
Sufficient Conditions for Node Expansion in Bidirectional Heuristic Search

Jürgen Eckerle
Berner Fachhochschule
Departement Technik

und Informatik
Switzerland

Jingwei Chen
Nathan R. Sturtevant

University of Denver
USA

(jingchen@cs.du.edu)
(sturtevant@cs.du.edu)

Sandra Zilles
Computer Science Dept.

University of Regina
Canada

(zilles@uregina.ca)

Robert C. Holte
Computing Science Dept.

University of Alberta
Canada

(rholte@ualberta.ca)

Abstract

In this paper we study bidirectional state space search with
consistent heuristics, with a focus on obtaining sufficient
conditions for node expansion, i.e., conditions characteriz-
ing nodes that must be expanded by any admissible bidi-
rectional search algorithm. We provide such conditions for
front-to-front and front-to-end bidirectional search. The suf-
ficient conditions are used to prove that the front-to-front
bidirectional search algorithm BDS1 is optimally efficient, in
terms of node expansion, among a broad class of bidirectional
search algorithms, for a specific class of problem instances.
Dechter and Pearl’s well-known result on sufficient condi-
tions for node expansion by unidirectional algorithms such
as A* is shown to be a special case of our results.

1 Introduction
Dechter & Pearl (1985) proved that A* is optimally efficient
(“0-optimal” in their terminology), among all admissible,
equally informed, unidirectional search algorithms, when its
heuristic function is consistent and the problem instance be-
ing solved is non-pathological.1 The key to this proof is hav-
ing a sufficient condition for node expansion, i.e. a charac-
terization of nodes that must be expanded by any admissible
unidirectional search algorithm when the heuristic is consis-
tent. Our aim in this paper is to give a sufficient condition
for node expansion for admissible bidirectional search algo-
rithms when they are given consistent heuristics.

Our interest in this question is sparked by the recent de-
velopment of a bidirectional heuristic algorithm, MM (Holte
et al. 2016), that is admissible and has a strong worst-case
guarantee because it only expands nodes that are within dis-
tance 1

2C
∗ of the start or goal states, where C∗ is the cost

of an optimal solution. This raises the question whether MM
is optimally efficient (when specific conditions hold). We do
not answer that question in this paper, but our contributions
here provide important insight into the question.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1They define a problem instance to be “non-pathological” if
there exists an optimal path from start to goal, U = u0, . . . , un,
such that h(ui) is strictly smaller than the true distance from ui to
the goal for all non-goal states in U (p. 522). A search algorithm is
“admissible” if it is guaranteed to return an optimal solution when-
ever its heuristic is admissible (p. 520).

Bidirectional heuristic search algorithms fall into two cat-
egories depending on the type of heuristic function they use.
Front-to-front algorithms use one heuristic function, h(u, v),
that estimates the distance between any two states (u and
v). Examples of front-to-front algorithms are BHFFA2 (de
Champeaux 1983), SFBDS (Felner et al. 2010; Lippi, Ernan-
des, and Felner 2012), and BIDA* (Manzini 1995). By con-
trast, front-to-end bidirectional heuristic search algorithms
use two heuristic functions, hF and hB , with hF (u) esti-
mating the distance from u to goal and hB(v) estimating
the distance from start to v. Examples of front-to-end algo-
rithms are MM, BHPA (Pohl 1971), and BS* (Kwa 1989).

We analyze these two types of bidirectional algorithms
separately and derive sufficient conditions for each (Sec-
tions 4 and 6). We show (Section 7) that the sufficient condi-
tions for front-to-front algorithms logically imply those for
front-to-end systems. Both analyses are similar to Dechter &
Pearl’s analysis of unidirectional search algorithms in their
overall approach, which can be summarized as follows.

If, in optimally solving a particular problem instance I , al-
gorithmB fails to expand a state u that satisfies the proposed
sufficient conditions then a new instance I ′ can be created by
adding a new edge e emanating from u such that the optimal
solution paths in I ′ contain e and are strictly cheaper than
the optimal solution paths in I . But B will behave exactly
the same on I ′ as it did on I , so it will return the same solu-
tion path for I ′ as it did for I . This path is not optimal for I ′
and therefore B is not an admissible algorithm.

There is one point in this proof sketch that was not ade-
quately addressed by Dechter & Pearl: why must B behave
exactly the same on I ′ as it did on I? The two instances are
“obviously” different (I ′ has an edge that I does not have),
why cannot B detect this and behave differently? The an-
swer lies in certain assumptions being made about the search
algorithms that were not clearly articulated by Dechter &
Pearl. In Section 3 we give a full, explicit statement of these
assumptions. We regard this as an important contribution
since these assumptions are, in fact, somewhat limiting.

We use the sufficient conditions for node expansion that
we derive in two different ways. First, in Section 5 we use
the sufficient conditions to prove that the front-to-front al-
gorithm BDS1 (Eckerle and Ottmann 1994) is optimally
efficient, for a certain class of problem instances, among
admissible search algorithms satisfying the assumptions of

Section 3. This is analogous to the corresponding result by
Dechter & Pearl for A*.

Secondly, in Section 6 we show how unidirectional search
systems can be seen as a special case of front-to-end bidirec-
tional search algorithms and derive Dechter & Pearl’s suffi-
cient conditions for node expansion by unidirectional search
algorithms as a special case of the sufficient conditions we
derived for front-to-end bidirectional search.

In Section 8 we expose the limitations of our analysis.
Several of these are shared by Dechter & Pearl’s analysis
but some are specific to bidirectional search.

2 Terminology and Notation
Our terminology and notation in Sections 2 through 4 is for
front-to-front bidirectional search. A few small modifica-
tions are required for front-to-end bidirectional search (see
Section 6).

A state space G is a finite directed graph whose vertices
are states and whose edges are pairs of states.2 Each edge
(u, v) has a cost c(u, v) ≥ 0. A forward path in G is a
finite sequence U = (U0, . . . , Un) of states in G where
(Ui, Ui+1) is an edge in G for 0 ≤ i < n. We say that for-
ward path U contains edge (u, v) if Ui = u and Ui+1 = v
for some i. Likewise, a backward path is a finite sequence
V = (V0, . . . , Vm) of states where (Vi, Vi+1) is a “reverse”
edge, i.e. (Vi+1, Vi) is an edge in G for 0 ≤ i < m. Back-
ward path V contains reverse edge (u, v) if Vi = u and
Vi+1 = v for some i. The reverse of path V = (V0, . . . , Vm)
is V −1 = (Vm, . . . , V0). The cost of a reverse edge equals
the cost of the corresponding original edge. A path pair
(U, V) has a forward path (U) as its first component and
a backward path (V) as its second component.

If U is a path (forward or backward), |U | is the num-
ber of edges in U , c(U) is the cost of U (the sum of
the costs of all the edges in U), Ui is the ith state in U
(0 ≤ i ≤ |U |), and c(U, i) is the sum of the costs of the
first i edges in U (the cost to reach state Ui via path U). U|U |
is the last state in path U , which we also denote end(U).
λF = (start) and λB = (goal) are the empty forward and
backward paths from start and goal, respectively. Note that
end(λF) = start while end(λB) = goal. Both λF and λB
have a cost of 0. Forward (backward, resp.) path U is op-
timal if there is no cheaper forward (backward, resp.) path
from U0 to end(U). d(u, v) is the distance from state u to
state v, i.e., the cost of the cheapest forward path from u to
v. If there is no forward path from u to v then d(u, v) =∞.

Given two states in G, start and goal, a solution path is
a forward path from start to goal. C∗ = d(start, goal) is
the cost of the cheapest solution path.

Definition 1. A front-to-front heuristic h maps a pair of
states in G to a non-negative real number or to∞. h is bi-
admissible iff h(u, v) ≤ d(u, v) for all states u and v in G,
and is bi-consistent iff for all u and v in G:
(1) h(u, v) ≤ d(u, u′) + h(u′, v) for all u′ in G and
(2) h(u, v) ≤ d(v′, v) + h(u, v′) for all v′ in G.

2If G has multiple edges from state u to state v, we ignore all
but the cheapest of them.

If front-to-front heuristic h is bi-consistent and h(v, v) = 0
for all v, then it is also bi-admissible.

Given a front-to-front heuristic h, for any path pair (U, V)
we define

f(U, V) = c(U) + c(V) + h(end(U), end(V)) .

A problem instance is defined by specifying a state space
G, a start state (start), a goal state (goal), and a front-to-
front heuristic h. A problem instance is solvable if there is a
forward path in G from start to goal. Following Dechter &
Pearl’s notation, we use IAD to refer to the set of solvable
problem instances in which the heuristic is bi-admissible.
ICON is the set of solvable problem instances in which the
heuristic is bi-admissible and bi-consistent. A search algo-
rithm is admissible iff it is guaranteed to return an optimal
solution for any problem instance in IAD.

3 Assumptions About Search Algorithms
In order to derive sufficient conditions for a node to be
expanded, it is necessary to make certain assumptions
about the search algorithms being considered. For example,
Dechter & Pearl (p. 520) make the following assumptions:

“We assume that each algorithm compared with A* uses
the primitive computational step of node expansion, that
it only expands nodes that were generated before, and that
it begins the expansion process at the start node.”

We make the same assumptions but generalized to bidirec-
tional search. To express these assumptions precisely, we
will require that the state space G be represented in a cer-
tain manner and restrict our analysis to search algorithms
that instantiate the template shown in Algorithm 1. Although
Algorithm 1 is presented as a front-to-front algorithm, unidi-
rectional search and front-to-end bidirectional search easily
fit into this framework, as will be detailed in Section 6.

In particular, we require a state space,G, to be represented
implicitly by a 5-tuple (start, goal, c, expandF , expandB)
consisting of a start state (start), a goal state (goal), an
edge cost function (c), a successor function (expandF),
and a predecessor function (expandB). The input to
expandF is a forward path U . Its output is a sequence
(U1, . . . , Un), where each Uk is a forward path consisting
of U followed by one additional state (end(Uk)) such that
(end(U), end(Uk)) is an edge in G. There is one Uk for
every state s such that (end(U), s) is an edge in G. Like-
wise, the input to expandB is a backward path V and its
output is a sequence (V 1, . . . , V m), where each V k is a
backward path consisting of V followed by one additional
state (end(V k)) such that (end(V k), end(V)) is an edge in
G. There is one V k for every state s such that (s, end(V))
is an edge in G. For reasons that will be given at the end
of this section, we assume that expandF and expandB are
deterministic, i.e. each produces identical output (the same
paths in the same order) when given the same input.

A problem instance is then fully specified by (G, h), the
5-tuple representing G and a front-to-front heuristic h. This
is the input to Algorithm 1.

With the exception of S0, each St in Algorithm 1 sim-
ply records the result of the expansion performed on iter-
ation t. St is therefore a finite sequence of path pairs. S0

Algorithm 1: Generic Search Algorithm
Input: (start, goal, c, expandF , expandB), h
Output: a least-cost path from start to goal

1 S0 := ((λF , λB))
2 for t := 1 to∞ do
3 if StoppingCondition(t, S0, . . . , St−1, c, h)

then
4 return Solution(S0, . . . , St−1, c)
5 Dir, (U, V) := Choose(t, S0, . . . , St−1, c, h)
6 if Dir = Forward then
7 (U1, ..., Un) := expandF (U)
8 St := ((U1, V), (U2, V)...(Un, V))

9 else
10 (V 1, ..., V m) := expandB(V)
11 St := ((U, V 1), (U, V 2)...(U, V m))

contains just one path pair, (λF , λB). We call S0, . . . , St−1
the expansion sequence at the beginning of iteration t or, if
t is implied by context, we call it the current expansion se-
quence. We say that state pair (u, v) occurs in an expansion
sequence if state u occurs in some forward path in the expan-
sion sequence and state v occurs in some backward path in
the expansion sequence. Similarly, edge (u, v) occurs in an
expansion sequence if it occurs in some forward path in the
expansion sequence or if its reverse, (v, u), occurs in some
backward path in the expansion sequence.

The template in Algorithm 1 is instantiated by supply-
ing three functions, StoppingCondition, which de-
termines if the algorithm will stop or continue to search,
Solution, which extracts a solution path from the current
expansion sequence, and Choose, which inspects the cur-
rent expansion sequence and chooses a search direction for
the next expansion (Dir is either “Forward” or “Backward”)
and a path pair (U, V) to expand, where U is a forward path
occurring in the given expansion sequence (S0, . . . , St−1),
and V is a backward path occurring in the given expansion
sequence. These user-supplied functions may only apply the
heuristic function h to states that occur in the given expan-
sion sequence and may only apply the cost function c to
edges that occur in the given expansion sequence. Internally
these functions can store and share private data structures
such as the traditional Open and Closed lists. It is important
that none of these three functions has access to expandF or
expandB . Moreover, we assume that they are deterministic.
start and goal are not explicitly passed to these three func-
tions but can be computed by them from S0 by applying the
end function to λF or λB .
Definition 2. If u is a state, we say that u is forward ex-
panded iff expandF is applied to some forward path U for
which end(U) = u and we say that u is backward expanded
iff expandB is applied to some backward path V for which
end(V) = u. To expand a state pair (u, v) is to either for-
ward expand u or backward expand v.

The assumption that all of the search algorithm’s inter-
nal operations are deterministic is essential for the proofs of

Theorems 1 and 6 below. It is also essential for Dechter &
Pearl’s proof of the analogous theorem for A* (Theorem 8
in (Dechter and Pearl 1985)), although they do not explic-
itly state it as an assumption. All three proofs use the same
reasoning. If algorithmB optimally solves problem instance
I ∈ ICON without expanding a state u (or state pair (u, v))
that satisfies the proposed sufficient conditions then a new
instance I ′ ∈ IAD can be created by adding a new edge
emanating from u such that the optimal solution paths in I ′
contain this new edge and are strictly cheaper than the op-
timal solution paths in I . The proofs then assert that B will
behave exactly the same on I ′ as it did on I , so it will not
expand u (or v) and therefore not find the optimal solution
for I ′.3 This assertion is based on two assumptions. The first
is that B’s component functions are all deterministic. The
second is that the only way B can detect the new edge is by
expanding u (or v); for example B is not able to notice that
the two instances have different successor and predecessor
functions simply by inspecting the expand functions’ defi-
nitions. We call this the “black box” assumption, sinceB has
only black box access to expandF and expandB . Likewise,
we require that B only has black box access to functions c,
h, and end.

Definition 3. A bidirectional search algorithm satisfying
all the conditions of this section is called a Deterministic,
Expansion-based, Black Box (DXBB) algorithm.

4 A Sufficient Condition for Node Expansion
for Front-to-Front Bidirectional Search

This section contains our first main result, which provides a
sufficient condition for a state pair to be expanded by an ad-
missible DXBB algorithm. The theorem and its proof bear
strong similarities to Dechter & Pearl’s Theorem 8 and its
proof, but there are technical differences imposed by the
bidirectional setting.

Theorem 1. Let I = (G, h) ∈ ICON have an optimal
solution cost of C∗. If U is an optimal forward path and
V is an optimal backward path such that U0 = start,
V0 = goal, and f(U, V) < C∗ then, in solving problem
instance I , any admissible DXBB algorithm must expand
(end(U), end(V)).

Proof. We prove the contrapositive. Suppose there is a prob-
lem instance I = (G, h) ∈ ICON whose optimal solu-
tion cost is C∗, an optimal forward path U and an optimal
backward path V such that U0 = start, V0 = goal, and
f(U, V) < C∗, and a DXBB algorithm B that solves I cor-
rectly (returns a path B(I) costing C∗) without expanding
(end(U), end(V)). Then a new instance I ′ = (G′, h′) ∈
IAD can be constructed having an optimal solution strictly
cheaper than C∗ on whichB also returns pathB(I) (costing
C∗), thereby showing that B is not admissible.
I ′ = (G′, h′) is defined as follows: h′ = h, and G′ has all

the vertices in G and all the edges in G except the edge, if

3In the proof of their Theorem 8 (p. 524) Dechter & Pearl say
“Algorithm B, on the other hand, if it avoids expanding [u], must
behave the same as in problem instance I halting with cost C∗”.

there is one, from end(U) to end(V), plus one new edge e
from end(U) to end(V) costing

c(e) =
C∗ − f(U, V)

2
+ h(end(U), end(V)).

c(e) is positive because h(end(U), end(V)) ≥ 0 and C∗ >
f(U, V). This new edge creates a solution path UV −1

whose total cost is

C∗ + f(U, V)

2
,

which is strictly less than C∗ (because f(U, V) < C∗). The
new edge is therefore an essential part of any optimal solu-
tion to I ′.

We show that I ′ ∈ IAD, i.e. that h is bi-admissible on
G′. Let x and y be any two states in G′ and let W be
any acyclic forward path in G′ from x to y. We claim that
h(x, y) ≤ c(W). If W does not contain the new edge e, the
claim trivially follows from the bi-admissibility of h on G.
Suppose W does contain e, i.e. W = XY for some forward
paths X , from x to end(U), and Y , from end(V) to y. De-
noting the distance from x to y in G by dG(x, y), we have

h(x, y) ≤ dG(x, end(U)) + h(end(U), y)

(by part (1) of bi-consistency of h on G)
≤ c(X) + h(end(U), y)

(since X is a path from x to end(U) in G)
≤ c(X) +

dG(end(V), y) + h(end(U), end(V))

(by part (2) of bi-consistency of h on G)
≤ c(X) + c(Y) + h(end(U), end(V))

(since Y is a path from end(V) to y in G)
< c(X) + c(Y) + c(e)

(by definition, c(e) > h(end(U), end(V)))
= c(W) .

This proves that h is bi-admissible on G′, i.e., I ′ ∈ IAD.
Because B is DXBB it will behave exactly the same on

I ′ as it did on I . In particular it will not forward expand
end(U) and it will not backward expand end(V), so it will
not discover the edge e, and will incorrectly return B(I) as
the optimal solution for I ′. Hence, B is not admissible.

5 An Optimally Efficient Front-to-Front
Bidirectional Search Algorithm

Algorithm 2 gives the pseudocode for the front-to-front
bidirectional search algorithm BDS1 (Eckerle and Ottmann
1994). It is a standard front-to-front algorithm except that
its Open and Closed lists contain paths, not nodes (forward
paths in OpenF and ClosedF , backward paths in OpenB
andClosedB). On each iteration it selects a path pair (U, V)
for expansion for which f(U, V) is minimum (line 8) and
then chooses a search direction (line 9). It can be computa-
tionally expensive to find a path pair with minimum f -value;
an alternative method avoiding this expense is implemented

in BDS2 (Eckerle and Ottmann 1994) and SFBDS (Felner
et al. 2010) (see Section 8). If there exists a path from start
to goal, BDS1 is guaranteed to terminate (line 7) before
OpenF or OpenB become empty; line 24 is therefore only
reached if there is no path from start to goal. Eckerle and
Ottmann (1994) proved that BDS1 is admissible.

BDS1 can be rewritten in the form of Algorithm 1 and is
DXBB. In this section, we define a specific class of prob-
lem instances, denoted by I−CON , and prove that BDS1 is
optimally efficient on instances in that class in the follow-
ing sense: If, in solving any problem instance I ∈ I−CON ,
BDS1 expands state pair (u, v), then any admissible DXBB
algorithm must expand (u, v) when solving I . Recall that
expanding state pair (u, v) means to either forward expand
u or backward expand v. Full details of the optimality proof
are omitted due to space constraints and are available from
the authors on request.
Definition 4. State pair (u, v) is FF-surely expanded (or
just surely expanded when front-to-front is clear from the
context) if there exist a forward path (not necessarily opti-
mal)U from start to u and a backward path (not necessarily
optimal) V from goal to v such that

c(U, i) + c(V, j) + h(Ui, Vj) < C∗

for all 0 ≤ i ≤ |U | and all 0 ≤ j ≤ |V |.

Algorithm 2: Pseudocode for BDS1
Input: (start, goal, c, expandF , expandB), h
Output: cost of the cheapest path from start to goal

1 OpenF := {λF };OpenB := {λB};
2 ClosedF := ∅;ClosedB := ∅;
3 C :=∞;
4 while (OpenF 6= ∅) and (OpenB 6= ∅) do
5 fmin :=min {f(U, V) | U ∈ OpenF , V ∈ OpenB};
6 if C ≤ fmin then
7 return C
8 choose (U, V) ∈ OpenF ×OpenB for which

f(U, V) = fmin
9 select one of the paths in (U, V) to expand

10 if U was chosen for expansion then
11 // Expand U in the forward direction
12 move U from OpenF to ClosedF
13 for each W ∈ expandF (U) do
14 if ∃X ∈ OpenF ∪ ClosedF such that

end(X) = end(W) then
15 if c(X) ≤ c(W) then
16 continue

17 else
18 remove X from OpenF ∪ ClosedF

19 add W to OpenF

20 if ∃Y ∈ OpenB ∪ ClosedB such that
end(Y) = end(W) then

21 C := min(C, c(WY −1))

22 else
23 // Expand V in the backward direction, analogously

24 return∞

The following lemma is easily proven from the definitions
of “bi-consistent” and “FF-surely expanded”.

Lemma 2. If front-to-front heuristic h is bi-consistent, then
state pair (u, v) is FF-surely expanded if and only if there
exist an optimal forward path U from start to u and an op-
timal backward path V from goal to v such that f(U, V) <
C∗.

This lemma allows us to produce an alternative form of
Theorem 1 by replacing “IfU is an optimal forward path and
V is an optimal backward path such that U0 = start, V0 =
goal, and f(U, V) < C∗ then...” by “If state pair (u, v) is
FF-surely expanded then ...”. Making this substitution in the
statement of Theorem 1, we get

Theorem 3. Let (G, h) ∈ ICON . If state pair (u, v) is FF-
surely expanded then, in solving problem instance (G, h),
any admissible DXBB algorithm must expand (u, v).

Definition 5. A problem instance (G, h) is non-pathological
if there exists an optimal solution path U such that
h(Ui, Uj) < d(Ui, Uj) for all i, j such that 0 ≤ i < j ≤
|U |. Such a path is called a non-pathological solution for
(G, h). The set of non-pathological instances in ICON is de-
noted I−CON .

Theorem 4. If problem instance (G, h) ∈ I−CON then, in
solving (G, h), BDS1 will not expand any state pair that is
not FF-surely expanded.

As an immediate consequence of Theorems 3 and 4, we
obtain that BDS1 is optimally efficient (“0-optimal” as de-
fined by Dechter & Pearl (p. 521)) over the set of admissible
DXBB algorithms relative to I−CON :

Theorem 5. If problem instance (G, h) ∈ I−CON then, in
solving (G, h), every admissible DXBB algorithm expands
a superset of the state pairs expanded by BDS1.

Note that expanding a superset of the state pairs expanded
by BDS1 does not necessarily require as many single state
expansions as made by BDS1. This is because a state pair
(u, v) is expanded as soon as either u is forward expanded
or v is backward expanded. Thus, a specific set of state pairs
can typically be expanded in more than one way, using sets
of single state expansions that differ in cardinality. We revisit
this issue in Section 8.

6 A Sufficient Condition for Node Expansion
for Front-to-End Bidirectional Search

Front-to-end bidirectional heuristic search algorithms inter-
leave two separate searches, a search forward from start
and a search backward from goal. In the notation of Sec-
tion 3, this is a restriction on the Choose function to return,
on any given iteration, either (i) Dir set to “Forward” and a
path pair of the form (U, λB), or (ii) Dir set to “Backward”
and a path pair of the form (λF , V).

Definition 6. A front-to-end heuristic maps an individual
state in G to a non-negative real number or to ∞. Front-
to-end heuristic hF is forward admissible iff hF (u) ≤
d(u, goal) for all u in G and is forward consistent iff

hF (u) ≤ d(u, u′) + hF (u
′) for all u and u′ in G. Front-

to-end heuristic hB is backward admissible iff hB(v) ≤
d(start, v) for all v in G and is backward consistent iff
hB(v) ≤ d(v′, v) + hB(v

′) for all v and v′ in G.
Forward consistent front-to-end heuristic hF is forward

admissible iff hF (goal) = 0, and backward consistent front-
to-end heuristic hB is backward admissible iff hB(start) =
0.

Instead of a front-to-front heuristic h(u, v), front-to-end
bidirectional heuristic search algorithms use two front-to-
end heuristics, hF and hB , with hF used to guide the for-
ward search and hB used to guide the backward search. Only
a few small modifications to our terminology and notation in
Sections 2 and 3 are needed to accommodate this difference.
The main change is to replace all occurrences of h with a
pair of front-to-end heuristics. For example, a problem in-
stance is defined by specifying a state space G, a start state
(start), a goal state (goal), and two front-to-end heuristics,
hF and hB , that are applicable to states in G.
IAD is now the set of solvable problem instances in which

hF is forward admissible and hB is backward admissible.
ICON is the subset of IAD in which hF is forward consistent
and hB is backward consistent.

For any forward path U with U0 = start define

fF (U) = c(U) + hF (end(U)) ,

and for any backward path V with V0 = goal define

fB(V) = c(V) + hB(end(V)) .

Theorem 6. Let I = (G, hF , hB) ∈ ICON have an optimal
solution cost ofC∗. If U is an optimal forward path and V is
an optimal backward path such that U0 = start, V0 = goal,
and:

(1) fF (U) < C∗

(2) fB(V) < C∗

(3) c(U) + c(V) < C∗

then, in solving problem instance I , any admissible DXBB
bidirectional front-to-end search algorithm must expand
(end(U), end(V)).

Proof. We prove the contrapositive. Suppose I, U, and V
satisfy the premises of the theorem, and that B is a DXBB
bidirectional front-to-end search algorithm that solves I cor-
rectly (returns a path B(I) costing C∗) without forward ex-
panding end(U) or backward expanding end(V). Then a
new problem instance I ′ = (G′, h′F , h

′
B) ∈ IAD can be

constructed having an optimal solution strictly cheaper than
C∗ on whichB also returns pathB(I) (costing C∗), thereby
showing that B is not an admissible algorithm.
I ′ = (G′, h′F , h

′
B) is defined as follows: h′F = hF , h′B =

hB , and G′ has all the vertices in G and all the edges in G
except the edge, if there is one, from end(U) to end(V),
plus one new edge e from end(U) to end(V) costing

c(e) = max{ hF (end(U))− c(V),

hB(end(V))− c(U),
1
2 (C

∗ − (c(U) + c(V))) }
c(e) is positive because C∗ > c(U) + c(V). This new edge
creates a solution path UV −1 whose total cost is c(U) +

c(V)+c(e), which is equal to max(fF (U), fB(V), 12 (C
∗+

c(U) + c(V))). This is strictly less than C∗ because of the
theorem’s premises, so the new edge is an essential part of
any optimal solution to I ′.

We begin by proving that I ′ ∈ IAD, i.e. that hF is forward
admissible on G′ and hB is backward admissible on G′. We
give the proof for hF , the proof for hB is analogous. Let x
be any state in G′ and let W be any acyclic forward path
in G′ from x to goal. We claim that hF (x) ≤ c(W). If W
does not contain the new edge e, the claim trivially follows
from the forward admissibility of hF on G. Hence, assume
W contains e, i.e.W = Y Z for some forward paths Y , from
x to end(U), and Z, from end(V) to goal. Using dG(u, v)
to denote the distance from u to v in G, we have

hF (x) ≤ dG(x, end(U)) + hF (end(U))

(because hF is forward consistent on G)
≤ c(Y) + hF (end(U))

(because Y is a path from x to end(U))
≤ c(Y) + c(e) + c(V)

(by definition, c(e) ≥ hF (end(U))− c(V))

= c(Y) + c(e) + c(V −1)

(because c(V −1) = c(V))
≤ c(Y) + c(e) + c(Z)

(by optimality of V −1)
= c(W) .

Hence hF is forward admissible on G′. By an analogous
proof, hB is backward admissible on G′ and thus I ′ ∈ IAD.

BecauseB is DXBB it will behave the same on I ′ as it did
on I . In particular it will neither forward expand end(U) nor
backward expand end(V), will thus not discover the edge e,
and will incorrectly return B(I) as an optimal solution for
I ′. Hence, B is not an admissible search algorithm.

Dechter & Pearl proved (their Theorem 8) that every ad-
missible unidirectional search algorithm must expand every
state surely expanded by A* when the given heuristic is con-
sistent.4 We will now show that this theorem is a special case
of our Theorem 6.

Unidirectional heuristic search algorithms are a special
case of front-to-end bidirectional heuristic search algorithms
in which hB(u) = 0 for all u (we denote this function by
“0”) and the Choose function always returns Dir set to
“Forward” and a path pair of the form (U, λB).5

Specializing Theorem 6 with these restrictions we obtain
the following, which is equivalent to Dechter & Pearl’s The-
orem 8.

4Using our notation, a state u is surely expanded by A* if it
can be reached from start by a forward path U = U0, U1, . . . Un

(U0 = start, Un = u) such that fF (U0, . . . , Ui) < C∗ for all
i ∈ [1, n]. When the heuristic is consistent this condition simplifies
to fF (U) < C∗.

5This defines a undirectional forward search algorithm. A uni-
directional backward search algorithm is defined analogously.

Theorem 7. Let I = (G, hF , 0) ∈ ICON have an optimal
solution cost of C∗. If U is an optimal forward path such
that U0 = start and fF (U) < C∗ then, in solving prob-
lem instance I , any admissible DXBB unidirectional search
algorithm must forward expand end(U).
Definition 7. For a problem instance I ∈ ICON , state
pair (u, v) is FE-surely expanded (or just surely expanded
if front-to-end is understood from the context) if there exist
paths U and V satisfying the premises of Theorem 6 with
end(U) = u and end(V) = v. State pair (u, v) is covered
by search algorithm A if, in solving I , A expands the state
pair (u, v).

7 Sufficient Conditions Compared
Theorems 1 and 6 both characterize state pairs that must be
expanded by an admissible DXBB bidirectional search al-
gorithm when its heuristic(s) are admissible and consistent.
Theorem 1 describes the state pairs that must be expanded
by a front-to-front algorithm if its heuristic, h(u, v), is bi-
admissible and bi-consistent, while Theorem 6 describes the
state pairs that must be expanded by a front-to-end algorithm
if its heuristics, hF and hB , are forward and backward ad-
missible and consistent, respectively.

A natural question is how these two sufficient conditions
compare: are they equivalent, does one imply the other, etc.?
To answer this question fairly, one should ensure that the al-
gorithms being compared are “equally informed”. Our anal-
ysis in this section assumes both are given the same front-to-
front heuristic, h(u, v). The front-to-end algorithm uses this
to define hF (u) = h(u, goal) and hB(v) = h(start, v).

The following theorem establishes that, if both algorithms
are given the same bi-admissible, bi-consistent front-to-front
heuristic h(u, v), the conditions in Theorem 1 logically im-
ply the conditions in Theorem 6, i.e. if a path pair satisfies
the conditions in Theorem 1 it will also satisfy the conditions
in Theorem 6.
Theorem 8. Let h(u, v) be bi-consistent and define
hF (u) = h(u, goal) and hB(v) = h(start, v). If U is
an optimal forward path and V is an optimal backward
path such that U0 = start, V0 = goal, and f(U, V) =
c(U) + c(V) + h(end(U), end(V)) < C∗, then:

(1) fF (U) < C∗

(2) fB(V) < C∗

(3) c(U) + c(V) < C∗.

Proof. We show f(U, V) ≥ max{fF (U), fB(V), c(U) +
c(V)}. The following proves that f(U, V) ≥ fF (U).

fF (U) = c(U) + h(end(U), goal)

≤ c(U) + d(end(V), goal)

+ h(end(U), end(V))

(part (2) of the definition of bi-consistent)
= c(U) + c(V) + h(end(U), end(V))

(because V is optimal)
= f(U, V) .

The proof that f(U, V) ≥ fB(V) is analogous. f(U, V) ≥
c(U) + c(V) is true because h(end(U), end(V)) ≥ 0.

S G

U

10

24

V

10

e

Figure 1: Problem instance on which admissible front-to-end
algorithms must expand more nodes than admissible front-
to-front algorithms. The heuristic values (hF , hB , and h) are
given in Table 1.

r hF (r) hB(r) h(r, c)
S U V G

S 10 0 0 10 10 10
U 10 10 ∞ 0 9 10
V 10 10 ∞ ∞ 0 10
G 0 10 ∞ ∞ ∞ 0

Table 1: The first three columns show the states (S,U, V,G)
and their hF and hB values based on the bi-consistent front-
to-front heuristic h(r, c) shown in the final four columns.
Here r and c are the states defining the row and column,
resp., e.g., h(U, V) is the entry (9) in row U column V .

The opposite implication does not hold; the set of path
pairs that must be expanded according to Theorem 1 may be
a proper subset of the set of path pairs that must be expanded
according to Theorem 6.

An example is given in Figure 1. There are four states
(S (the start state), U, V, and G (the goal state)) connected
by the three weighted, directed edges shown as solid ar-
rows. The dashed arrow labelled “e” is an edge that might
or might not exist. As there are unique paths to U and V we
also use these states’ names to refer to the unique paths to
them. To simplify the discussion, we assume e > 0 (e =∞
is permitted, meaning the edge does not exist). Now, con-
sider the state/path pair (U, V). In the front-to-front setting,
f(U, V) = 29 (because h(U, V) = 9, see Table 1) and
since C∗ ≤ 24, the pair (U, V) does not satisfy the condi-
tions of Theorem 1. By contrast, in the front-to-end setting,
fF (U) = fB(V) = c(U) + c(V) = 20 < C∗ (because
e > 0) and therefore (U, V) does satisfy the conditions of
Theorem 6 and must be expanded by any admissible front-
to-end algorithm.

The reason a front-to-end algorithm must expand one of
U or V is because there could be a sufficiently cheap (e < 4)
edge connecting U to V so that the optimal path from S to
G includes this edge. For example, given a problem instance
I based on this example in which the dashed edge does not
exist, the construction of I ′ in the proof of Theorem 6 would
set e = 2 thereby creating a path from S to G costing only
22. If the algorithm must return optimal solutions whenever

hF is forward admissible and hB is backward admissible,
the only way it can be certain there is not a path from S to
G costing less than 24 is to expand one of U or V to see if
such an edge exists.

The same reasoning does not apply to a front-to-front
algorithm because the definition of bi-admissibility is so
much stronger than the definition of forward/backward ad-
missibility. A front-to-front heuristic that is bi-admissible
comes with enough guarantees (h(u, v) ≤ d(u, v) for all
u and v) that it can be used for pruning states that cannot
be pruned if the only guarantees are those of front-to-end
forward/backward admissibility. In this particular example
h(U, V) = 9 implies that e ≥ 9, guaranteeing that the opti-
mal path from S to G cannot pass through U and V without
having to expand either of them. Only the front-to-front al-
gorithm has this information, the front-to-end algorithm has
no non-trivial lower bound on e.

8 Limitations
In this section we discuss the limitations of the analysis pre-
sented in this paper, section by section.

Section 2 (Notation and Terminology). The only notable
limitation here is the simplifying assumption, which is not
made by Dechter & Pearl, that the goal is a single state rather
than a set of states specified by a goal condition. We do not
believe this is a fundamental limitation, but there are techni-
calities that we preferred to avoid in this initial analysis.

Section 3 (Algorithmic Assumptions). The three defining
properties of DXBB algorithms are central to the proofs of
Theorems 1 and 6, and Dechter & Pearl’s Theorem 8, but
many of today’s systems do not have all of these properties.
Deterministic. This requirement excludes any randomized
algorithm, for example one that breaks ties randomly (Asai
and Fukunaga 2016) or that uses a randomized method to
diversify the kind of nodes selected for expansion (Imai and
Kishimoto 2011; Xie, Müller, and Holte 2014).
Expansion-based. Although the majority of today’s search
and planning systems are expansion-based (i.e. they search
in the state space by expanding one state at a time), there
are notable exceptions such as symbolic search (Edelkamp,
Kissmann, and Torralba 2015), SAT-based planning (Rinta-
nen 2012), and planning based on Integer Linear Program-
ming (Yu and LaValle 2016).
Black Box. In domain-independent planning and search, the
state space and goal are given in a declarative language (e.g.
PDDL6 or SAS+ (Bäckström 1992)). In such a represen-
tation, the differences between problem instances I and I ′
in the proofs of Theorems 1 and 6, and Dechter & Pearl’s
Theorem 8, would be readily apparent without expanding
any states, there is no reason to expect domain-independent
search algorithms to behave identically on the two instances.

Theorems 1 and 6 (Sections 4 and 6). Both these theorems
describe which state pairs must be expanded, not which spe-
cific states must be expanded. To expand state pair (u, v)

6http://icaps-conference.org/ipc2008/
deterministic/PddlResources.html

means to forward expand u or backward expand v. The “or”
here is a major weakness in these theorems. For example,
suppose there are 100 pairs these theorems say must be ex-
panded, and they are all of the form (u, vi) (1 ≤ i ≤ 100).
All 100 pairs can be expanded by expanding u once in the
forward direction. Alternatively, these pairs could be ex-
panded by backward expanding each vi individually. The set
of pairs expanded is the same in either case, but the number
of calls to an expand function is not, yet BDS1 would be op-
timally efficient whichever of these options it executed. By
contrast, the analogous theorem by Dechter & Pearl (their
Theorem 8) defines a specific set of states that must be ex-
panded, there are no options.

Section 5 (Optimal Efficiency of BDS1).
Non-pathological Problem Instances. This concept was in-
troduced by Dechter & Pearl, and is critical to their proof
of A*’s optimal efficiency, since on such instances A* ex-
pands only those states that absolutely must be expanded.
There are common circumstances where no “reasonable”
instances are non-pathological. For example, consider any
state space in which all edges cost 1. One should never use
a heuristic for which hF (u) = 0 for a non-goal state u since
hF (u) = 1 is always a safe and superior substitute. If this
is done, all states that are one edge away from goal have
hF (u) = d(u, goal), so the instance is not non-pathological.

In the bidirectional setting, the same issue arises, but it is
somewhat magnified because, in state spaces with all edges
costing 1 and a heuristic h that returns integer values, a non-
pathological instance must have h(u, v) = 0 for every edge
(u, v) on every optimal solution path.
Defining Optimal Efficiency in Terms of Sets of States.
Dechter & Pearl defined optimal efficiency in terms of the
set of states expanded, and we have generalized this, for
bidirectional search, to the set of state pairs expanded. As
noted above, in the bidirectional setting there can be a large
difference between the number of calls to an expand func-
tion even when the set of state pairs expanded is the same.
Morever, the expansion of states is not necessarily the dom-
inant factor in determining the run-time efficiency of a bidi-
rectional search algorithm. A major challenge for many
front-to-front systems, for example, is the computation in-
volved in finding a path pair (U, V) that minimizes f(U, V).

This challenge for front-to-front systems was overcome
in systems BDS2 (Eckerle and Ottmann 1994) and SF-
BDS (Felner et al. 2010). The key idea is to place path pairs
in anOpen list sorted by f(U, V). When a pair (U, V) is ex-
panded the pairs in St are added toOpen. This makes BDS2
and SFBDS as efficient as A* in terms of Open list opera-
tions but comes at the price of having to expand the same
path multiple times (because (U, V) and (U,W) are sepa-
rate entries in this Open list). This occurred so frequently
in Lippi et al. (2012)’s experiments that they introduced a
technique (successor caching) to minimize its computational
cost. Again, the set of path pairs expanded is not a particu-
larly good way to define optimal efficiency.

9 Practical Implications
Although this paper is purely theoretical, it has immediate

practical consequences. The sufficient conditions for front-
to-end search presented here (Theorem 6) have directly in-
spired a new admissible DXBB front-to-end bidirectional
search algorithm, NBS, which comes with strong formal
guarantees and performs well in practice (Chen et al.). The
formal guarantees are about the number of states expanded
to cover all the surely expanded state pairs: (i) NBS is near-
optimal in the sense that in the worst case it expands at most
twice as many states as the theoretical minimum, and (ii) no
other admissible DXBB front-to-end algorithm has a better
worst case. The performance of NBS on standard benchmark
domains is comparable to the performance of MMe (Sharon
et al. 2016) and BS* (Kwa 1989). NBS outperforms A* on
hard problem instances or when weak heuristics are being
used.

10 Conclusions
This work establishes sufficient conditions for node expan-
sion by deterministic expansion-based black-box bidirec-
tional heuristic search algorithms. We restrict our study to
the case of consistent heuristics and admissible algorithms,
as was done in Dechter and Pearl’s analogous analysis of
the 0-optimality of A*. Our main results include sufficient
conditions for node expansion for both front-to-front and
front-to-end systems, and a proof of the 0-optimality (op-
timal efficiency) of front-to-front bidirectional search algo-
rithm BDS1 on a certain class (“non-pathological”) of prob-
lem instances. We also proved that the sufficient condition
for node expansion derived by Dechter & Pearl for unidirec-
tional systems is a special case of our sufficient condition for
front-to-end bidirectional systems.

A different kind of contribution is to clearly identify the
limitations of this analysis. Several of the limitations we
identified are shared by Dechter & Pearl’s analysis, others
arise because of the special nature of bidirectional search.

Despite these limitations, our work provides a useful ba-
sis for the analysis of bidirectional search algorithms. For
instance, it would be interesting to revisit the definition of
non-pathological instances to see whether it can be relaxed
so that BDS1 (or some other bidirectional search algorithm)
is optimally efficient on a broader class of instances. Another
interesting direction for future work is to redo this analysis
for algorithms that are specifically designed to operate with
consistent heuristics, such as BS*.

11 Acknowledgements
We thank Ariel Felner and the anonymous reviewers for
many suggestions that improved the paper. Financial sup-
port for this research was in part provided by Canada’s Nat-
ural Sciences and Engineering Research Council (NSERC).
This material is based upon work supported by the National
Science Foundation under Grant No. 1551406.

References
Asai, M., and Fukunaga, A. S. 2016. Tiebreaking strategies
for A* search: How to explore the final frontier. In Proc.
30th AAAI Conference on Artificial Intelligence, 673–679.

Bäckström, C. 1992. Equivalence and tractability results
for SAS+ planning. In Proceedings of the 3rd International
Conference on Principles on Knowledge Representation and
Reasoning, 126–137.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R. Front-
to-end bidirectional heuristic search with near-optimal node
expansions. http://arxiv.org/abs/1703.03868.
de Champeaux, D. 1983. Bidirectional heuristic search
again. J. ACM 30(1):22–32.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. J. ACM 32(3):505–536.
Eckerle, J., and Ottmann, T. 1994. An efficient data structure
for bidirectional heuristic search. In ECAI, 600–604.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2015. BDDs
strike back (in AI planning). In Proc. 29th AAAI Conference
on Artificial Intelligence, 4320–4321.
Felner, A.; Moldenhauer, C.; Sturtevant, N. R.; and Schaef-
fer, J. 2010. Single-frontier bidirectional search. In Proc.
24th AAAI Conference on Artificial Intelligence.
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R.
2016. Bidirectional search that is guaranteed to meet in the
middle. In Proc. 30th AAAI Conference on Artificial Intelli-
gence.
Imai, T., and Kishimoto, A. 2011. A novel technique for
avoiding plateaus of greedy best-first search in satisficing
planning. In Proc. 25th AAAI Conference on Artificial Intel-
ligence.
Kwa, J. B. H. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence 38(1):95–
109.
Lippi, M.; Ernandes, M.; and Felner, A. 2012. Efficient
single frontier bidirectional search. In Proceedings of the
Fifth Annual Symposium on Combinatorial Search, SoCS.
Manzini, G. 1995. BIDA*: an improved perimeter search
algorithm. Artificial Intelligence 75(2):347–360.
Pohl, I. 1971. Bi-directional search. In Meltzer, B., and
Michie, D., eds., Machine Intelligence, volume 6. Edinburgh
University Press. 127–140.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intellligence 193:45–86.
Sharon, G.; Holte, R. C.; Felner, A.; and Sturtevant, N. R.
2016. Extended abstract: An improved priority function for
bidirectional heuristic search. Symposium on Combinatorial
Search (SoCS) 139–140.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local ex-
ploration to greedy best-first search in satisficing planning.
In Proc. 28th AAAI Conference on Artificial Intelligence,
2388–2394.
Yu, J., and LaValle, S. M. 2016. Optimal multirobot
path planning on graphs: Complete algorithms and effective
heuristics. IEEE Trans. Robotics 32(5):1163–1177.

