
Optimal-Generation Variants of EPEA*

Meir Goldenberg, Ariel Felner
ISE Department

Ben-Gurion University
Israel

mgoldenbe@gmail.com, felner@bgu.ac.il

Nathan Sturtevant
CS Department

University of Denver
USA

Sturtevant@cs.du.edu

Robert C. Holte, Jonathan Schaeffer
CS Department

University of Alberta
Canada

rholte@ualberta.ca, jonathan@cs.ulaberta.ca

Abstract

It is known that A* is optimal with respect to the expanded
nodes (Dechter and Pearl 1985) (D&P). The exact meaning
of this optimality varies depending on the class of algorithms
and instances over which A* is claimed to be optimal. A*
does not provide any optimality guarantees with respect to
the generated nodes. However, such guarantees may be crit-
ical for optimally solving instances of domains with a large
branching factor. In this paper, we introduce two new vari-
ants of the recently introduced Enhanced Partial Expansion
A* algorithm (EPEA*) (Felner et al. 2012). We leverage the
results of D&P to show that these variants possess optimality
with respect to the generated nodes in much the same sense as
A* possesses optimality with respect to the expanded nodes.
The results in this paper are theoretical. A study of the prac-
tical performance of the new variants is beyond the scope of
this paper.

Introduction
A* and its derivatives such as IDA* (Korf 1985) and
RBFS (Korf 1993) are general best-first search solvers
guided by the cost function f(n) = g(n) + h(n). Given
an admissible (i.e. non-overestimating) heuristic function h,
A* is guaranteed to find an optimal solution.

Until recently, performance studies of A* mostly focused
on the number of nodes that A* expanded. Furthermore,
a general result about the optimality of A* with respect to
the expanded nodes has been established (Dechter and Pearl
1985) (D&P). However, the number of expanded nodes
clearly does not represent the performance of A* accurately
enough. Namely, let C∗ be the cost of the optimal solu-
tion for a particular problem instance. A* has to expand all
nodes n with f(n) < C∗ in order to guarantee optimality
of the solution.1 These nodes have to be generated as well.
In addition, A* may generate many nodes with f(n) ≥ C∗.
The number of expansions of nodes with f(n) = C∗ de-
pends on tie-breaking. The nodes with f(n) > C∗ are never
expanded by A*. Following (Felner et al. 2012), we desig-
nate the nodes with f(n) > C∗ as surplus. Surplus nodes do

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this statement, we assumed a consistent heuristic for sim-
plicity. In general, A* has to expand all nodes n such that there is
a path from the start to n, on which all nodes n′ have f(n′) < C∗.

not contribute to finding an optimal solution, so that gener-
ating them is a pure overhead. We designate the non-surplus
nodes as useful.

Many important problem domains feature a large branch-
ing factor. When solving these problems, A* may gener-
ate a large number of surplus nodes. In fact, the execution
time spent on generating these nodes may be much larger
than the time spent on generating and expanding the useful
nodes. When solving instances of such domains, the num-
ber of generated nodes is a central performance issue. Mo-
tivated by the need to address this issue, the recently intro-
duced EPEA* algorithm (Felner et al. 2012) focuses on re-
ducing the number of nodes that A* generates. EPEA* uses
domain-specific knowledge to completely avoid the gener-
ation of surplus nodes. EPEA* was applied to a variety of
domains with the result of improved performance.

The contributions of this paper are three-fold. First, we
provide a concise and clear summary of the optimality re-
sults from the seminal work of D&P. Second (and most im-
portant), we introduce two new variants of EPEA* and lever-
age the results of D&P to show that these variants possess
optimality with respect to the generated nodes in much the
same sense as A* possesses optimality with respect to the
expanded nodes. Third, we show that even some negative
results from D&P (i.e. that, under some conditions, there
does not exist an optimal algorithm with respect to the ex-
panded nodes) can be directly translated into the realm of
optimality with respect to the generated nodes.

In this paper, we are mostly interested in establishing that
there exist algorithms that are optimal with respect to the
generated nodes. Therefore, we discuss only the theoretical
properties of the new variants of EPEA*. We leave it for fu-
ture research to see whether practical benefits (i.e. reduction
in running time) can be gained by solving difficult instances
of domains with a large branching factor with these variants.

Optimality of A* With Respect to the
Expanded Nodes (D&P)

In order to give accurate statements of A*’s optimality, D&P
introduced a number of classes of algorithms and problem
instances, as well as four types of optimality over these
classes. In this section, we cover these classes and the op-
timality results proven by D&P. As we stated in the intro-

duction, we aim to both (1) provide a concise and clear de-
scription of the results of D&P and (2) point out the correct
context of the much cited results about the optimality of A*.

The reader needs to have following two general points in
mind in order to correctly interpret the results of D&P:

(1) D&P consider the heuristic as being part of the in-
stance rather than part of the algorithm. Thus, a problem
instance consists of the graph, the start and the goal states,
and the heuristic.

(2) A* is defined as a family of best-first search algo-
rithms, which expand nodes in the order defined by the ad-
ditive combination f(n) = g(n) + h(n). Each member of
this family is A* with a particular tie-breaking rule. The
only restriction on the possible tie-breaking rules is that the
goal node is given priority over all other nodes with the same
f -values.

Hereafter, when it is clear from the context whether we are
talking about the A* family as a whole or about an arbitrary
member of it, we will write simply A*. In particular, D&P
established all of their optimality results for the A* family
as a whole.

Classes of Algorithms
The A* family is a subset of each of the following classes
of heuristic-driven search algorithms. It is assumed that all
these algorithms operate by expanding nodes to generate
their children. That is, a node cannot be expanded without
having been generated first.

D&P explored the optimality of A* over each of the fol-
lowing classes:

(1) AAD – admissible algorithms. These are the algo-
rithms that are guaranteed to find an optimal solution for in-
stances with an admissible (i.e. non-overestimating) heuris-
tic.

(2) Agc – algorithms that are globally compatible with
A*. An admissible algorithm A is called globally compati-
ble with A* if, given a non-admissible heuristic h, A finds
an optimal solution for every instance that has this h and for
which A* finds an optimal solution.

(3) Abf – best-first search algorithms. These algorithms
expand nodes in a best-first manner based on some cost func-
tion f(n). They may perform any tie-breaking with one re-
striction: a goal node has precedence over all other nodes
with the same cost. A* is a particular case of a best-first
search algorithm, where f(n) is an additive combination of
g(n) and h(n).

In the following discussion, whenever we write “a class
of algorithms”, we will mean one of these three classes.

Classes of Instances
A problem instance consists of the graph, the start and the
goal states, and the heuristic. D&P consider only instances
with an admissible heuristic. They divide all such problem
instances into two broad categories: non-pathological and
pathological. A problem instance is called non-pathological
if there exists an optimal cost solution path P such that, for
all non-goal nodes n on P , the strict inequality h(n) <
h∗(n) holds, where h∗ is a perfect heuristic. Otherwise, a
problem instance is called pathological. In other words, a

problem instance is non-pathological if there is an optimal
cost solution path P such that f(n) is below the cost of the
optimal solution C∗ for all nodes n on P except for the goal
node. Note that there are problem domains and heuristics,
for which all problem instances are pathological. For ex-
ample, in the 15-puzzle, all instances with the Manhattan
distance heuristic are pathological, since this heuristic is al-
ways perfect one move before the goal is reached.

D&P consider two types of heuristics: consistent and in-
consistent. A heuristic is consistent if for every two states
x and y, the inequality h(x) ≤ c(x, y) + h(y) holds, where
c(x, y) is the cost of the shortest path between x and y. Oth-
erwise, the heuristic is called inconsistent.

D&P explored the optimality of A* with respect to ex-
panded nodes over four classes of instances:

(1) IAD – (possibly pathological) problem instances with
an admissible (but possibly inconsistent) heuristic

(2) I−AD – non-pathological problem instances with an ad-
missible (but possibly inconsistent) heuristic

(3) ICON – (possibly pathological) problem instances
with a consistent heuristic

(4) I−CON – non-pathological problem instances with a
consistent heuristic

In the following discussion, whenever we write “a class
of instances”, we will mean one of these four classes. It is
important to note that each class includes all possible input
graphs. That is, for every input graph G, start state s and
goal state g, depending on the heuristic h, the instance I =
(G, I, s, g) can be in any of the four classes of instances.

For an intermediate summary, there are three classes of al-
gorithms and four classes of instances. The Cartesian prod-
uct is shown in Table 1 (reproduced from D&P). This table
has 12 cells. Each of these cells D&P shows two things: (1)
A* is optimal in some sense and (if applicable) (2) there is
no algorithm that is optimal in a stronger sense. D&P intro-
duced four senses of optimality, which we cover next.

Types of optimality
D&P distinguished four types of optimality numbered from
0 to 3, as follows.

(0) A family of algorithms B (such as A* with all possible
tie-breaking rules) is said to be 0-optimal over a class of
algorithms A (such that B ⊆ A) and a class of instances I
if, for every algorithm A ∈ A and every problem instance
I ∈ I, every algorithm B ∈ B (in the case of A*, this is
A* with some arbitrarily chosen tie-breaking rule) expands
a subset2 of nodes expanded by A.

(1) A family of algorithms B is said to be 1-optimal over
a class of algorithms A (such that B ⊆ A) and a class of
instances I if, for every algorithm A ∈ A and every problem
instance I ∈ I, there is an algorithm B ∈ B that expands a
subset of nodes expanded by A.

(2) A family of algorithms B is said to be 2-optimal over
a class of algorithms A (such that B ⊆ A) and a class of
instances I if, for every algorithm B ∈ B, algorithm A ∈ A

2Here the notion of subset is not strict, i.e. two identical sets
are considered to be subsets of each other.

AAD Agc Abf

IAD A** is 3-optimal A* is 1-optimal A* is 1-optimal
no 2-optimal exists no 0-optimal exists no 0-optimal exists

I−AD A* is 2-optimal A* is 0-optimal A* is 0-optimal
no 1-optimal exists

ICON A* is 1-optimal A* is 1-optimal A* is 1-optimal
no 0-optimal exists no 0-optimal exists no 0-optimal exists

I−CON A* is 0-optimal A* is 0-optimal A* is 0-optimal

Table 1: Optimality Results of D&P

and problem instance I ∈ I, if A does not expand a node
expanded by B, then A necessarily expands a node that B
does not expand.

(3) A family of algorithms B is said to be 3-optimal over
a class of algorithms A (such that B ⊆ A) and a class of
instances I if, for every algorithm A ∈ A and every prob-
lem instance I1 ∈ I, if A does not expand a node expanded
by some algorithm B ∈ B, then, there exists some other in-
stance I2 ∈ I, for which A necessarily expands a node that
B does not expand.

We now summarize these definitions in quantifier nota-
tion. Let exp(A, I) denote the set of nodes expanded by the
algorithm A when solving the instance I . A family of algo-
rithms B is said to be x-optimal over a class of algorithms
A (such that B ⊆ A) and a class of instances I iff:

x = 0. ∀A∈A,I∈I ∀B∈B exp(B, I) ⊆ exp(A, I)

x = 1. ∀A∈A,I∈I ∃B∈B exp(B, I) ⊆ exp(A, I)3

x = 2. ∀A∈A,I∈I ∀B∈B exp(A, I) 6⊂ exp(B, I)

x = 3. ∀A∈A,I1∈I ∀n1∈exp(B,I1)\exp(A,I1)

∃I2∈I ∃n2 ∈ exp(A, I2) \ exp(B, I2)
D&P state that these types of optimality form a “hierar-

chy of decreasing strength”. Therefore, once they state that,
under certain assumptions, a 1-optimal algorithm does not
exist, they do not need to state that a 0-optimal algorithm
does not exist under the same assumptions.4

Optimality Results of D&P
Table 1 is a re-production of Figure 9 from page 531 of D&P.
This table summarizes the optimality results proven by D&P
(Section 4.3, pages 522-531). Consider, for example, the
bottom left cell of this table. This cell states that A* pos-
sesses 0-optimality over the class of admissible algorithms
and the class of non-pathological instances with a consis-
tent heuristic. This means that, for such instances, every
tie-breaking rule of A* expands a subset of nodes expanded
by any admissible algorithm.

It is important to note that each result in Table 1 (except
for the top left-most cell) endows A* with optimality in a
certain context. For example, let us focus on the optimality
of A* over the class of admissible algorithms (the left-most
column of results). We see that:

3The formulation of 1-optimality in D&P allows for a dif-
ferent interpretation: x = 1. ∀I∈I ∃B∈B ∀A∈A exp(B, I) ⊆
exp(A, I). However, the argument on page 524 for 1-optimality
of A* for ICON fits the definition that we bring in the main text.

4We were not able to see how it follows from the above defini-
tions that every 1-optimal algorithm is automatically 2-optimal.

(1) If we are interested in the optimality of A* without
regard to the tie-breaking rule (0-optimality), then we have
to restrict ourselves to the context of consistent heuristics
and non-pathological instances.

(2) If we are interested in the optimality of A* up to tie-
breaking (1-optimality), then we have to restrict ourselves to
the context of consistent heuristics.

(3) Given an inconsistent heuristic, we cannot guarantee
that A* will expand fewer (unique) nodes than other admis-
sible algorithms. Rather, we have only a weaker claim that
other algorithms cannot expand a proper subset of nodes ex-
panded by A* (2-optimality).

In addition to this, although in practice we would like to
have a guarantee that A* expands fewer nodes than other al-
gorithms, none of the optimality results of D&P is stated in
terms of the number of expanded nodes. Rather, these re-
sults are stated in terms of set relations.5 Clearly, the claim
“A* expands a subset of nodes expanded by algorithm B” is
stronger than the claim “A* expands fewer nodes than algo-
rithm B”.

A** (the top left entry of Table 1) is an algorithm intro-
duced by D&P. This algorithm computes f(n) by maximiz-
ing over (g + h) of all nodes on the current path from the
start to n (inclusive). A more detailed discussion of this al-
gorithm is beyond the scope of this paper.

EPEA*
In this section, we provide a concise description and a
pseudo-code for EPEA* (Felner et al. 2012). EPEA* lever-
ages the insight of its predecessor, PEA* (Yoshizumi, Miura,
and Ishida 2000), that it is possible to never add surplus
nodes to OPEN. EPEA* advances this idea and avoids even
the generation of surplus nodes. EPEA* is best explained by
describing PEA* first.

5The reason for this choice of definition of optimality is ex-
plained on page 521 of D&P. In our understanding, their argument
is as follows. Suppose that we want to prove optimality of a fam-
ily of algorithms B over a class of algorithms A (B ⊆ A) and a
class of instances I. Suppose that, for some instance, an algorithm
B ∈ B expands fewer nodes than some algorithm A ∈ A, but
there is a node n that B expands, while A does not expand. Then
we can form another input graph, where there is a large subtree
with very cheap edges below n. For this new instance, B would
expand all nodes in this subtree of n and expand more nodes than
A. Thus, as soon as we allow the algorithms from B to expand
a node that another algorithm does not expand, we cannot make
any claims about the optimality of B with respect to the number of
expanded nodes.

S

N

EW
G

A

+2

+2

+0

+0

Figure 1: Left and middle: operation of PEA*, EPEA* and the new variants of EPEA*. Right: classification of operators.

PEA* operates as follows. When expanding node n,
PEA* first generates a list of all the children of n. How-
ever, only the children c with f(c) = f(n) are added to
OPEN. The remaining children are discarded and n is rein-
serted into OPEN with a new cost. This cost is computed as
the smallest f(c) that is greater than the current cost f(n).

The authors of PEA* borrow the terminology first used in
RBFS (Korf 1993). Denote the regular f -value (g + h) of
node n as its static value, which we denote by f(n) (small
f). The value stored in OPEN for n is called the stored
value of n, which we denote by F (n) (capital F). Initially
F (n) = f(n). After n is expanded for the first time, F (n)
might be set to v > f(n), when the minimal static f -value
among the children of n that were not added to OPEN is v.

The PEA* idea is shown in Figure 1 (left,middle). In Fig-
ure 1 (left), node a (with F (a) = f(a) = 3) is being ex-
panded for the first time. All of its children (x, y, z, w) are
generated. Then, its children with f -value of 3 (x and y)
are inserted into OPEN. Node a is re-inserted into OPEN,
but this time with a stored value F (a) = 4, the lowest cost
among the remaining children (nodes w and z). When a is
later chosen for expansion with F (a) = 4 as shown in Fig-
ure 1 (middle), all its children are generated. Those with
f < 4 are discarded. Those with f = 4 are placed into
OPEN (node z). If a has other children with f > 4, then a
is re-inserted into OPEN with the lowest cost among them
(5 in our example). Otherwise, a is closed.

Note that PEA* generates all children c of the node n be-
ing expanded, but puts into OPEN only the children with
f(c) = F (n). The main insight of EPEA* is that, for many
domains, it is possible to generate only the children with
f(c) = F (n). EPEA* achieves this by classifying the oper-
ators applicable to any given node n based on the resulting
change to the f -value: ∆f(c) = f(c) − f(n) and apply-
ing only the operators with ∆f(c) = F (n) − f(n) (which
is equivalent to f(c) = F (n)). EPEA* uses a domain-
dependent Operator Selection Function (OSF) which re-
ceives as input a node n and a value v. The OSF has two out-
puts: (1) a list of children c of n with ∆f(c) = F (n)−f(n)
and (2) Fnext(n) — the smallest f -value among the children
with ∆f(c) > F (n)− f(n).

A simple example a classification of operators for the
pathfinding domain on a 4-connected grid is shown in Fig-
ure 1 (right). Assume that all moves cost 1 and the heuristic
function is Manhattan Distance (MD). Suppose that the goal
node is located northwest of the current location. It is easy
to see that f -value stays the same when going north or west
and increases by 2 when going south or east. Similar classi-

Procedure 1 EPEA* and OGA*
1: Generate the start node ns

2: For OGA*: if ns is goal then exit // found optimal!
3: Compute h(ns) and set F (ns)← f(ns)← h(ns)
4: Put ns into OPEN
5: while OPEN is not empty do
6: For EPEA*:
7: Get n with lowest F (n) from OPEN
8: if n is goal then exit // found optimal!
9: Set (N,Fnext(n))← OSF (n, F (n)).

10: For OGA*:
11: Get n with lowest (F (n), bit(n)) from OPEN
12: if F (n) = f(n) then
13: Set fg(n)← g(n) + EGT (n)
14: Set bit(n)← 1
15: end if
16: if F (n) = fg(n) then exit // found optimal!
17: Set (N,Fnext(n))← OSF (n, F (n)).
18: if Fnext(n) = fg(n) then set bit(n)← 0
19: for all c ∈ N do
20: Compute h(c), set g(c)← g(n)+ cost(n, c) and

f(c)← g(c) + h(c)
21: Check for duplicates
22: Set F (c)← f(c) and put c into OPEN
23: end for
24: if Fnext(n) =∞ then
25: Put n into CLOSED
26: else
27: Set F (n)← Fnext(n) and re-insert n into OPEN
28: end if
29: end while
30: exit // There is no solution.

fications (though more complex) for the Pancake puzzle, the
Rubik’s Cube and the Multi-Agent Pathfinding domains are
described in (Felner et al. 2012). For the rest of this paper,
we will treat OSF as a black box. The reader who wants to
understand in depth how OSF operates is referred to (Felner
et al. 2012).

We now explain EPEA* with the pseudo-code in Proce-
dure 1. Note that this pseudo-code shows both EPEA* and
OGA*, which is one of the new variants of EPEA* intro-
duced in this paper. In this section, we ignore the parts of
the pseudo-code that are specific to OGA*.

When EPEA* generates a new node, it sets the new node’s
stored value to be equal to its static value (lines 3, 22).
Nodes are expanded in the order of the best stored value
(line 7). When expanding n, EPEA* calls OSF to gener-

ate only the children with f(c) = F (n) (line 9).6 These
children are guaranteed to be useful. Also, OSF returns the
next stored value of n, denoted by Fnext(n) (line 9). If n
is later re-expanded, this value will be passed to OSF as the
desired f -value of the children (f(c)). n is re-inserted into
OPEN with this new stored value. If all children of n have
been inserted into OPEN (Fnext(n) =∞), then n is put into
CLOSED (line 25).

We demonstrate the operation of EPEA* with the exam-
ple in Figure 1 (left and middle) where node a is being ex-
panded. The first expansion of a (with F (a) = f(a) = 3) is
shown in Figure 1 (left). EPEA* uses OSF to generate only
the children with f -value of 3 (x and y) and inserts them
into OPEN. OSF returns Fnext(a) = 4, which is the lowest
cost among the remaining children (nodes z and w). Node a
is re-inserted into OPEN, but this time with the new stored
value F (a) = 4.

Suppose that a is later chosen for expansion with F (a) =
4 as shown in Figure 1 (middle). EPEA* uses OSF to gen-
erate only the child z with f -value of 4 and inserts it into
OPEN. If a has other children with f > 4, then lowest cost
among them (5 in our example) would be returned by the
OSF and a would be re-inserted into OPEN with F (a) = 5.
If not, then OSF would return infinity and a would be closed.

Let us consider the first expansion of each node expanded
by EPEA*. These are the same expansions that A* per-
forms. Also, EPEA* performs these expansions in the same
order as A*. Therefore, EPEA* is optimal with respect to
the number of unique node expansions.

It is important to have in mind two points about EPEA*
to put the theoretical results of this paper in proper context:

1. A* closes a node immediately after having generated its
children. In contrast, EPEA* can expand a node many
times before closing it. This may result in a much larger
OPEN compared to A*. Furthermore, although EPEA*
is optimal with respect to the number of unique node ex-
pansions, it may expand the same node many times. The
variants of EPEA* introduced below have these limitation
as well. Therefore, the theoretical optimality properties
of the new variants do not necessarily guarantee that they
will perform better (in terms of execution time) than A*
in practice.

2. We will consider OSF to be a black box throughout the
rest of the paper. This assumption is necessary to establish
the theoretical results. However, the performance of OSF
may have impact on the actual time performance of the
new variants.

New Variants of EPEA*
In this section, we introduce two novel variants of
EPEA*: Optimal Generation A* (OGA*) and Simple
OGA* (SOGA*). OGA* and SOGA* are called optimal,
because we will prove in the theoretical section below that

6If the heuristic is inconsistent, then, during the first expansion
of n, another OSF is called, which generates all nodes with f(c) ≤
F (n). We assumed a consistent heuristic in order to not complicate
the pseudo-code.

these algorithms possess optimality with respect to the gen-
erated nodes. OGA* and SOGA* are called variants of
EPEA* because they possess the main feature of EPEA* –
using a domain-specific OSF to generate only the children c
of the node n being expanded with f(c) = F (n).

OGA*
Let us start by noting that EPEA* can be enhanced based on
the following observation. When EPEA* generates the goal
node g with f(g) = C∗, it must be that the node n being ex-
panded has F (n) = C∗. Also, there are no nodes in OPEN
that have a smaller stored value. Therefore, EPEA* does not
have to put the goal into OPEN in order to later expand it.
Rather, EPEA* can stop as soon the goal is generated.

In this section, we introduce a variant of EPEA* called
Optimal Generation A* (OGA*), which stops even before
the goal node is generated – when the parent of the goal
(denote this parent by p) with F (p) = C∗ is expanded, but
before any of the children c of p with F (n) = C∗ (including
the goal) are generated. However, the main feature of OGA*
is a tie-breaking rule that guarantees that the parent of the
goal is expanded as soon as possible.

Let us go through the parts of the pseudo-code in Proce-
dure 1 that are specific to OGA*. For each node n, OGA*
stores, in addition to f(n) and F (n), two more values:

(1) fg(n) is computed when n is expanded for the first
time by the enhanced goal test (EGT) (line 13). EGT checks
whether there is an edge in the state graph from n to the goal
(how this is done is discussed in the next paragraph). If there
is no such edge, EGT returns infinity. If there is such an
edge, EGT returns the cost of the cheapest such edge. Thus,
when fg(n) = g(n) + EGT (n) is finite, it is equal to the
cost of reaching the goal when the goal is a neighbor of n.
If the heuristic is inconsistent, then EGT has to be invoked
each time n is re-expanded due to inconsistency (i.e. with a
new g-value).

Clearly, generating all children of n in order to perform
EGT would undermine the purpose of EPEA*. Therefore,
just like OSF, EGT has to be implemented in a domain-
dependent manner. There are two general approaches to im-
plementing EGT. First, EGT can operate similarly to OSF
– by scanning the operators applicable to n and looking for
operators than decrease the heuristic value by h(n) result-
ing in h(c) = 0. In fact EGT can be integrated with the
OSF. Second, we can compute the list of the goal’s neigh-
bors before the search begins. With each such state, we
would store the cost of the cheapest edge from that state to
the goal. EGT would work by looking for n among these
pre-computed states.

(2) bit(n) is a bit showing whether F (n) is equal to fg(n).
This bit is set in lines 14 and 18.

Just like EPEA*, OGA* expands nodes in the order of
the best stored value. It can use any tie-breaking rule with
one restriction: nodes with F (n) = fg(n) are preferred
(line 11). This guarantees that, if there are no nodes n in
OPEN with F (n) < C∗, a node p with F (p) = C∗ from
which there is a direct edge to the goal will be chosen for
expansion if such a node p is in OPEN. Once such a node
p is chosen for expansion, the algorithm can halt (line 16).

In the theoretical section below, we will see that this guar-
antee endows OGA* with strong optimality properties with
respect to the generated nodes.

Let us see how OGA* would operate for the example in
Figure 1 (left and middle). Suppose that w is the goal node.
When OGA* expands node a for the first time as shown in
Figure 1 (left), it would use EGT to determine that a has a
goal neighbor w with f(w) = 5 and set fg(a) = 5. OGA*
would also set bit(a) = 1. After expanding a for the second
time as shown in Figure 1 (middle), OGA* would determine
that Fnext(a) = 5 is equal to fg(a) and set bit(a) = 0. Once
no nodes with F -value 4 or less remain in OPEN, a will be
the first node to be expanded and, according to line 16 of
Procedure 1, OGA* will halt. This is because OGA* has es-
tablished that reaching a through the current path leads in an
optimal way to the goal node which is one of the neighbors
of a.

SOGA*
We now introduce our second new variant of EPEA* – Sim-
ple OGA* (SOGA*). SOGA* operates like EPEA* (i.e. the
pseudo-code is identical to Procedure 1) with one exception:
when SOGA* (re-)expands node n that has children c with
f(c) = F (n), it generates only one such child. If there are
other children f(c) = F (n), then their generation is post-
poned to the future re-expansions of n and n is re-inserted
into OPEN with an unchanged F -value. SOGA* may use a
tie-breaking rule to decide which child with f(c) = F (n) to
generate at each (re-)expansion of n.

Let us see how SOGA* would operate for the example
in Figure 1 (left and middle). When SOGA* expands node
a (with F (a) = f(a) = 3) for the first time as shown in
Figure 1 (left), the OSF would generate only one of the chil-
dren (x or y) with f -value of 3. Suppose that, according
to the tie-breaking rule being used, x was generated. This
OSF would also return Fnext(a) = 3, which is the f -value
of the next child with the required f(c) (y in our example).
Node a is re-inserted into OPEN with the unchanged stored
value F (a) = 3. During the next expansion of a (Fig-
ure 1 (middle)), the OSF would generate the child y and
return Fnext(a) = 4, which is the lowest cost among the re-
maining children (nodes z and w). Node a is re-inserted into
OPEN, but this time with the new stored value F (a) = 4.

In practice, SOGA* has a large run-time overhead com-
pared to EPEA*: in order to generate b children of node
n, SOGA* has to expand n exactly b times. However, we
will see in the theoretical section below that, in contrast to
EPEA*, SOGA* possesses optimality properties with re-
spect to the number of generated nodes. This is because,
once it expands a node n with F (n) = C∗, it may (that is,
for some tie-breaking rule) avoid generating any node that is
not on the optimal solution path.

Optimality of (S)OGA* With Respect to the
Generated Nodes

We now consider the optimality of OGA* with respect to
the generated nodes over the same classes of algorithms and

instances, for which the optimality of A* with respect to the
expanded nodes was established by D&P. By generating a
node we mean forming a data structure corresponding to a
search state. In the context of the following optimality re-
sults, two nodes corresponding to the same state are consid-
ered to be the same node, no matter how many times this
node is generated by expanding the same or different nodes.

We will distinguish four types of optimality that are simi-
lar to the types of optimality used by D&P. Namely, we ob-
tain the new types by substituting all occurrences of the word
“expanded” by the word “generated”. In order to distinguish
the new types from the old ones, we append “prime” to their
number. Also, we will write “prime optimality” to refer to
optimality with respect to the generated nodes.

(0’) A family of algorithms B (such as OGA* with all
possible tie-breaking rules) is said to be 0’-optimal over a
class of algorithms A (such that B ⊆ A) and a class of
instances I if, for every algorithm A ∈ A and every problem
instance I ∈ I, every algorithm B ∈ B generates a subset
of nodes generated by A.

(1’) A family of algorithms B is said to be 1’-optimal over
a class of algorithms A (such that B ⊆ A) and a class of
instances I if, for every algorithm A ∈ A and every problem
instance I ∈ I, there is an algorithm B ∈ B that generates a
subset of nodes generated by A.

(2’) A family of algorithms B is said to be 2’-optimal over
a class of algorithms A (such that B ⊆ A) and a class of
instances I if, for every algorithm B ∈ B, algorithm A ∈ A
and problem instance I ∈ I, if A does not generate a node
generated by B, then A necessarily generates a node that B
does not generate.

(3’) A family of algorithms B is said to be 3’-optimal over
a class of algorithms A (such that B ⊆ A) and a class of
instances I if, for every algorithm A ∈ A and every problem
instance I1 ∈ I, if A does not generate a node generated
by some algorithm B ∈ B, then, there exists some other
instance I2 ∈ I, for which A necessarily generates a node
that B does not generate.

We now summarize these definitions in quantifier nota-
tion. Let gen(A, I) denote the set of nodes generated by the
algorithm A when solving the instance I . A family of algo-
rithms B is said to be x′-optimal over a class of algorithms
A (such that B ⊆ A) and a class of instances I iff:
x = 0. ∀A∈A,I∈I ∀B∈B gen(B, I) ⊆ gen(A, I)

x = 1. ∀A∈A,I∈I ∃B∈B gen(B, I) ⊆ gen(A, I)

x = 2. ∀A∈A,I∈I ∀B∈B gen(A, I) 6⊂ gen(B, I)

x = 3. ∀A∈A,I1∈I ∀n1∈gen(B,I1)\gen(A,I1)

∃I2∈I ∃n2 ∈ gen(A, I2) \ gen(B, I2)
We now move to presenting our new results about the

prime optimality of OGA*.

The New Results
Our new optimality results are summarized in Table 2. For
each entry in Table 2, we provide, in parentheses, the num-
ber of lemma (below) that proves the result. The bold ques-
tion marks in the left-most column of Table 2 mean that es-
tablishing the corresponding optimality results remains an
open research question.

AAD Agc Abf

IAD ? SOGA* is 1’-optimal (L. 4) SOGA* is 1’-optimal (L. 4)
? no 0’-optimal exists (L. 3) no 0’-optimal exists (L. 3)

under VE assumption under VE assumption
I−AD OGA* is 2’-optimal (L. 2) OGA* is 0’-optimal (L. 2) OGA* is 0’-optimal (L. 2)

?
ICON SOGA* is 1’-optimal (L. 4) SOGA* is 1’-optimal (L. 4) SOGA* is 1’-optimal (L. 4)

no 0’-optimal exists (L. 3) no 0’-optimal exists (L. 3) no 0’-optimal exists (L. 3)
under VE assumption under VE assumption under VE assumption

I−CON OGA* is 0’-optimal (L. 2) OGA* is 0’-optimal (L. 2) OGA* is 0’-optimal (L. 2)

Table 2: Optimality Results for OGA* and SOGA*.

Optimality of OGA* with respect to classes of non-
pathological instances (rows 2 and 4 of Table 2) follows the
following lemma:

Lemma 1. For non-pathological instances, OGA* expands
the same set of nodes that it generates.7

Proof. Since every expanded node needs to be generated,
we only need to show that, for non-pathological instances,
OGA* expands all nodes that it generates.

Suppose that OGA* expanded node n and generated its
child c. We consider three cases:

Case 1: F (n) < C∗. Since OGA* generates a child node
c of a node n only if f(c) = F (n), it must be that f(c) <
C∗. Then c will surely be expanded before the search is
completed by expanding a node with F = C∗ and fg = C∗.

Case 2. F (n) = C∗ and there is a node n′ in OPEN
with F (n′) = fg(n′). This case is impossible. Namely,
since every tie-breaking rule gives preference to nodes with
F (n) = fg(n), it must be that n = n′. However, in such
a case, the search would halt (line 16 of Procedure 1) and c
would not be generated.

Case 3. F (n) = C∗ and there is no node n′ in OPEN
with F (n′) = fg(n′). We will show that this case is im-
possible either. Note that, for every optimal path, there is
always a node in OPEN of OGA* that is on that path (this
is easily verified by an inductive argument starting from the
start node and following the expansion cycles). Since the
instance is non-pathological, let P be an optimal path such
that, for all non-goal nodes m on P , we have f(m) < C∗.
Let v be the most advanced (i.e. the greatest g-value) node
in OPEN that is on P . Note that v has a neighbor u, which is
the not yet generated next node on P . If u is the goal, then,
contrary to our assumption, we would have fg(v) = C∗.
Therefore, u is not a goal, which means that f(u) < C∗,
which implies F (v) < C∗. However, this contradicts our
assumption that n with F (n) = C∗ was chosen for expan-
sion. This completes the proof.

The following statement follows directly from Lemma 1
and corresponds to the results in rows 2 and 4 of Table 2:

Lemma 2. If A* is x-optimal (where x can be 0,1 or 2) over
a class of algorithms A and a class of non-pathological in-
stances I, then OGA* is x′-optimal over these classes.

7We ignore the trivial instances with the start node being the
goal, for which the start node is generated, but not expanded.

Proof. Suppose that A* is x-optimal (where x can be 0,1
or 2) over a class of algorithms A and a class of non-
pathological instances I. Suppose that, contrary to our
claim, an algorithm A ∈ A is a counter-example to x′-
optimality of OGA* over these classes. We consider the
three possible values for x in turn.

Case x = 0. Then, for some non-pathological problem
instance, there is a node n that A does not generate, but
some tie-breaking rule of OGA* generates. By Lemma 1,
OGA* expands n. Also, since every expanded node has to
be generated first, A does not expand n. Therefore, A is a
counter-example to 0-optimality of OGA*. Since OGA* ex-
pands the same unique nodes as A*, A is a counter-example
to 0-optimality of A*. We reached a contradiction.

Case x = 1. Then, for some non-pathological problem
instance, for each tie-breaking rule of OGA*, there is a node
n that OGA* generates, but A does not generate. Again,
this means that OGA* (and, by implication, A*) expands
n, while A does not expand n. Therefore, A is a counter-
example to 1-optimality of A*. We reached a contradiction.

Case x = 2. Then, for some non-pathological problem
instance and some tie-breaking rule of OGA*, A generates
a strict subset of nodes generated by OGA*. Since (1) A
expands a subset of nodes that it generates and (2) OGA*
expands the same nodes that it generates, we have that A
expands a strict subset of nodes expanded by OGA* (and,
by implication, A*). Therefore, A is a counter-example to
2-optimality of A*. We reached a contradiction.

Recall that D&P proved that their optimality results are
tight. That is, if they proved that A* is 1-optimal over a cer-
tain class of algorithms and instances, they also proved that
no 0-optimal algorithm exists. We would like to prove a sim-
ilar result for prime optimality. We will do this by proving
that, whenever an 0-optimal algorithm does not exist, there
does not exist an 0’-optimal algorithm either. This result
corresponds to the second line in the first and third rows of
Table 2.

We were able to prove this result only under the following
assumption that limits the classes of algorithms under con-
sideration. We call it the Valid Expansion (VE) assumption:

1. An algorithm will not choose a node n for expansion if
n clearly does not have children that meet the generation
criteria. For example, if an algorithm has a rule not to
generate nodes at depth ≥ d in the search tree, then such
an algorithm will not expand a node at depth d− 1.

2. Let n be the node chosen for expansion. An algorithm
will not use a generation criteria that is based on:

(a) State identity of the children of n.
(b) Branching factor of n. An example of such a criteria

would be the rule not to generate any children of n if the
branching factor of n is greater than a certain threshold.

(c) Incoming arcs to the children of n.

Lemma 3. Whenever no 0-optimal algorithm that satisfies
the VE assumption over a class of algorithms A and a class
of instances I exists, there does not exist an 0’-optimal algo-
rithm that satisfies the VE assumption over these classes.

Proof. It will suffice to prove that, whenever a family B
of algorithms that satisfies the VE assumption is 0′-optimal
over a class of algorithms A (B ⊆ A) and a class of in-
stances I, the family B is also 0-optimal over these classes.
Suppose that, contrary to our claim, an algorithm A ∈ A is
a counter-example to 0-optimality of B over these classes.

Then, for some problem instance I ∈ I, A does not ex-
pand a node n that some algorithm B ∈ B expands. We
shall modify I to construct an instance I ′ with the following
properties:

1. I ′ belongs to the same class of instances as I . That is (a)
if I is non-pathological, then I ′ is non-pathological and
(b) if h is consistent in I , then it remains consistent in I ′.

2. n has a child c such that (a) B generates c when solving
I ′ and (b) A does not generate c when solving I ′.

Such a construction will contradict 0’-optimality of B and
complete the proof.

We need to consider the following cases and construct I ′
accordingly for each case:
Case 1. There is a child c of n in I such that (a) B generates
c when solving I and (b) A does not generate c when solving
I . Then we take I ′ to be identical to I .
Case 2. There is a child c′ of n in I such that (a) B generates
c′ when solving I and (b) A generates c′ when solving I as
well (this is possible if there is a path from the start state to c′

that does not pass through n). We construct I ′ by appending
I with a child c of n, such that cost(n, c) = cost(n, c′)
and h(c′) = h(c). Furthermore, c has outgoing arcs to the
same states to which c′ has outgoing arcs. We complete the
construction of I ′ by deleting the arc from n to c′ and putting
c into the same position in the adjacency list of n where
c′ used to be. By the VE assumption, B will generate c
when solving I ′. Also, since A does not expand n, it cannot
generate c.
Case 3. B does not generate any children of n when solving
I . We construct I ′ by appending I with a child c of n, such
that cost(n, c) = 0 and h(c) = h(n). Furthermore, c has
outgoing arcs to the same states to which n has outgoing
arcs. Thus, the only possible distinction between c and n is
the depth in the search tree. By the VE assumption, B will
generate c when solving I ′. Also, since A does not expand
n, it cannot generate c.
In all three cases, it is easy to see that I ′ belongs to the same
class of instances as I .

Finally, we prove that, for pathological instances, SOGA*
is 1’-optimal over the classes of algorithms for which 1-
optimality of A* was proven by D&P (first and third rows
of Table 2).

Lemma 4. Whenever A* is 1-optimal over a class of algo-
rithms A and a class of instances I, SOGA* is 1’-optimal
over these classes.

Proof. Suppose that A* is 1-optimal over a class of algo-
rithms A and a class of instances I. Then, for every algo-
rithm A ∈ A and every problem instance I ∈ I, there is
a tie-breaking rule T of A* that expands a subset of nodes
expanded by A. Our claim follows from the fact that we
can choose an appropriate tie-breaking rule for generations
of SOGA*, such that SOGA* will generate only and all
the nodes that will be expanded by the tie-breaking rule T .
Then, for the same instance I , this tie-breaking rule for gen-
erations and T applied together will result in SOGA* gener-
ating the subset of nodes generated by A.

Finally, let us provide a simple example that shows why
none of the optimality results proven for OGA* and SOGA*
holds for EPEA*. Suppose an instance where the goal g has
only one neighbor p. Suppose that, besides the goal, p also
has neighbors n1 and n2. Lastly, suppose that f(p) = 9,
f(g) = f(n1) = f(n2) = 10 and that p was expanded and
received F (p) = 10. Note that EPEA* will not generate the
goal g until no nodes n with F (n) ≤ 9 in OPEN remain
and p gets expanded. At this point, EPEA* will generate
all neighbors c of p with f(c) = 10, namely g, n1 and n2.
However, since every tie-breaking rule of EPEA* gives pref-
erence to the goal, only g will get expanded, while n1 and
n2 are only generated. On the other hand, we know that any
tie-breaking rule of OGA* generates neither n1 nor n2 (ac-
tually, it does not generate g either unless g is the start node)
and that SOGA* may avoid generating n1 or n2 or both.

Conclusions
We have leveraged the results about the optimality of A*
with respect to the expanded nodes by (Dechter and Pearl
1985) (D&P) to show that two new variants of EPEA*,
OGA* and SOGA*, are optimal with respect to the gener-
ated nodes. The notions of optimality are very similar to the
notions that D&P use to formalize the optimality of A*.

Two open theoretical questions remain, which correspond
to the question marks in Table 2:

(1) Is there an algorithm that is 1’-optimal over the class
of admissible algorithms and the class of non-pathological
instances with an admissible heuristic?

(2) Are there algorithms the would provide a counter-
example to Lemma 3 when the VE assumption is removed?

(3) Can any prime optimality result be established over
the class of admissible algorithms and the class of patholog-
ical instances with an admissible heuristic?

Finally, in this paper, we discussed only the theoretical
properties of OGA* and simple OGA*. It remains to see
whether practical benefits (i.e. reduction in running time)
can be gained by solving difficult instances of domains with
a large branching factor with these new variants of EPEA*.

Acknowledgements
This research was supported by the Israeli Science Founda-
tion (ISF) grant 305/09 to Ariel Felner and the Natural Sci-
ences and Engineering Research Council of Canada grant to
Jonathan Schaeffer.

References
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the Associa-
tion for Computing Machinery 32(3):505–536.
Felner, A.; Goldenberg, M.; Sharon, G.; Stutervant, N.;
Stern, R.; Beja, T.; Schaeffer, J.; and Holte, R. 2012. Partial-
expansion A* with selective node generation. In Proceed-
ings of AAAI.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible treesearch. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.

Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
partial expansion for large branching factor problems. In
AAAI/IAAI, 923–929.

