Sufficient Conditions for Node Expansion in Bidirectional Heuristic Search

Jürgen Eckerle1, Jingwei Chen2, Nathan R. Sturtevant2, Sandra Zilles3 and Robert C. Holte4

1Berner Fachhochschule
2University of Denver
3University of Regina
4University of Alberta

Grant 1551406
Main Result
Main Result

• Unidirectional algorithms:
 ▪ \(n \) must be expanded if \(f(n) < C^* \)

• Bidirectional algorithms:
 ▪ Which set of states must be expanded?
 ▪ No single state must be expanded
 ▪ For a pair of states, if certain condition holds (sufficient condition), then at least one of them must be expanded
Agenda

• Assumptions
• Background
 • Unidirectional Search
 • Bidirectional Search
• Main Result
 • No single state must be expanded
 • Sufficient condition
• Applications and Conclusion
Agenda

• Assumptions
• Background
 • Unidirectional Search
 • Bidirectional Search
• Main Result
 • No single state must be expanded
 • Sufficient condition
• Applications and Conclusion
Assumptions

• Heuristic Search Problems
 ▪ State Space: (start, goal, cost function, successor function, predecessor function)
 ▪ Optimal solution
 ▪ Cost: C*
 ▪ Heuristic function
 • consistent
Assumptions

• Heuristic Search Algorithms
 - Admissible
 - Deterministic, Expansion-based, Black Box (DXBB)
Agenda

• Assumptions

• Background
 • Unidirectional Search
 • Bidirectional Search

• Main Result
 • No single state must be expanded
 • Sufficient condition

• Applications and Conclusion
Unidirectional Search

• A*
 • Invented in 1968 [Hart, Nilsson and Raphael]
 • Proved to be optimal unidirectional algorithm in 1985 [Dechter & Pearl]
A*

- g-cost: actual cost so far
- h-cost: estimated cost to go (heuristic value)
- $f(u) = g(u) + h(u)$: estimated total path cost
Optimality of A*

• What does optimality mean?
 – For any given consistent heuristic, A* does minimum node expansions (up to tie-breaking)
Optimality of A*

- \(f(n) = g(n) + h(n) < C^* \)

Instance 1:

- \(g(n) \) between Start and \(n \)
Optimality of A*

- \(f(n) = g(n) + h(n) < C^* \)

Instance 1:
Optimality of A*

- $f(n) = g(n) + h(n) < C^*$
Optimality of A*

- $f(n) = g(n) + h(n) < C^*$

Instance 1:

- Start
- $g(n)$
- ∞
- Goal

Instance 2:

- Start
- $g(n)$
- $h(n)$
- Goal
Optimality of A*

- \(f(n) = g(n) + h(n) < C^* \)
Optimality of A*

• Any algorithm must expand all \(f < C^* \)
• A* does exactly \(f < C^* \)
• A* does minimum amount of work.
Bidirectional Search

- Bidirectional heuristic search algorithms
 - Have potential to do less work
 - [Nicholson 1966; Doran 1966]
Bidirectional Search

- Front-to-front vs. front-to-end
Bidirectional Search

- Front-to-front vs. front-to-end
Front-to-Front

- One front-to-front heuristic
Front-to-Front

• One front-to-front heuristic

\[h(u_1, v_1) \]
Front-to-Front

- One front-to-front heuristic
Front-to-Front

- One front-to-front heuristic
Front-to-Front

- One front-to-front heuristic
Front-to-End

• Two front-to-end heuristics
Front-to-End

- Two front-to-end heuristics
Front-to-End

• Two front-to-end heuristics
Front-to-End

• Two front-to-end heuristics
Front-to-End

• Two front-to-end heuristics

![Diagram showing two heuristics, $h_F(u_1)$, $h_B(v_1)$, $h_B(v_2)$, and $h_F(u_2)$, connecting start and goal nodes.]
Agenda

• Assumptions
• Background
 • Unidirectional Search
 • Bidirectional Search
• Main Result
 • No single state must be expanded
 • Sufficient condition
• Applications and Conclusion
Key Observation

• Bad news: No single state must be expanded!

• Good news: For a pair of states, if they satisfy certain condition (sufficient condition), then at least one of them must be expanded
\(f(u, v) \) in front-to-front search
$f(u, v)$ in front-to-front search

Unidirectional:

Front-to-front:

$$f(u, v) = g_F(u) + g_B(v) + h(u, v)$$
\[f(u, v) \text{ in front-to-front search} \]

Unidirectional:

\[g(n) \]

Start \hspace{2cm} n \hspace{2cm} \text{Goal} \hspace{2cm} h(n) \]

Front-to-front:

\[g_F(u) \]

Start \hspace{2cm} u \hspace{2cm} v \hspace{2cm} \text{Goal} \hspace{2cm} g_B(v) \]

\[f(u, v) = g_F(u) + g_B(v) + h(u, v) \]
Sufficient Condition

- \(f(n) = g(n) + h(n) < C^* \)
Sufficient Condition

• \(f(n) = g(n) + h(n) < C^* \)
Sufficient Condition

- \(f(n) = g(n) + h(n) < C^* \)

Instance 1:
- Start
- \(g(n) \)
- \(\infty \)
- Goal

Instance 2:
- Start
- \(g(n) \)
- \(\frac{C^* - f(n)}{2} + h(n) \)
- Goal
Sufficient Condition

- $f(u, v) < C^*$
Sufficient Condition

- \(f(u, v) < C^* \)
Sufficient Condition

• Sufficient condition:
 – At least one of \((u, v)\) must be expanded if
 \[f(u, v) < C^* \]
Sufficient Condition

• Define $lb(u, v)$ for front-to-end algorithms

$$lb(u, v) = \max \left\{ \begin{array}{c} f_F(u) \\ f_B(v) \\ g_F(u) + g_B(v) \end{array} \right\}$$
Sufficient Condition

• Front-to-end algorithms:

\[lb(u, v) < C^* \]

Instance 1:

```
Start - u - v - Goal
```

Instance 2:

```
Start - u - v - Goal
```
Sufficient Condition

- Front-to-end algorithms:

\[lb(u, v) < C^* \]

\[
e = \max \left\{ \frac{h_F(u) - g_B(v)}{2}, \frac{h_B(v) - g_F(u)}{2}, C^* - g_F(u) - g_B(v) \right\}
\]
Sufficient Condition

• Sufficient condition:
 – At least one of (u, v) must be expanded if $lb(u, v) < C^*$
Sufficient Condition

- Consider pair \((n, \text{goal})\) where \(f(n) < C^*\)
 - \(f_F(n) < C^*\)
 - \(f_B(\text{goal}) < C^*\)
 - \(g_F(n) + g_B(\text{goal}) = g_F(n) < C^*\)

\[
lb(n, \text{goal}) = \max \left\{ \begin{array}{ll}
 f_F(n) & < C^* \\
 f_B(\text{goal}) & < C^* \\
 g_F(u) + g_B(v) & \end{array} \right.
\]
Agenda

- Assumptions
- Background
 - Unidirectional Search
 - Bidirectional Search
- Main Result
 - No single state must be expanded
 - Sufficient condition
- Applications and Conclusion
Applications

• Post-hoc analysis: minimum node expansions for bidirectional algorithms. [SoCS 2017]
• New front-to-end algorithm: Near-Optimal Bidirectional Search (NBS). [IJCAI 2017]
 – Admissible algorithm
 – Guaranteed bound: 2x in necessary node expansions
 – Tight bound
Conclusion

• Unidirectional algorithms: (1985)
 – n must be expanded if $f(n) < C^*$

• Bidirectional algorithms: (2017)
 – At least one of u or v must be expanded
 • if $f(u, v) < C^*$ (front-to-front)
 • if $lb(u, v) < C^*$ (front-to-end)
 – Unidirectional sufficient condition becomes a special case of front-to-end sufficient condition
Thank you!