
External Memory PDBs: Initial Results

Nathan R. Sturtevant
Department of Computer Science

University of Denver
Denver, CO, USA

sturtevant@cs.du.edu

Abstract
Pattern databases (PDBs) have been widely used as
heuristics for many types of search spaces, but they have
always been computed so as to fit in the main memory
of the machine using the PDB. This paper studies the
how external-memory PDBs can be used. It presents re-
sults of both using hard disk drives and solid-state drives
directly to access the data, and of just loading a portion
of the PDB into RAM. For the time being, all of these
approaches are inferior to building the largest PDB that
fits into RAM.

Introduction and Overview
In optimal problem solving, one of the key advancements in
work to solve large problems was the development of tech-
niques for automatically building heuristics, or estimates of
the distance to the goal from a given state in the state space.
The better the heuristic, the easier it is to find a path from
the start to the goal.

Many different types of heuristics have been built for dif-
ferent types of problems. One early approach that has been
well-studied is that of pattern databases (PDBs) (Culber-
son and Schaeffer 1996). Pattern databases abstract away
some portion of the original state space and solve the re-
maining state space in a way that provides a heuristic es-
timate for the original unabstracted state space. Work on
pattern databases lead to the first solutions of random Ru-
bik’s cube instances, and also led to deeper insights on
how heuristics influences the cost of search (Korf 1997;
Korf, Reid, and Edelkamp 2001).

One idea that has been dominant in this work is that pat-
tern databases must be built to fit in memory, as the cost of
random access from disk will not necessarily offset the sav-
ings of using a stronger heuristic in practice. While these
arguments are well-grounded, they have not, to our knowl-
edge, been tested in practice.

Furthermore, new forms of external storage are now avail-
able which have different properties from traditional drives.
In particular, because hard disk drives (HDDs) contain a
spinning platter that physically turns, there is lag in random
access to a drive while the drive waits for data to move un-
der the magnetic head which is reading the data. Solid state

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

drives (SSDs) have no moving parts, storing data in non-
volatile memory. This improves the random access perfor-
mance of SSDs, although they are still significantly slower
than access to main memory.

This paper provides experiments which directly measure
the performance of external memory pattern databases on
both HDDs and SSDs, confirming the expected results that
these devices are too slow for practical use. We then exper-
iment with a technique that has been used in heuristics for
two-dimensional maps to see if it can be used for pattern
databases.

Background and Problem Formulation
We define a search problem by a graph G = (V,E), a
start state s, a goal state g, and a heuristic function h(a, b)
which estimates the cost of the shortest path between a and
b. While general edge costs are allowed for many problems,
we assume that all edges have uniform cost of 1. All the
problems considered in this paper have a single goal state,
so we can write our heuristic function as h(a), with the goal
implicitly defined. Furthermore, we assume that our heuris-
tic is admissible in that it never over-estimates the actual cost
of the path to the goal. If h∗(a) is the true cost between a and
the goal, an admissible heuristic always has h(a) ≤ h∗(a).

One property that is often assumed is heuristic consis-
tency. In an undirected domain with unit edge costs, a heuris-
tic is consistent if for all neighbors a and b, |h(a)− h(b)| ≤
1. That is, the heuristic never changes by more than 1 be-
tween two adjacent states. If this property does not hold,
then the heuristic is inconsistent. A consistent heuristic is
also admissible. Inconsistent heuristics can arise in many sit-
uations, but are most commonly result when heuristics are
compressed or when multiple heuristics are used from dif-
ferent sources.

An inconsistent heuristic can significant impact the per-
formance of A* (Mero 1984), but the effects of inconsis-
tency in states spaces with few cycles (which we generally
use IDA* to search), are generally positive (Felner et al.
2011).

IDA*
IDA* (Korf 1985) is a best-first algorithm which finds op-
timal solutions to a search problem using space linear in
the solution depth. It does this through cost-limited depth

Figure 1: The Rubik’s cube problem.

first searches. The cost limit for an iteration is defined by
f = g + h, where the g-cost of a state is the cost of the path
from the start to that state and the h-cost of a state is the
heuristic estimate of the distance from that state to the goal.
IDA* does not detect cycles, so it is best used in domains
that have relatively few cycles. IDA* has been a standard
algorithm for solving the Rubik’s cube, so we use the algo-
rithm in this work as well.

Pattern Databases
Pattern databases are a form of heuristic commonly built for
domains that can be represented by a permutation of ele-
ments. The pancake puzzle, for instance, is represented by
a pile of pancakes of different sizes, with the goal being to
sort the pancakes from smallest to largest. The goal state for
a 4 pancake problem is (0, 1, 2, 3), with legal states repre-
sented by any possible permutation of the elements, such as
(3, 1, 2, 0). The size of the domain is the number of possible
permutations of the values in the domain. Thus, for the pan-
cake puzzle example there are 4! = 24 possible states in the
state space. If we could store the distance from every permu-
tation in the state space to the goal, we would have a perfect
heuristic, but the size of the state space is prohibitively large
for most interesting problems.

We assume, but will not discuss here, that we have a func-
tion which can map back and forth between a state represen-
tation (e.g. an array of numbers) and a compact integer rep-
resentation of a state. The process of converting an explicit
state into a unique id is called ranking, and the process of
generating a state back from the unique id is unranking.

The idea of pattern databases is to abstract the permu-
tations in a way that results in a state space small enough
to fit into RAM. This state space can then be searched ex-
haustively, and the distances in the abstract state space can
be used as estimates for distances in the actual state space.
To continue the pancake example, we could abstract away
the two largest pancakes, giving a goal state that looks like
(0, 1,−,−). This state space has only 4!/2! = 12 possi-
ble permutations, and so is smaller than the original state
space. Given the state (3, 1, 2, 0), we get a heuristic value by
abstracting away the largest pancakes and then looking up
the resulting state, (−, 1,−, 0), to find its distance from the
goal. It is strictly easier to solve this sub-problem, so pattern
databases result in admissible heuristics.

Pattern databases have traditionally been built to fit into
memory, because the heuristic for a state must be looked up
at every node in the search tree. Permutation puzzles tend to
have simple rules for generating the neighbors of a state in
a search problem, meaning that a single lookup to an expen-
sive heuristic might be equivalent to searching many nodes
in the state space. Thus, it is important that the gains in node
reductions from the heuristic outweigh the cost of the heuris-
tic. Recent work on the sliding-tile puzzle (Döbbelin, Schütt,
and Reinefeld 2013), for instance, has significant node re-
ductions, but time reductions are not reported, even though
the entire PDB is loaded into RAM.

A conjecture of Korf (1997) is that the time required for
search, as measured by nodes generated/expanded, is pro-
portional to n/m where n is the size of the problem space
andm is the size of the memory used for the heuristic1. Later
work (Holte and Hernádvölgyi 1999) confirmed a slightly
revised version of this hypothesis. Further research lead to
robust predictions of work given a state space and the heuris-
tic distribution on that state space (Korf, Reid, and Edelkamp
2001; Zahavi et al. 2010).

Rubik’s Cube
In this work we focus on the domain of Rubik’s cube, shown
in Figure 1. Rubik’s cube has 8 corner cubes and 12 edge
cubes. The corner cubes can be in one of three orienta-
tions (rotations), while the edge cubes can be in 2 differ-
ent orientations. Given the orientation of the first n − 1
cubes, the nth cube has a fixed orientation. So, there are
8! 37 = 88, 179, 840 possible corner configurations and
12! 211 = 980, 995, 276, 800 edge configurations. Multiply-
ing these together, but dividing by two for reasons of parity
between the configurations gives 4.33 × 1019 states in the
state space.

The original work on building PDB’s for Rubik’s
Cube (Korf 1997) built three PDBs for obtaining heuris-
tic values. The first PDB was built just on the corner
cubes, shown in Figure 2(a). This sub-space, as described
above, has 88 million configurations. Because only 4 bits
are needed for storing the depth in the PDB, this requires
42MB of memory to store. The remaining PDBs were based
on subsets of the state space containing only 6 edge cubes,
which requires 20MB to store. This combination of PDBs fit
in to memory in 1997 when the work was done, and trivially
fits into memory today.

Other work in Rubik’s cube has been oriented towards
finding diameter of the state space – the minimum number
of moves to solve any cube (Kunkle and Cooperman 2007;
Rokicki et al. 2010), or the diameter of a particular sub-
space of the cube (Robinson, Kunkle, and Cooperman 2007;
Korf 2008).

PDBs with larger sets of edge cubes can more easily fit
into memory in a modern machine. We list the size of the
PDBs as the number of edge cubes in the PDB grows in Ta-
ble 1. While we are acquainted with colleagues that have
machines that could fit any of these PDBs in RAM, our

1This conjecture only applies to exponentially growing domains

Table 2: Search statistics using disk directly.

PDB Memory Avg. Value Memory Avg. Value Avg. Nodes Avg. Time
(corner) (corner) (edge) (edge)

Corner+7edge 42MB 8.76 238MB 8.51 19,891,069 11.80
Corner+9edge 42MB 8.76 19 GB 9.97 1,926,871 1.49

Corner+10edge (SSD) 42MB 8.76 114GB 10.63 596,684 47.80
Corner+12edge (SSD) 42MB 8.76 457GB 11.27 249,705 43.79
Corner+12edge (HDD) 42MB 8.76 457GB 11.27 82,166 465.40

largest machine has 64GB of RAM, which can store up to
the 9 edge cube pattern database.

However, we have built the 12 edge PDB, shown in Fig-
ure 2(b) using external storage (Sturtevant and Rutherford
2013) to store the results. We have also built the 10 edge
PDB. This work raises the question: Given that we have a
PDB which is larger than available RAM, how can we use
that PDB for search. A common answer to this has been
compression (Felner et al. 2007). While we will look at a
form of compression here, we are interested in studying this
problem from a broader perspective – that is, to ask what
alternate approaches exist, and whether these are or are not
viable. We first look at the problem of using the PDBs di-
rectly from disk, and then attempt an alternate approach.

Direct Use of External Memory
In this section we experiment with the direct use of disk for
heuristics. It is known that HDDs are not well-suited to ran-
dom access, but we have not seen experimental results which
validate this and measure exactly how slow HDDs are in
practice. Additionally, SSDs have far better random access
performance than HDDs, so we are interested in measuring
results with both devices to compare performance.

We take a set of 100 problems generated and given to us
by Ariel Felner which have, for the most part, an optimal
solution of 14 moves; the average solution length is 13.91
moves. We solve these problems using IDA* with the cor-
ner PDB plus one additional edge PDB. We used edge PDBs
with 7 edges and 9 edges, both of which fit into RAM, and
also with 10 and 12 edges, stored on disk, although our pri-
mary focus is on the 12 edge PDB. We put the data both on a

(a) (b)

Figure 2: Rubik’s Cube edge and corner abstractions.

HDD and a SSD to measure the difference in performance.
Our implementation uses standard techniques to minimize
cycles in the IDA* search.

The results of the search are in Table 2, including statistics
about the average heuristic value in the pattern databases.
Notice that in going from the 7 edge to the 9 edge PDB we
increase the size of the PDB by a factor of 80, and increase
the average heuristic value in the PDB by 1.5. Going from
the 9 edge PDB to the 10 edge PDB we increase the aver-
age heuristic value by 0.66 with a six times increase in the
size of the PDB. Going from the 9 edge PDB to the 12 edge
PDB we increase the average heuristic value by 1.2 with a 24
times increase in the size of the PDB. The larger PDBs result
in a significant reduction in average node expansions. Inter-
estingly, the 10 edge PDB on the SSD is not much slower
than the 12 edge PDB, even though it performs more than
twice as many node expansions.

But, as expected, the direct use of disk for accessing the
heuristics is much slower than using a smaller PDB that fits
in memory. The 10 edge and 12 edge PDBs on the SSD are
approximately 30 times slower than the 9 edge PDB. The
HDD on the 12 edge PDB was so slow that we only ran it
on the first 11 problems of the problem set, and the 10 edge
results were significantly slower. Over this subset of rela-
tively easy problems (as compared by the number of nodes
expanded), the HDD was over 10 times slower than the SSD,
and, if were to have run it to completion, we expect it to be
about 30 times slower than the SSD. This matches analy-
sis which states that SSD performance is at about the mean
between main memory and RAM (Edelkamp and Schrödl
2012), although we would need to load the 12 edge data into
RAM to confirm this.

On the problem set, the SSD for the 12 edge PDB was,
however, faster than the 9 edge PDB in RAM on three of the

Table 1: Size of the PDBs with a growing number of edge
cubes.

Edge Cubes Entries Storage
6 42,577,920 20.3 MB
7 510,935,040 243.6 MB
8 5,109,350,400 2.4 GB
9 40,874,803,200 19.0 GB

10 245,248,819,200 114.2 GB
12 980,995,276,800 456.8 GB

problems – all of which required less than 100,000 node ex-
pansions. In the worst case it was 75 times slower – this was
on the hardest problem out of the set, requiring 3,058,490
node expansions with the 12 edge PDB and 8,361,800 with
the 9 edge PDB.

This suggests that performance degrades the harder the
problem becomes. The larger the search, the larger the por-
tion of the states space that will need to have heuristic values
looked up. This hurts the OS-level disk caching, and there-
fore degrades performance.

There are two approaches which then might be viable.
First, if we could do a better job caching disk access, we
might be able to amortize the cost of looking up heuristics
on disk and improve performance. The SSD-based PDB is
approximately 30 times slower than the RAM-based PDB.
This suggests that, if we were able to perform 30 heuris-
tic lookups from a single read from disk, the performance
would be on par. The second approach is to only load a por-
tion of the PDB into RAM, and to use the RAM-based PDB
when possible. We will evaluate this second approach in Ru-
bik’s cube shortly, but first we describe previous work which
only loads a portion of a heuristic into RAM.

Compressed/Interleaved Differential
Heuristics

Different types of heuristics are required for different types
of state spaces. While PDBs have been successful in expo-
nentially growing domains, they will not necessarily work
well in domains that grow polynomially (Felner, Sturtevant,
and Schaeffer 2009). In these domains, heuristics fall into
a class of true-distance heuristics (Sturtevant et al. 2009),
where the heuristic is estimated from actual distances in the
state space instead of abstract differences.

One form of a true-distance heuristic is the differential
heuristic (Sturtevant et al. 2009). This heuristic works by
storing the distance between all states to a single pivot state,
p. A heuristic between two arbitrary states can be estimated
using the triangle inequality (Goldberg and Harrelson 2005)
giving h(a, b) = |d(a, p)−d(b, p)|. Multiple such heuristics
are combined by taking the maximum. Note that in this state
space there isn’t a single goal state, so multiple heuristics
are needed to cover all possible goals.

Because this approach is memory intensive, a type of
compression has been suggested, in which a large frac-
tion of the data is simply discarded. For instance, if we
have n heuristics, we only have heuristic i available at a
state with an id/rank modulo n equal to i. Then, heuristic
lookups are only possible in states where data is available
to make the heuristic computation. This approach, has been
called both interleaving and compression (Felner et al. 2011;
Goldenberg et al. 2011). It works for two reasons. When
compressing multiple different heuristics, the diversity of
heuristic values is likely to lead to better estimates than when
using a single heuristic, even though the heuristic estimates
are not available at every state. The approach also works be-
cause local propagation (BPMX) (Felner et al. 2005) is used
to propagate heuristic values between neighboring states and
avoid known problems with inconsistent heuristics and A*

search (Mero 1984). We propose to use the same approach
for Rubik’s cube, and argue why we initially expect the ap-
proach to work well in the following section.

Fractional PDBs
We adapt the idea of compressed/interleaved heuristics to
pattern databases and rename the idea Fractional PDBs, as
the approach is not really a form of compression, and we
aren’t interleaving values in the same manner as previous
work. In a fractional PDB we just load some fraction of the
PDB into RAM, and only use the PDB value when the rank-
ing falls into the values available in RAM.

We analyze when a fractional PDB might be useful in
practice from the perspective of successor locality. Given a
ranking of states in the state space, the state space has high
locality if the ranks of the successors of a state are found
nearby their parent state. A state space has low locality of the
successors are far from the parent state. Researchers have of-
ten looked for state spaces or ranking functions that exhibit
high locality. Two-Bit Breadth First Search (TBBFS) (Korf
2008), an external-memory search algorithm, takes advan-
tage of locality to solve problems more quickly because it
loads adjacent portions of the state space into RAM and can
process states in the same portion of the state space quickly.
It performs poorly in state spaces with low locality. Struc-
tured duplicate detection algorithm (Zhou and Hansen 2004)
takes advantage locality to improve parallelism. Writing-
Minimizing Breadth-First Search (WMBFS) (Sturtevant and
Rutherford 2013) is not as reliant on locality for perfor-
mance, and has been shown to have good performance in
state spaces with low locality.

High Locality A state space like the sliding-tile puzzle is
considered to have high locality. The locality of a state space
relies on the upper bits of the ranking function, which might,
for instance, be determined by the first two tiles in the puz-
zle. Because the blank tile moves relatively slowly across
the state space, most actions will not significantly change
the ranking function.

Suppose that we have loaded only a small percentage of a
PDB into RAM. In a state space with high locality, the ma-
jority of the successors of a state will be in the same portion
of the PDB as the parent. While this might help with the
amortization of loading values from disk, it also suggests
that there will be many, many states for which a heuristic
lookup is not available. When a search touches states that
fall into the PDB it is likely that the search will be quickly
cut off, and so the access to the PDB will be relatively sparse.

Low Locality Rubik’s Cube is a state space with low lo-
cality because any move of one of the faces of the cube will
change many cubes, and thus have a higher chance of sig-
nificantly changing the ranking function. As such, TBBFS
performs significantly worse than WMBFS in this domain.

In a state space with low locality, the chances of having a
state or one of its successors fall into the portion of a PDB
that is in RAM will be significantly increased. We will mea-
sure this directly in the next set of experimental results.

D
ist

an
ce

 to
 H

eu
ris

tic

0

1

2

3

4

5

Memory (GB)
0 50 100 150 200 250

Heuristic (Average)
Heuristic (Max)

D
ist

an
ce

 to
 H

eu
ris

tic

0

1

2

3

4

5

Memory (GB)
0 50 100 150 200 250

Heuristic/Dual (Average)
Heuristic/Dual (Max)

Figure 3: Measurements of the average and maximum distance to a heuristic lookup in the 12 edge PDB given that k GB have
been loaded into RAM.

Fractional PDB Experiments
In our first experiment, we measure the effect of locality in
Rubik’s cube. We assume that we have loaded k GB of a 12
edge PDB into RAM. Then, we sample the state space. For
each sampled state, we measure the depth at which a child
state is found for which a heuristic lookup is possible in the
k GB of the fractional PDB. The distance to a heuristic value
is essentially the error that is introduced into the heuristic as
a result of only storing the fractional PDB.

We graph this data in Figure 3; the vertical line marks the
memory we have available in our machine. The left graph
shows that if we filled memory with the fractional PDB, we
would expect to see an error of just under 1.5 in the heuristic
value, with a maximum error of 3. This error would result in
a heuristic that is worse than the 9 edge PDB (Table 2), and
it suggests that we would be better off loading the smaller
PDB.

However, state space properties such as symmetry can al-
low multiple lookups into the same PDB. These lookups will
fall into different parts of the PDB, and so this could increase
the usefulness of a fractional PDB. We perform the same ex-
periment as before, this time allowing a dual lookup in the
PDB (Zahavi et al. 2008) if the regular lookup does not fall
into the fractional PDB. Suppose for a state t that the per-
mutation π transforms the start state s into t. Then, the dual
of t is the state that applying π to results in s. This data is in
the right hand side of Figure 3. Here we see that with 64GB
of RAM the expected heuristic error is only 0.5, which does
have the potential to provide better performance than the 9
edge PDB.

We validate these results in Table 3. This table compares a
large number of different PDB combinations and sizes. The
left column indicates which PDBs are used. C stands for the
corner PDB. E7 stands for the 7 edge PDB. E9 stands for
the 9 edge PDB. E10 and E12 stand for a fractional 10 edge
and 12 edge PDB respectively. The amount of data loaded
into RAM can be inferred from the total storage used in the
second column. The third column is the average number of
nodes expanded solving the same set of 100 problems as
before, and the time is the average time to solve one of these
problems. IDA* was used to solve the problems, and BPMX

was used for propagation of heuristic values, as the resulting
heuristics are inconsistent.

As expected, the 12 edge PDB performs poorly, even with
60GB of RAM. But, perhaps it is even worse than expected,
as the 280MB 7 edge PDB performs better both in terms
of node expansions and time. Adding dual lookups to the
heuristic does help, but not enough to perform better than the
7 edge PDB. In fact, the fractional 10 edge PDB performs
better than the 12 edge because a larger fraction states are
in RAM. The best result in terms of node expansions uses
both the 9 edge and fractional 12 edge PDB, along the with
dual lookup (only in the 12 edge PDB). But, the best time
result with just with the single corner PDB and 9 edge PDB.
In general, performance is degraded when the PDB is close
to the size of main memory. In this case the RAM bus is
probably too slow to accommodate all the requests and is
thus hurting performance.

We illustrate the degradation of heuristic values using
fractional 9 edge PDBs in Table 4. These results use the
same 100 problems and the heuristic is the max of the frac-
tional 9 edge PDB and the corner PDB. When the majority
of the state space is loaded into RAM, the fractional PDB
provides reasonable results. But, loading 60% of the 9 edge
PDB is only slightly better than using all of the 7 edge PDB,
shown in the bottom row.

These results suggest that the idea of fractional PDBs on
its own is not nearly as useful as it was proven to be in
pathfinding domains. In particular, the results suggest that
the runtime distribution of heuristic values is heavily skewed
towards states with poorer heuristic values. For fractional
PDBs to be successful, there must be a way to shift this dis-
tribution back towards the true heuristic distribution.

One potential issue is that the measurements in Figure 3
do not take into account pruning rules intended to reduce
duplicates within the search, which could also be reducing
the number of heuristic lookups. As such, we conjecture
that the difficulty here is partially a problem of the type of
state space being searched. The ideas which worked well
in polynomial domains may not apply as well to exponen-
tial domains. In particular, polynomial domains usually have
many cycles and many possible goal states used in different

Table 3: Experiments with fractional PDBs.

PDB Total Storage Nodes Time
C+E12 18.6 GB 755,312,740 291.00
C+E12 60.5 GB 174,754,420 75.20

C+E12+dual 60.5 GB 58,006,372 39.44
C+E10 60.5 GB 11,233,883 31.79

C+E7+E12+dual 60.8 GB 6,186,872 19.07
C+E7 280.0 MB 19,891,069 11.81

C+E7+E12+dual 18.9 GB 12,652,497 11.62
C+E7+E12 18.9 GB 14,652,320 10.98
C+E7+E12 60.8 GB 9,602,075 10.64
C+E9+E12 51.6 GB 1,535,483 7.91

C+E9+E12+dual 51.6 GB 1,359,370 7.35
C+E7+E12+dual 46.8 GB 7,620,426 7.16
C+E9+E12+dual 23.7 GB 1,764,127 1.93

C+E9+E12 23.7 GB 1,821,488 1.68
C+E9 19.0 GB 1,926,871 1.49

Table 4: Fractional 9 edge PDB

% PDB in RAM Total Storage Nodes Time
100% 19.0 GB 1,926,871 1.49
95% 18.1 GB 2,397,627 1.90
90% 17.1 GB 3,109,128 2.39
85% 16.2 GB 4,078,892 3.05
80% 15.2 GB 5,435,597 3.95
75% 14.3 GB 7,718,233 5.45
70% 13.3 GB 9,332,735 6.52
65% 12.4 GB 11,927,444 8.21
60% 11.4 GB 15,689,744 10.62
E7 0.3 GB 19,891,069 11.81

searches. Thus, good coverage of all goals is needed and is
an important component of heuristic accuracy. Additionally,
the many cycles means that good heuristic value be easily
propagated. In the Rubik’s cube there is a single goal state,
and we work hard to avoid duplicates in the IDA* search,
reducing the potential gains of fractional PDBs.

Conclusions and Future Work
Given the availability of PDBs which are larger than RAM,
this paper addresses the question of how not to effectively
use these PDBs. We perform disk-based searches to measure
the cost of looking up heuristics directly from disk, validat-
ing results expected results with experimental numbers. We
also attempt to apply the idea of fractional PDBs, something
that has been successful in polynomial domains. We suggest
that the approach might work based on the locality of the
Rubik’s cube state space, but discover that in practice the
results are disappointing.

We have several directions for future work, including op-
timizing our implementation and performing further exper-
iments to explain why fractional PDBs perform poorly. We
are looking into other approaches for using external-memory

PDBs to improve the performance of search, including in-
vestigating state spaces with varying locality.

Acknowledgements
The experiments in this paper were run on a machine sup-
ported by the NSF I/UCRC on Safety, Security, and Rescue.

References
Culberson, J. C., and Schaeffer, J. 1996. Searching with pat-
tern databases. Advances in Artificial Intelligence (Lecture
Notes in Artificial Intelligence 1081) 402–416.
Döbbelin, R.; Schütt, T.; and Reinefeld, A. 2013. Build-
ing large compressed pdbs for the sliding tile puzzle. ZIB-
Report 13-21.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search -
Theory and Applications. Academic Press.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In International Joint
Conference on Artificial Intelligence (IJCAI-05), 103–108.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. Journal of Artificial
Intelligence Research 30:213–247.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence 175(9-10):1570–1603.
Felner, A.; Sturtevant, N.; and Schaeffer, J. 2009.
Abstraction-based heuristics with true distance computa-
tions. In Symposium on Abstraction, Reformulation and Ap-
proximation (SARA-09).
Goldberg, A. V., and Harrelson, C. 2005. Computing the
shortest path: A* search meets graph theory. In SODA, 156–
165.
Goldenberg, M.; Sturtevant, N. R.; Felner, A.; and Schaeffer,
J. 2011. The compressed differential heuristic. In AAAI
Conference on Artificial Intelligence, 24–29.
Holte, R. C., and Hernádvölgyi, I. T. 1999. A space-time
tradeoff for memory-based heuristics. In National Confer-
ence on Artificial Intelligence (AAAI-99), 704–709.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial Intelligence
129(1–2):199–218.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s cube
using pattern databases. In National Conference on Artificial
Intelligence (AAAI-97), 700–705.
Korf, R. E. 2008. Minimizing disk i/o in two-bit breadth-
first search. In AAAI, 317–324.
Kunkle, D., and Cooperman, G. 2007. Twenty-six moves
suffice for rubik’s cube. In Wang, D., ed., ISSAC, 235–242.
ACM.
Mero, L. 1984. A heuristic search algorithm with modifiable
estimate. Artificial Intelligence 23:13–27.

Robinson, E.; Kunkle, D.; and Cooperman, G. 2007. A com-
parative analysis of parallel disk-based methods for enumer-
ating implicit graphs. In Maza, M. M., and Watt, S. M., eds.,
PASCO, 78–87. ACM.
Rokicki, T.; Kociemba, H.; Davidson, M.; and Dethridge, J.
2010. God’s number is 20. http://www.cube20.org/.
Sturtevant, N. R., and Rutherford, M. J. 2013. Minimiz-
ing writes in parallel external memory search. International
Joint Conference on Artificial Intelligence (IJCAI).
Sturtevant, N.; Felner, A.; Barer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In International Joint Conference on Artificial Intel-
ligence (IJCAI-09), 609–614.
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artificial Intelligence 172(4–5):514–540.
Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2010.
Predicting the performance of IDA* (with BPMX) with con-
ditional distributions. Journal of Artificial Intelligence Re-
search 37:41–83.
Zhou, R., and Hansen, E. 2004. Structured duplicate detec-
tion in external-memory graph search. In National Confer-
ence on Artificial Intelligence (AAAI-04), 683–689.

