Background and Related Work
We describe a few existing external-memory approaches to
performing a BFS in this section. We often describe the BFS
approach inductively. That is, we provide the starting condi-
tions of each iteration and show how the starting conditions of
the next iteration are reached. Applied repeatedly this would
complete an entire BFS.

We use the following definitions. Expanding a state means
finding and applying all legal operators in order to generate
all of its successors. A ranking function (or perfect hash func-
tion) converts a state into a into a unique integer, and an un-
ranking function converts an integer back into the representa-
tive state. We assume that we have a perfect ranking function
– if there are k possible states, then these states will rank to
the values 0 . . . k − 1.

A perfect ranking function enables efficient storage of in-
formation for all states in the state space using an implicit
representation. Because the ranking is contiguous, an array
or block of memory can store data for every state without
the need to store the states themselves. The offset of data in
the array or memory can be unranked to produce the state
to which the data corresponds. This is contrasted by an ex-
plicit representation, where the rank of a state must be stored
explicitly along with any associated data. An implicit repre-
sentation will use less space when information about all (or a
majority) of the states in the state space is saved. An explicit
representation will use less space when only a small fraction
of the state space is stored at any time. As an example, typ-
ical implementations of A* would use an explicit open list.
Robinson et al. (2007) use the term implicit open list to refer
to an open list which is stored implicitly.

2.1 Delayed Duplication Detection
Two delayed duplicate detection variants [Korf, 2004; 2008a]
(DDD) have been proposed for external-memory frontier
search. Frontier search [Korf, 2004] stores one bit per oper-
ator to mark operators that generate states in previous layers
of the search. Avoiding these operators means that duplicates
will only be found when generating states in the next layer
of the BFS. DDD begins each iteration of the BFS with all
states in the current layer stored explicitly on disk (in multi-
ple files) without duplicates. The files for this layer are suc-
cessively loaded, and states in the next layer are generated
and written to new files on disk, with the previous files being
removed. Duplicates are then removed from the new files on
disk through sorting, or through loading into a memory-based
hash table. A hash function is used to determine which file a
state is stored in, meaning that all duplicates will be in the
same file. From this point forward we refer to the hash-based
DDD variant. After this processes is complete, the next layer
is on disk without duplicates ready for further processing.
Structured Duplicate Detection. Structured Duplicate De-
tection [Zhou and Hansen, 2004] (SDD) is very similar to
DDD, in that states are stored explicitly on disk in multiple
files. But, instead of performing expansions and duplicate de-
tection as separate steps, SDD performs these steps together.
A state abstraction mechanism is used to detect where du-
plicates can occur. When a set of states on disk are ready
for processing, all possible duplicates states are loaded into

a memory-based hash table so that duplicates can detected
before writing back to disk. Thus, SDD saves extra I/O, but it
requires a state space with structure that can be exploited.

2.2 Two-Bit Breadth-First Search
Two-Bit Breadth-First Search (TBBFS) is a more general
BFS technique that relies on fewer state-space properties than
previous approaches [Korf, 2008b]. TBBFS begins each itera-
tion of the BFS with all states in the state space stored on disk
implicitly using two bits. Each state has one of four values:
closed, open, new or unseen. Closed states are those that were
already found in a previous layer of the search. Open states
correspond to the states at the current depth that are being ex-
panded. New states are the new successors of states marked
open. Unseen states are states which have not been seen dur-
ing search. Initially the start state is marked open and all other
states are marked unseen. In general, an iteration begins with
states marked either closed, open, or unseen; no states will be
marked new.

If there is sufficient RAM, TBBFS loads the entire two-bit
data from disk into RAM and then successively generates the
successors of all open states. If any of these successors are
currently marked unseen, they are changed to new; otherwise
the successors are duplicates and can be ignored. After this
process is complete, all open states are marked as closed, and
all new states are marked as open, completing the iteration.

We use Figure 1 to illustrate how the search proceeds when
there is insufficient RAM for the whole state space. The state
space is broken into buckets; each bucket is the size of avail-
able RAM, assuming 8 bits per state in RAM. (This avoids
the use of locks in the parallel implementation.) In step (1),
a bucket is copied from external storage to RAM. In step (2)
all states in RAM marked open are sent to threads to be ex-
panded. The successors of these states are local successors
if they fall into the same bucket that is currently in RAM. In
step (3) the local successors are written directly back to RAM
if they are marked unseen in RAM. The non-local successors
are (4) written explicitly to temporary external storage, di-
vided into files by buckets. If there are states in temporary
external storage for the current bucket, written when a differ-
ent bucket was in RAM, then these can be loaded and pro-
cessed in step (5). After all states are processed, the updated
information in RAM is (6) copied back onto external storage.
This entire process is repeated for each bucket, after which
any remaining states in temporary external storage are pro-
cessed. Finally, all open states are marked as closed, and all
new states are marked as open, completing the iteration.

While the two-bit portion of TBBFS is of fixed size, there
are many states which are written explicitly to temporary ex-
ternal storage, depending on the locality of the successors of a
state. Depending on the available size of disk, this may use up
all available storage. If this occurs, the search must be paused
while the disk files are immediately processed to free addi-
tional space on disk.

If the search crashes while in progress, it can be restarted
as sufficient information to restart the search is contained in
the two-bit representation. (As long as these files are not cor-
rupted during a crash.) More details are in [Korf, 2008b].
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Figure 1: The TBBFS algorithm.

3 Write-Minimizing Breadth-First Search
We now propose a new algorithm, Write-Minimizing
Breadth-First Search (WMBFS), which is designed to min-
imizing writes to external storage and to store the depth of
each state in the BFS in addition to computing the diameter
and width of the state space.

WMBFS begins each iteration with all states stored on disk
implicitly using two or more bits per state. For illustration we
will assume that four bits are used. The value stored on disk
is the depth of the state modulo 15 (0 . . . 14) or the reserved
value, 15, indicating the state is unseen and not yet seen in
the search. Any state that has a depth modulo 15 equal to the
current depth of the search is considered to be open. States at
all other depths are considered to be closed. Once all depths
are computed, two bits are sufficient for recovering the true
depth of any state [Breyer and Korf, 2010].

Like TBBFS, WMBFS divides the state space into buckets
in order to accommodate a state space which is too large to
be loaded directly into RAM. But, WMBFS uses a different
in-memory representation and avoids writing successors to
temporary external storage.

Figure 2 illustrates WMBFS. WMBFS begins (1) by ini-
tializing a 1-bit array, called a change list in RAM which is
used for marking the successors of the current iteration; these
states are potentially at the next depth of the BFS. The bits in
the array implicitly correspond to states in one of the buckets
on disk. After states in the array are initialized to false, (2)
all states on disk are scanned sequentially. Any states which
are open (at the current depth modulo 15) are sent to threads
to be expanded. The successors of these states which fall into
the bucket currently in RAM are (3) marked as true in the
change list in RAM. All other successors are discarded. Af-
ter all open states are expanded, the results can (4) be written
back to a bucket on disk.

The change list does not use the same representation as the
modulo representation on disk, so it cannot be copied directly
back to disk. This means that duplicate detection takes place
partially in RAM and partially when writing to disk. When
many states share the same successor, it will only be stored
in the change list once. But, the states marked in the change
list can actually be in the previous, current, or next level of the
search; this isn’t detected until writing to disk. Writing occurs
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Figure 2: The WMBFS algorithm.

as follows. First, a sector of disk is read to a cache. Next, any
states in the cache which are (1) marked in the change list and
(2) have the value unseen are updated with the next depth in
the search (modulo 15). Finally, the sector is written back to
disk. Keeping track of the number of states actually written
to disk at the next depth, as opposed to in the change list,
indicates when the BFS is complete. (When no new states are
written, the search is complete.)

At each depth of the search WMBFS must make one itera-
tion through external storage (step 2) for every bucket (when
the associated change list is in RAM). So, open states will be
expanded as many times as there are buckets. But, WMBFS
requires fewer buckets than TBBFS, because the representa-
tion of states in RAM is more efficient, reducing the number
of iterations required. Note that states at depth 1 and 16 have
the same modulo 15 representation, so in the most basic im-
plementation of WMBFS all states at depth 1 will also be
expanded at depth 16 and likewise for similar depth pairs.

3.1 WMBFS Enhancements
Two approaches are used to reduce the overhead of the mod-
ulo representation and the multiple passes through disk: a
two-level ranking function and a coarse open list.

One common test performed in WMBFS is to see if a state
falls into the bucket currently in RAM. Most ranking func-
tions can be divided into multiple levels. The first level might
contain the first few bits of the full ranking function, with
the second level containing the remaining bits. The result-
ing first-level function can be used to map states to buckets.
As this first-level ranking is much faster to compute than the
full ranking, we can quickly determine whether a successor
is stored in the current change list in RAM. If so, we then
use the more expensive second-level ranking to determine its
location in the change list; otherwise the state is discarded.

The coarse open list is a type of implicit open list, but
instead of using one bit per state, it uses one bit for multi-
ple states. This bit can be seen as marking sectors that con-
tain states to be expanded in the next iteration, as opposed
to marking individual states. The sector must then be read to
find the individual states to be expanded. This significantly
reduces the memory overhead of the implicit open list. In our
later experiments, for instance, we use 1 bit per 256 states. So,



if any of the first 256 states in the state space were changed in
the previous iteration, the first bit in the coarse open list will
be set.

The coarse open list offers several advantages. First,
WMBFS can avoid reading any sectors from disk which are
not marked in the coarse open list. This is particularly notice-
able on the first iteration when a single state is written to disk,
but a naive implementation would read through all states on
disk looking for states at the current depth. Next, the coarse
open list reduces the overhead associated with a modulo rep-
resentation of the open list. There can be many states with
the same modulo depth, but any states with the same modulo
depth not in the coarse open list will be ignored. Finally, the
coarse open list can be updated during iterations through each
bucket, reducing the cost of multiple iterations. If all succes-
sors of states represented by one bit of the coarse open list fall
inside the current or previous buckets, then the associated bit
in the coarse open list can be cleared.

3.2 Parallel WMBFS
The parallel implementation of WMBFS uses a single master
thread and multiple worker threads. The master thread ini-
tializes the data structures for search and then reads through
the buckets on disk looking for open states. These states are
sent to worker threads to be expanded. The worker threads are
responsible for taking these states, expanding them, and writ-
ing the results back to the change list. Because the change
list is shared between threads, the results are temporarily
cached in RAM in order to reduce the overhead used by the
locks. Threads are re-synchronized after each pass through
disk (step 2 in Figure 2) is complete.

Pseudo-code for parallel WMBFS is found in Algorithm 1.
This high-level code does not show some details of the im-
plementation, such as load balancing for threads, and the full
details of caching and writing to the change list.

3.3 Restarting WMBFS
A WMBFS can be restarted as long as no files are corrupted
when the program was interrupted and we know the last depth
written. This is works because a WMBFS stores the modulo
depth of each state on disk, but no other information about the
progress of the search. The downside to restarting is that the
coarse open list is lost, so there may be extra work involved
in the first iteration after the restart.

4 Comparison and Analysis
At the highest level, WMBFS trades off computation and
reading from disk to reduce the number of writes to disk.
WMBFS is most effective when the cost of expanding a state
is low and the locality of the successors is low. WMBFS also
performs well when the size of RAM is close to the size of
the problem being solved. TBBFS is more effective when the
cost of expanding states is high and the successors of a state
exhibit high locality, or when RAM is very limited, but large,
fast disks are available. We provide a high-level comparison
of three external BFS approaches in Table 1, focusing on rep-
resentation.

Hash-based delayed duplicate detection (DDD) does not
store all states in memory at any point in the search, while

Algorithm 1 WMBFS pseudo-code
WMBFS()
1: Initialize disk files and other data structures
2: while new states left on disk do
3: for all buckets do
4: Clear change list
5: for every sector S in coarse open list do
6: if S not marked as changed in last iteration then
7: Continue to next sector
8: end if
9: for each state si in sector S do

10: if si is open then
11: SendToWorkerQueue(si)
12: end if
13: end for
14: end for
15: Wait for workers to finish
16: Write current change list and update next coarse list
17: end for
18: end while

WORKERTHREAD()
1: while true do
2: s← GetWorkFromQueue()
3: for each successor si of s do
4: if si in current bucket then
5: Write si to local cache
6: end if
7: end for
8: Write local cache to change list
9: end while

TBBFS uses a implicit 2-bit representation and WMBFS uses
an implicit representation based on the modulo depth.

DDD stores the current and next levels explicitly. TBBFS
uses the implicit representation to distinguish states which are
open and in the new iteration. States in new are also stored
explicitly when they are outside the current bucket being pro-
cessed. WMBFS uses the modulo representation to determine
which states are open and in the new iteration.

DDD uses frontier search to avoid duplicates from previ-
ous levels and an in-RAM hash table to perform duplicate
detection on the current level of the search. TBBFS uses its
two-bit representation in RAM to perform duplicate detection
between current and previous levels of the search. WMBFS
uses a one-bit representation in RAM to detect duplicates in
the current level of the search, and detects duplicates in pre-
vious levels as states are written to disk.

Overall, the maximum disk usage by DDD is the largest
explicit layer with forbidden operators, although this depends
partly on when duplicate detection is performed. The maxi-
mum disk usage by TBBFS is the size of the implicit repre-
sentation plus the size of the explicit representation, although
this again depends on when and how the explicit representa-
tion is processed. WMBFS only stores the implicit represen-
tation on disk.

This table should help make it clear that WMBFS and
TBBFS form two distinct choices with different optimiza-
tions. WMBFS minimizes writes while computing the mod-
ulo depth of each state, while TBBFS minimizes the number
of node expansions while computing the width/diameter of



Table 1: A comparison of BFS representational approaches.

Algorithm State Space Open New Dup. Detection Max. Disk
DDD - explicit explicit frontier + RAM hash explicit layer + forbidden operators
TBBFS implicit (2 bits) implicit implicit + explicit implicit (state space) state space + explicit new
WMBFS implicit (modulo) implicit implicit implicit (changed list + disk) state space

the state space. Many variants could be created by combin-
ing features of both algorithms, although a full exploration of
these parameters is outside of the scope of this paper.

4.1 Theoretical Analysis
To better understand the tradeoffs that come into play when
choosing between TBBFS and WMBFS, we analyze the num-
ber of bits written per state by each algorithm. We simulate
TBBFS as previously described, storing 2-bits per state on
disk, and storing non-local states as 64-bit explicit states1. We
assume that TBBFS has enough external storage for all states
written externally noting that WMBFS uses a fixed amount of
disk space and therefore avoids this issue altogether.

Both TBBFS and WMBFS should have nearly identical
characteristics with respect to initializing disk and writing the
final values for each state, except that WMBFS must perform
an extra read before writing to disk.

TBBFS will expand each state once, so we analyze the I/O
operations of TBBFS with respect to a single state expansion.
For each state expanded, the following occurs:
• The 2-bit value for the state is read once to get the initial

value;
• All successors of that state are generated. Those that fall

in the same bucket are updated in memory.
• Any other successors are explicitly written to disk.
• Each of these successors will later be read and then writ-

ten to their own memory segments as a 2-bit value (un-
less the state was a duplicate).
• The state will be written as closed on disk.
Under the WMBFS algorithm, the following I/O operations

take place for each expansion:
• The 4-bit value is read n times for each state (where n is

the number of buckets);
• All successors of that state are generated. Those that fall

in the current bucket are written to memory.
• The modulo value is both read and written for each state

that has its depth updated.
Assume for TBBFS that the branching factor is b and p

is the percent of states fall inside the memory segment (the
locality). For each state, TBBFS is expected to write 64 · b ·
(1− p) bits explicitly to temporary storage. All other writing
will be approximately equal for the two algorithms. TBBFS
will read each 2-bit state once. All explicit states will be read
at a cost of 64 · b · (1− p) bits. WMBFS will read each 4-bit
state n+1 times. Thus, if (1−p) > 0 WMBFS must perform
strictly fewer writes than TBBFS. If 64 · b · (1 − p) + 2 >
4 · (n+ 1), then WMBFS will also perform fewer reads.

1We could sub-divide buckets into smaller files so that only 32
bits need to be written to disk, but this would significantly increase
the number of simultaneous open files; it is unclear how it would
change performance

(b)
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Figure 3: A Chinese Checkers board.

5 Experimental Domains
Two domains are used in this work, Chinese Checkers and
Rubik’s cube.

5.1 Chinese Checkers
We use the game of Chinese Checkers as the primary do-
main for this work, as the results of a full BFS are novel. Al-
though it can be played competitively with 2-6 players, there
are also interesting single-agent questions such as the num-
ber of moves required to move all of one’s pieces across the
board. A domain-specific solution [Bell, 2008] showed that
27 moves suffice, but did not store the results or compute the
width and diameter of the state space.

The complete breadth-first search data can be used for
playing Chinese Checkers. Chinese Checkers begins and ends
as a single-agent problem, and the optimal set of moves to
reach the goal for a single player can be used as a heuristic for
the full game. This has been applied successfully to a small
version of the game with only 13 million positions [Sturte-
vant, 2002; Schadd and Winands, 2011]. Variations on the
idea have also been explored [Samadi et al., 2008].

A sample Chinese Checkers board is shown on the left side
of Figure 3. The board is shaped as a 6-sided star, with start
locations on each of the arms of the stars. For the single-agent
search we use the bolded arms at the top and bottom as the
start and goal location for the search. The other shaded loca-
tions are excluded from the board, as players are not allowed
to move into these locations. This leaves 81 passable loca-
tions; the board can also be drawn as a 9x9 grid with 6-way
movement, following [Bell, 2008].

Example legal moves are shown on the right side of Fig-
ure 3. Pieces can either move to an adjacent empty loca-
tion using six-way movement, as shown for the piece la-
beled (a). They can alternately jump over adjacent pieces,
provide that each jump lands in an empty cell, demonstrated
by piece marked (b). These jumps can be chained together
to allow a piece to move far across the board. The jumping



Figure 4: Rubik’s Cube

process makes successor generation significantly more ex-
pensive than in domains like Rubik’s Cube. Generating all
legal moves requires a recursive search with duplicate detec-
tion to avoid generating the same move twice via different
paths. A scan of the state space has shown that the branching
factor of single-agent Chinese Checkers varies from 14 in the
starting state to 99 moves in the mid-game.
Ranking. A Chinese Checkers board is not a permutation, as
in Rubik’s cube or the sliding-tile puzzle. [Edelkamp et al.,
2010] describe a lexicographical ranking function that works
for Chinese Checkers; we use caches to rank states in linear
time. Our two-level ranking first ranks the initial two pieces
on the board, and then ranks the remaining pieces. The first
two pieces are also used to determine buckets and symmetry.
Symmetry. A Chinese Checkers board is symmetric between
the left and right halves. Ideally, we would like to avoid stor-
ing both a state and its mirror image, but testing and storing
states precisely is difficult and expensive. Instead, we inspect
just the first two pieces in the board. If the first piece is on
the right portion of the board or the first piece is on the center
line and the second piece is on the right side of the board the
state is considered symmetric and not written to disk.

This reduces the number of states stored on disk from
1,878,392,407,320 to 1,072,763,999,648. During the search,
however, every successor and its mirrored counterpart are
both generated because neither a state or its mirror image may
be symmetric according to our definition of symmetry.

5.2 Rubik’s Cube
Rubik’s cube, shown in Figure 4, has been a popular domain
for study, including for use by TBBFS. The full state space is
currently too large to exhaustively search, however there are
12! · 211 = 980, 995, 276, 800 possible combinations of the
corner cubes, which is just smaller than the Chinese Checkers
board after symmetry is removed. We used a linear-time rank-
ing function [Myrvold and Ruskey, 2001] and did not exploit
any symmetry present in the problem.

6 Experiments
We have performed a significant number of experiments us-
ing both WMBFS and TBBFS. A selection of experimental
results are provided here to highlight the salient results. Ex-
periments were run on three different machines. The first is
a 2-core 2.66 GHz Intel i7 laptop with 8GB of RAM. Our
first server is a 8-core 2.4GHz Xeon machine with 12GB of
RAM, but only 500GB of hard disk. Our second server is a
16-core 2.6GHz AMD Opteron server with 64GB of RAM.

Table 2: Chinese Checkers States (Full Game)

Depth States Depth States
0 1 17 37693202588
1 14 18 62046216886
2 156 19 92359898257
3 1331 20 123602266465
4 9477 21 147727791811
5 58643 22 156370829128
6 319561 23 144977817552
7 1540658 24 116054592894
8 6625563 25 78782115036
9 25566703 26 44355908984
10 88849561 27 20131633161
11 278909319 28 7079256201
12 793407418 29 1815972817
13 2053473432 30 308256210
14 4853812532 31 29204439
15 10504849377 32 1088715
16 20820518489 33 6269

This machine has a 500GB system disk, a 2TB work disk,
and a 500GB SSD.

6.1 Chinese Checkers
The primary result of this work is a full BFS through the
single-agent version of Chinese Checkers, with 1.8 trillion
states, of which approximately 1 trillion are stored on disk.
Given 4 bits per state, approximately 500 GB of storage is re-
quired. We chose this because it maximizes the usefulness of
the results for later applications. The WMBFS uses 1 bit per
state in the change list, meaning that approximately 126GB is
needed to store all states in RAM. With a 64GB machine, two
buckets/iterations are required for the BFS. Our coarse open
list has 256 entries per bit, meaning that 500 MB are used for
each of the coarse open lists. The 4-bit data for the search is
stored on the SSD, and the other hard drives are not used.

We also performed the BFS using TBBFS. TBBFS uses 8
bits per state in RAM, so we divided the state space into 20
buckets. We tested parameters for TBBFS using a board with
8 checkers on it. Our results suggested that the best configu-
ration was to store the main TBBFS data on the SSD (using
256 GB), and to use the 2 TB disk for writing out additional
states to disk. We chose not to modify TBBFS to store the re-
sults of the search, instead giving a conservative estimate of
its performance.

The result of the BFS is found in Table 2. The results with
the WMBFS and the TBBFS were identical, suggesting that
the results are correct. The implementations only share the
Chinese Checkers code. Both runs confirmed that the goal is
at depth 27 [Bell, 2008]. A comparison of the major statistics
of each approach can be found in Table 3. The WMBFS is
about 10% slower than the TBBFS, but writes 18 times less
data and reads 8 times less data.

Through the whole search TBBFS wrote 80TB to tempo-
rary storage (over 10 trillion states). Adding to this the cost
of flushing temporary storage when filled results in 88TB of
reading and writing. We did not precisely measure the other
read/write costs, so 88TB is a lower-bound on the total read-
ing and writing. The disk was filled and had to be flushed a
total of 45 times during the search. Our code didn’t check if



Table 3: TBBFS and WMBFS in Chinese Checkers

WMBFS (15 threads) TBBFS (16 threads)
Total Time 2,632,266 sec 2,410,966 sec

30.5 days 27.9 days
Nodes Expanded 1,837,185,821,822 1,072,763,999,648

Total Writes 4.85 TB 88 TB*
Total Reads 10.80 TB 88 TB*

Table 4: WMBFS parallel speedups on a Chinese Checkers
board with 49 locations and 6 pieces.

Base Thread Speedup Factor Final
Machine Time 2 4 8 16 Speed

Intel Laptop 55.1s 1.5 1.7 - - 32.3s
Intel Server 44.0s 1.8 3.3 5.4 6.4 6.9s

AMD Server 60.2s 1.9 3.5 6.1 7.8 7.7s

the disk was full quite often enough, and it was filled beyond
capacity during the largest iteration, crashing the program and
our server. But, we were able to restart the search. This over-
all reduction in I/O means fewer opportunities for disk errors
and increased disk life.

Although WMBFS is 10% slower, it is also performing a
more interesting computation. At the end of its computation,
TBBFS has no data stored besides the numbers from Table 2.
WMBFS, however, has the modulo 15 distance for every state
stored. It would adversely affect the performance of TBBFS
if we limited it to use the same disk space as the WMBFS or
required TBBFS to store the same data as the WMBFS.
Successor Locality. We had expected WMBFS to be faster
than TBBFS on the full game, because on our experiments
on the board with just 8 pieces WMBFS had performed bet-
ter than TBBFS. This is explained by the locality of the
state space. TBBFS is very efficient if successors fall into
the same bucket in RAM, and inefficient if they fall ex-
ternal to the bucket and must be written explicitly to disk.
Sampling the board with 8 pieces shows that percent of lo-
cal successors is 84.9%. On the full game the locality rises
to 87.3%; this higher locality improved the performance of
TBBFS. WMBFS was faster than TBBFS on the first half
of the search, and slower in the second half. TBBFS in the
largest depth (22) wrote 10.1 states per expansion externally.
At depth 23 and 24 only 9.6 and 8.9 states per expansion
respectively were written externally. This change shifted the
speed of the second half of the search in favor of TBBFS.
Concurrency. Concurrency statistics for our implementa-
tions are important, as they can significantly influence the
overall results. We present WMBFS data from solving a small
board with 49 locations and 6 pieces in Table 4; TBBFS
results are similar. Our implementations both use a single
thread for reading from disk and sending work to worker
threads. The number of threads in this table is the number
of worker threads; the total threads is one more. The Intel
machines both have hyper-threading. The Intel i7 laptop (2
cores + hyper-threading) achieved a 1.7 times speedup with 4
worker threads versus one. The Intel server (8 cores + hyper-
threading) achieved a 6.4 times speedup. The AMD server
achieved a 7.8 time speedup on 16 real cores, but overall was
slower than the Intel server despite a faster clock speed. Over-

Table 5: Time overhead of using multiple buckets.

Number of buckets
1 2 3 6 9

Chinese Checkers (49/6) 1.00 1.46 1.91 3.11 4.51
Rubik’s Cube Corners 1.00 1.26 1.54 2.14 3.33

Table 6: TBBFS and WMBFS in Rubik’s Cube

WMBFS (15 threads) TBBFS (16 threads)
Total Time 586,433 sec 2,099,746 sec

6.8 days 24.3 days
Nodes Expanded 1,961,990,553,104 980,995,276,800

Total Writes 2.68 TB 60.5 TB*
Total Reads 6.85 TB 60.5 TB*

all, the AMD machine is more sensitive to global memory
access.
Bucket Overhead. The overhead of WMBFS grows with the
addition of more buckets in the search. But, using twice as
many buckets will not double the cost of the search. The rel-
ative slowdown of multiple buckets is illustrated for smaller
Chinese Checkers and Rubik’s cube problems in Table 5.

6.2 Rubik’s Cube
In Rubik’s Cube every action moves many cubes at once,
so the locality of the state space is relatively low (near
50%) [Korf, 2008b]. But, the cost of node expansions is much
cheaper in Rubik’s cube than in Chinese Checkers, as there is
no need to search for legal moves – there are the same 18 le-
gal moves in every state. These two factors suggested that a
WMBFS would perform favorably in this domain.

Published results for a TBBFS required 35 days [Korf,
2008b] for the search, although these results are several years
old. Our implementation of TBBFS on the AMD server,
which used the 2TB disk for temporary storage and the
500GB SSD for the main data, required 24.3 days. The
WMBFS required just 6.8 days to compute and store the same
result, 3.58 times faster. The full statistics for the search are
in Table 6. As before, the TBBFS data represents only the
reading and writing used in storing and flushing states from
temporary storage. The WMBFS performed approximately
20 times fewer writes and 10 times fewer reads.

7 Summary and Future Work
We have presented the write-minimizing breadth-first
(WMBFS) algorithm, which works to minimize the num-
ber of writes performed in an external memory breadth-first
search. The algorithm reduces I/O by over and order of mag-
nitude. It has similar time performance to TBBFS in the do-
main of Chinese Checkers, and is significantly faster in Ru-
bik’s cube. In the future we plan to examine hybrids between
TBBFS and WMBFS, and also plan to look at how the data
we have computed can be effectively used to guide search al-
gorithms from external memory.
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