
The Compressed Differential Heuristic

Meir Goldenberg
ISE Department

Ben-Gurion University (Israel)
Mgoldenbe@yahoo.ca

Nathan Sturtevant
CS Department

University of Denver (USA)
Sturtevant@cs.du.edu

Ariel Felner
ISE Department

Ben-Gurion University (Israel)
Felner@bgu.ac.il

Jonathan Schaeffer
CS Department

University of Alberta (Canada)
Jonathan@cs.ualberta.ca

Abstract

The differential heuristic (DH) is an effective memory-based
heuristic for explicit state spaces. In this paper we aim to
improve its performance and memory usage. We introduce a
compression method for DHs which stores only a portion of
the original uncompressed DH, while preserving enough in-
formation to enable efficient search. Compressed DHs (CDH)
are flexible and can be tuned to fit any size of memory, even
smaller than the size of the state space. Furthermore, CDHs
can be built without the need to create and store the entire
uncompressed DH. Experimental results across different do-
mains show that, for a given amount of memory, a CDH sig-
nificantly outperforms an uncompressed DH.

1 Introduction and overview
A common research direction in heuristic search is to de-
velop memory-based heuristics in the form of look-up ta-
bles built during a preprocessing phase. Pattern databases
(PDBs) (Culberson and Schaeffer 1998) are a common tech-
nique, which is usually implemented for implicit exponen-
tial domains where good domain abstractions are available.

Felner et al. (2007) showed that PDBs can be compressed
by merging several PDB entries into one. If the entries to
be merged have similar values, then most of the informa-
tion stored in the original PDB is preserved. Similar perfor-
mance can be achieved using less memory or, alternatively,
constant memory size can retain more information, enabling
a faster search. (Felner et al. 2009) concluded that PDBs
are not well-suited for explicit domains, such as map-based
path finding.

True distance heuristics (TDHs) are a class of memory-
based heuristics developed for explicit domains (Sturtevant
et al. 2009; Felner et al. 2009; Goldenberg et al. 2010).
TDHs store distances between selected pairs of states in the
original state space (as opposed to distances in an abstract
space stored by a PDB). This information is used to compute
admissible heuristic values between any pair of states. TDH
variants are distinguished by the pair selection criteria and
by the way the heuristic is computed.

A simple and effective TDH is the differential heuris-
tic (DH) which was independently developed and used

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by a number of researchers (Goldberg and Harrelson
2005)(G&H), (Ng and Zhang 2002). A set of pivot states
P is determined. A DH stores the exact distance from every
state x to all states p ∈ P . G&H fit DHs into the limited
memory of a portable device by storing part of the informa-
tion on the secondary storage device. We suggest a differ-
ent approach to reducing the memory usage of DHs. Our
approach can be combined with the approach of G&H to
achieve additional performance gains on portable devices.

We introduce the compressed DH (CDH) which stores a
part of the DH’s look-up table (hereafter, we refer to DH as
the regular DH to distinguish from CDH). In CDH, a subset
of the |P | distances are stored for each state. When a dis-
tance from a state x to a pivot p is missing from the table, it
is substituted by distances that were preserved by the com-
pression in two ways: 1) computing upper and lower bounds
on the missing distances from the goal to the pivots, and 2)
using BPMX (Zahavi et al. 2007) (see Section 5). Any A∗-
based search algorithm can use CDH.

Experimental results across multiple domains (game
maps, road maps, and a robotic arm) show that, for a given
amount of memory, a CDH outperforms a regular DH of the
same size. Furthermore, CDHs can be effectively used in
applications, such as video games, where even the minimal
amount of memory needed by a DH (i.e. the size of the do-
main) is not afforded. CDHs perform well because they are
based on a larger DH containing a richer diversity of heuris-
tic values. CDHs can be built without the need to create and
store the entire uncompressed DH. While this paper focuses
on DHs, the ideas are applicable to other types of TDHs.

2 DH and its compressed version
Given a weighted graph G = (V,E,W), consider the prob-
lem of finding the shortest path between an arbitrary pair
of states, s, g ∈ V (a problem instance). Denote the cost
of the shortest path between any two states a, b ∈ V by
d(a, b). We assume that a base heuristic, hbase(a, b), is de-
fined for the domain (e.g., Manhattan distance for grid-based
searches). Furthermore, we assume that m|V | memory is
available for storing the heuristic look-up table for some pos-
itive real number m. This table is computed once for a given
input graph and is used across multiple problem instances.

Definition: Differential heuristic (DH). Choose P ⊂ V
(|P | � |V |) states called pivots, such that |P | = m. For

each state a ∈ V , the look-up table of DH stores the dis-
tances from a to all pivots p ∈ P , i.e, exactly m|V | dis-
tances d(a, p) are stored in the table. For any given state a
and pivot p, the following heuristic estimate of d(a, g) with
respect to p is admissible:

dhp(a, g) = |d(a, p)− d(g, p)| (1)

and the differential heuristic (DH) is:

dh(a, g) = max

{
hbase(a, g),max

p∈P
dp(a, g)

}
.

We refer to the DH just defined as the regular DH and il-
lustrate it in Figure 1(left). Assume the search has reached
state a and that a heuristic estimate to g is required. Let
p1 and p2 be pivots, so that the DH stores d(a, p1) = 4,
d(g, p1) = 9, d(a, p2) = 3 and d(g, p2) = 14. The re-
sulting heuristic estimates with respect to the two pivots are
dhp1(a, g) = |4 − 9| = 5 and dhp2(a, g) = |3 − 14| = 11.
Therefore, dh(a, g) = max{5, 11} = 11. One can easily
verify that the regular DH is admissible and consistent.

2.1 Compressed DH
A CDH stores part of the information contained in the regu-
lar DH. For each state a ∈ V , only distances to pivots from a
subset Pa ⊂ P are stored. In Figure 1(right), Pa = {p1, p2}
but Pg = {p1}. Solid edges represent distances that are
stored in the CDH. The methods for selecting the pivots P
and for choosing the subset Pa for each a are discussed later.

Assume that the A∗ search reached state a and that an
admissible estimate to the goal, h(a, g), is needed. Let p be
a pivot to which the distance from a, d(a, p), is stored in the
CDH (i.e. p ∈ Pa). There are now two cases.

Case 1: d(g, p) is also stored. In this case, the CDH with
respect to p is calculated as in the regular DH: cdhp(a, g) =
dhp(a, g). The pivot p1 in Figure 1(right) demonstrates this
case, since distance to p1 is stored both from a and from g.
Therefore, cdhp1

(a, g) = dhp1
(a, g) = |4− 9| = 5.

Case 2: p /∈ Pg (p2 in our example). In this case,
cdhp(a, g) is defined as follows. Equation 1 is based on
the inequalities d(a, g) ≥ d(a, p) − d(g, p) and d(a, g) ≥
d(g, p)− d(a, p). Therefore, equation 1 can be re-written as

dhp(a, g) = max {d(a, p)− d(g, p), d(g, p)− d(a, p)} . (2)

Let d(g, p) and d(g, p) denote an upper and lower bound
on the missing distance d(g, p). Using them with equation 2
gives the following admissible heuristic with respect to p:
cdhp(a, g) = max

{
d(a, p)− d(g, p), d(g, p)− d(a, p)

}
.

Maximizing over all pivots yields the compressed differen-
tial heuristic (CDH):

cdh(a, g) = max

{
hbase(a, g),max

p∈Pa

cdhp(a, g)

}
.

2.2 Computing the bounds
Let p ∈ P be a pivot to which the distance from the goal
state g, d(g, p), is not stored as in Case 2) above. Let x be
an arbitrary state such that the distance from x to p is stored.
More formally, p /∈ Pg and p ∈ Px. The triangle inequal-
ity for the vertices {g, x, p} gives the following bounds on
d(g, p) with respect to x:

4

2

1

4

x

1

y

2
p a

p

g3

14

9

2
13

15

p

p

g

9

3 a

1

Figure 1: Regular DH (left) and compressed DH (right).

dx(g, p) = d(g, x) + d(x, p), and

dx(g, p) = |d(g, x)− d(x, p)| (3)

For a given problem instance, the goal state remains un-
changed for the duration of the search. Therefore, for each
pivot p, the bounds d(g, p) and d(g, p) can be precomputed
before the main search begins. These bounds are stored in
a table called the bounds table, to be used throughout the
search for this particular problem instance.

The Bounding procedure calculates the bounds by apply-
ing equation 3 to states that are in close proximity to g as
follows. Initially, for each pivot p /∈ Pg , we set d(g, p) =∞
and d(g, p) = hbase(g, p). Perform a Dijkstra search from
g. For each expanded state x and for each p ∈ Px, we
use the distance d(x, p) to compute the bounds dx(g, p) and
dx(g, p). These bounds are then used to improve the global
upper and lower bounds on d(g, p). This process is contin-
ued until at least r distances d(x, p) have been seen for each
pivot p /∈ Pg , where r is a parameter.

Let us see how the Bounding procedure with r = 2 works
for the example in Figure 1(right). Recall that p2 ∈ Pa

but p2 /∈ Pg . Since d(g, p2) is missing from the table, the
Bounding procedure will compute bounds on the missing
distance. States around g are expanded in Dijkstra’s or-
der. State x will be expanded first. Since p2 ∈ Px, the
bounds with respect to x will be computed according to
equation 3: dx(g, p2) = 13 + 1 = 14 and dx(g, p2) =
|13 − 1| = 12. Had we set r = 1, the Bounding proce-
dure would stop here. Since r = 2, the bounding proce-
dure continues and expands y. Since p2 ∈ Py , the bounds
with respect to y are computed: dy(g, p2) = 15 + 2 =
17 and dy(g, p2) = |15 − 2| = 13. The global lower
bound is updated to d(g, p2) = 13, while the global up-
per bound remains unchanged: d(g, p2) = 14. After
computing cdhp2

(a, g) = max {3− 14, 13− 3} = 10,
we obtain cdh(a, g) = max{cdhp1

(a, g), cdhp2
(a, g)} =

max{5, 10} = 10. Note that the regular DH in the above
example achieved a larger heuristic value of dh(a, g) = 11
by using more memory.

Given a problem instance s, g ∈ V , the search driven by
the CDH consists of two stages: (1) the Bounding procedure
and (2) the main search. Both stages must be included in the
cost of finding a solution. Note that the Bounding procedure
expands at least r|P |/m nodes. Our experiments show that
often choosing relatively large values of r justifies itself by
improving the quality of CDH.

It is important to distinguish the Bounding procedure
(which is executed for each problem instance) from the main
preprocessing phase, which computes the CDH’s look-up ta-

ble once for a given input graph to be used across multiple
problem instances.

3 Management of pivots
Given m|V | memory, a regular DH is forced to use exactly
|P | = m pivots as the distance from each state to all pivots
is stored. The effectiveness of the regular DH will be deter-
mined by where the m pivots are placed. A CDH is more
flexible. It can use any number of pivots and then decide
which and how many distances to store for each state based
on the available memory m. We discuss these issues in turn.

3.1 Placement strategy
Ideally, the strategy for selecting the pivot locations should
ensure the highest heuristic values possible. We follow
(Goldberg and Werneck 2005) and refer to the quality of
placement of a set of pivots by the term “coverage” without
regards to any particular measure of this quality. A good
placement strategy covers the state space well.

(Goldberg, Kaplan, and Werneck 2009) (GKW) state that
the best performing of the known placement strategies is
Avoid. We therefore use Avoid in all of our experiments.1
The main idea is to “avoid” areas that are well covered by
the existing pivots. Given that k ≥ 0 pivots have been cho-
sen, pivot k + 1 is chosen as follows:

(1) Choose a root state t. GKW give a rule that biases
the choice of the root towards states located far away from
the existing pivots. In our implementation, the farthest state
from the existing pivots was chosen.

(2) Construct a spanning tree rooted at t. Two rules are
applied in sequence to choose a leaf of that tree to be the next
pivot. The first rule chooses a subtree whose states have low
heuristic values to t given the current selected pivots. The
second rule chooses a particular leaf of that subtree to be the
next pivot (see pages 22-23 of GKW for more details).

3.2 Pivots in CDH
Two phases precede the CDH look-up table computation:

(1) Determining the number of pivots |P |. Large num-
ber of pivots provide a diversity of heuristic values. How-
ever, due to the compression, many of the state-to-pivot dis-
tances will not be stored in the CDH’s look-up table. There-
fore, the CDH will rely more on the bounds produced by
the Bounding procedure. With a large number of pivots,
these bounds are less accurate as pivots might be located
far from the goal state. Furthermore, the cost of running
the Bounding procedure increases, since more states have to
be expanded before r distances to each pivot are seen. We
do not have a general solution to find the right balance for
this trade-off. Therefore, we determine |P | by performing a
tuning phase as described in the experimental section.

(2) Constructing the set Pa for each state a. The com-
putation of CDH, cdh(a, g), requires that the identities of the
pivots in Pa be known at the time of heuristic computation.
Therefore, in general, it may be required that the sets Pa be
stored explicitly in the CDH’s look-up table, along with the

1MaxCover, based on Avoid, results in slightly faster searches,
but requires much more time for computing the pivot’s locations.

Procedure 1 Computing heuristics from a CDH.

Output: cdh(a, g)
1: Compute |Pa|
2: cdh(a, g)← hbase(a, g)
3: for i = 0 to |Pa| do
4: p← identity(a, i)
5: Compute cdhp(a, g) // Consult the bounds table
6: cdh(a, g)← max{cdh(a, g), cdhp(a, g)}
7: end for

distances from a to the pivots in Pa. To avoid this extra stor-
age, implicit rules for choosing the size of Pa and the iden-
tities of pivots in Pa need to be formulated. This is achieved
by defining two functions: 1) An ordering index(a, p) :
V × Pa → {0, 1, . . . , |Pa| − 1} on the elements of Pa that
has an inverse which can be computed efficiently. 2) The
inverse identity(a, i) : V × {0, 1, . . . , |Pa| − 1} → Pa.
This function determines which pivot the ith distance stored
for a refers to. With this information, cdh(a, g) is computed
using Procedure 1.

We realize this idea by choosing pivots for Pa using a
round-robin distribution as follows. Suppose that m|V |
memory is given (m may be non-integer). The idea is to
distribute distances to pivots among the states in such a
way that, for each state a, the immediate neighborhood of
a should contain distances to as many pivots as possible.
A simple way to approximate this behavior is to distribute
these distances in a round-robin fashion2. We show this with
an example. Assume 2|V | memory (i.e. |Pa| = 2 for all
a) and eight pivots (i.e. |P | = 8). The pivots are arranged
around a circle. For state a with index fifteen, we start by as-
signing to a the distance to pivot 15 mod 8 = 7 and continue
to go around the circle stepping |P |/|Pa| = 4 each time.
One can easily extend this example to a generic formula for
any a, |P | and integer m. With some more mathematical
effort, this idea can be extended to non-integer values of m
as well.

The round-robin distribution does not use any graph-
specific information when assigning a pivot to a state. How-
ever, it enables cutting the memory by half as identities of
pivots need not be stored. This is very important as one can
now store distances to twice as many pivots for each state.

4 Building the compressed DH
A CDH can be built directly, without the need to first build
and store the much larger uncompressed regular DH. This is
done in two phases:

(1) For each pivot p ∈ P , form a list of states Sp which
will store a distance to p. With each state a ∈ Sp, store the
index of p in Pa, i.e. index(a, p).

(2) For each pivot p, perform a breadth-first search to de-
termine all distances d(a, p) for a ∈ Sp. For each a ∈ Sp,
the distance d(a, p) is stored at position index(a, p), com-
puted in step (1), in the array of distances stored with a.

2It seems that any hashing function that distributes distances to
any given pivot somewhat uniformly among the states will closely
reproduce our results.

10
4

2

6

BPMX

BPMX
6

5

10 7

7

8

8

9

4

6 2
6

Figure 2: BPMX examples.

5 BPMX used for CDH
A heuristic h is inconsistent if there exists a pair of states
a, b, such that |h(a, g) − h(b, g)| > d(a, b). CDHs are in-
consistent, since two neighboring states a and b may use two
different sets of pivots to compute their heuristic estimates.

Bidirectional pathmax (BPMX) (Zahavi et al. 2007) is
a method that propagates admissible, inconsistent heuris-
tics values as follows. For two arbitrary states a, b ∈
V , the heuristic estimate h(a, g) can be updated to be
max {h(a, g), h(b, g)− d(a, b)}. The technique is illus-
trated in Figure 2(left). BPMX uses this rule in both direc-
tions of a search tree. In Figure 2(right), assuming unit edge
costs, the h-value of the left grandchild (10) is propagated
up and then down the tree, increasing heuristic estimates of
all states in its neighborhood except for the gray node.

Using inconsistent heuristics can cause A* to re-expand
nodes many times. (Zhang et al. 2009) suggests that im-
plementing BPMX on top of A* significantly reduces the
number of node re-expansions. They concluded that only
propagation between an expanded node v and its immediate
children, BPMX(1), is worthwhile. We have confirmed this
result in our work, and all our experiments use BPMX(1).

6 Summary of the approach
Our approach can be summarized as follows. Given an input
graph and the amount of memory, the following preprocess-
ing phase is performed:

(1) Determine the number of pivots |P |. This is done em-
pirically as discussed below.

(2) Place the pivots using the Avoid placement strategy.
(3) Distribute distances to pivots among states as de-

scribed in Section 3.2.
The above preprocessing phase is performed once for a

given input graph. By contrast, the following two phases are
performed to solve a given problem instance:

(1) Compute the bounds on the distances from the goal
state to the pivots using the Bounding procedure.

(2) Perform the main A∗-based search driven by the CDH,
which is computed using Procedure 1. Since the CDH is
admissible, this search produces an optimal path. BPMX(1)
is used to propagate heuristic values.

7 Experimental results
We performed experiments to show the key properties of
CDHs and compare their performance with regular DHs.
Three real-world domains were used, as shown in Figure 3.

(1) Dragon Age maps. These computer game maps,
taken from Bioware’s Dragon Age: Origins (DAO),3 are

3http://movingai.com/benchmarks.

Figure 3: The environments.

1

1

1
1 1 1 1

1
2

2
2 2 2 2 2

2
4

4 4 4 4 4 4
4

8 8 8 8 8 8 8

8

1 22 4 8
16 32 64 12

8
25

6
51

2
10

24
20

48
40

96

|P| (number of pivots)

0

4

8

12

16

20

24

28

32

T
im

e,
 m

s

|V|/64
|V|/32
|V|/16
|V|/8
|V|/4
|V|/2
|V|1 1

2|V|2 2

4|V|4 4

8|V|8 8

16|V|

Figure 4: Setting the parameters of CDH (DAO map).

eight-connected grids. Octile distance was used as the base
heuristic. The reported results are for the map ost100d
(shown in the figure), the second largest map in the game
(the largest map had few obstacles). Our experiments con-
firmed the reported trends using other Bioware maps.

(2) Road maps. The road maps of North American cities
and states were used in these experiments.4 Air distance was
used as the base heuristic.

(3) Robotic Arm. A segmented arm moves in two-
dimensional space and can have any number of segments.
We say n-arm to refer to the robotic domain with an arm
possessing n segments. The n− 1 angles between the adja-
cent segments of the arm define the state. An action changes
one of these angles by 360◦/512 ≈ 0.7◦ in any direction.
The other n − 2 angles remain intact. Actions that result in
intersecting the arm’s segments or in colliding of any seg-
ment into an obstacle are forbidden. The 3-arm and the 4-
arm domains have about 134 million and 69 billion states,
respectively. The base heuristic is the sum of the differences
in angles between the arm segments (taken by the absolute
value) between the start and goal state.

In addition to the results presented here, we confirmed the
trends reported in this section by experimenting with two
synthetically generated environments: rooms maps and De-
launay graphs, but these results are not included.

7.1 Parameter tuning
Assuming that the amount of available memory is given as
input, two parameters must be set: the number of pivots |P |
and the r-parameter of the Bounding procedure. Figure 4
shows how the choice of |P | affects the time of searches

4http://www.dis.uniroma1.it/∼challenge9/download.shtml.

Memory |V |/16 |V |/4 |V | 4|V | 16|V |
r 16 8 8 8 4
Overhead 3.7% 4.2% 4.1% 9.7% 1.5%
Time vs. r = 1 12.4% 13.6% 19.5% 16.2% 16.6%

Table 1: Summary of the Bounding procedure.

Graph |V | Nodes Time
ost001d 10,557 1,743 1.69
brc501d 57,719 8,840 10.18
ost100d 137,375 20,389 26.73
NY 264,346 59,821 68.17
SF Bay 321,270 82,848 97.65
Colorado 435,666 110,293 136.89

Table 2: The baseline.

for the ost100d DAO map. Each curve corresponds to
a different amount of memory available for the CDH. For
each data point, we show results with the best choice of r
associated with this |P |. We see that the trade-off described
in Section 3.2 expresses itself in a clear saddle point in the
curves. We exploited this by designing a parameter tuning
procedure (called also the tuning phase), which ran searches
for one hundred problem instances with |P | = m, |P | =
2m, |P | = 4m, etc. until the saddle point was detected.

A similar saddle point, though a bit less expressed, exists
for the r parameter as well. Note that trying the different
values of r for the tuning phase is inexpensive (relative to
trying the different values of |P |), since the look-up table of
CDH does not need to be rebuilt when r changes.

Table 1 shows the overhead incurred by the Bounding pro-
cedure versus the performance gains of choosing r > 1 for
several amounts of memory. For example, the left-most data
column shows that, for |V |/16 memory, the Bounding pro-
cedure with r = 16: 1) expands 3.7% nodes compared to the
number of nodes expanded by the main search and 2) results
in 12.4% overall search speed-up compared to the search
with r = 1. We see that the application of the Bounding
procedure with r > 1 is well justified.

The tuning phase was performed for all input graphs. For
each memory size, the values of |P | and r resulting in the
fastest searches were used in our experiments.

7.2 Pathfinding experiments
For each input graph, the parameters obtained by the

tuning phase were used to solve one thousand problem in-
stances (independent of those used in the tuning phase). Ta-
ble 2 establishes the baseline for our results by showing how
the base heuristic performs on each of the input graphs. All
times that we report are measured in milliseconds.

The results of the experiments on the maps are shown in
Figure 5. Charts (a) and (b) show the time performance of
both the regular and the compressed DH for the ost100d
DAO map and the SF Bay Area road map, respectively. For
the memory amounts between 1|V | and 8|V |, CDH signifi-
cantly outperforms the regular DH. When larger amounts of
memory are available, regular DHs achieve good coverage
of the state space, leaving little space for improvement.

In industries such as video games and GPS navigation,
although the speed of searches is very important, little mem-

Memory Heuristic |P | Avg. Nodes Avg. Time
3-arm

0 Base 11,673,442 47,079
|V |/64 CDH 1 3,938,965 17,563
|V |/16 CDH 1 2,903,863 13,316
|V |/4 CDH 2 83,498 737
1|V | CDH 2 5,951 24
1.5|V | CDH 3 5,518 23
1|V | Regular DH 1 481,289 1,770
2|V | Regular DH 2 828 10

4-arm
0 Base 0 2,772,943 34,040
|V |/64 CDH 1 2,482,112 23,742
|V |/32 CDH 1 2,115,652 21,801
|V |/16 CDH 2 1,942,464 16,918

Table 3: The robotic arm.

ory can be spared to store an accurate memory-based heuris-
tic, such as the regular DH, which requires at least the mem-
ory equal to the size of the domain. CDHs are applicable
for any size of memory, even less than 1|V |, and can out-
perform the base heuristic by using as little as |V |/32 mem-
ory. The improvement factors achieved by the CDH over
the base heuristic for |V |/2 memory are shown in table (c)
of Figure 5. Furthermore, chart (a) shows that, for the DAO
map, CDH that uses |V |/2 memory outperforms the regular
DH that uses as much as 4|V | memory.

7.3 Robotic arm experiments
For this experiment, the obstacles consisted of three walls

as shown in Figure 3. The results are averaged over 100
problem instances with the start/goal states located on the
outside/inside of the walls. For the 3-arm domain, the tun-
ing phase was limited to finding the best number of piv-
ots. For the 4-arm domain, no tuning was performed. The
r-parameter was irrelevant as a slightly different bounding
procedure was used, as follows. A breadth-first search from
the goal state was performed until a distance to a pivot was
found. All distances that could be discovered at the same
depth were used to form the bounds. Distances to the re-
maining pivots were not used in the heuristic calculation.
Also, the pivots were placed as far as possible from each
other instead of using the Avoid placement.

Table 3 shows the results. The upper half of the table
corresponds to the 3-arm domain. The base heuristic (the
first data row) expanded 11.7 million nodes on average. The
geometry computations to determine which actions are per-
mitted from a given state are expensive, hence the relatively
long running times. With as little as |V |/64 memory, CDH
achieves a 2.6 times improvement over the base heuristic.
With 1|V | memory, CDH shows a more than 70-fold im-
provement in time performance over the regular DH.

The lower half of the table shows the 4-arm results. This
domain is too large to afford the regular DH, even with one
pivot. We allowed |V |/64− |V |/16 memory for the CDH’s
look-up table. Also, five minutes were allotted for solving
each problem instance. The results in the table are for the
79 (out of 100) problem instances that were solved in the
allotted time by both the CDH and the base heuristic. With
|V |/16 the CDH was two times faster than the base heuristic

D D D D D D

D

D
D

D
D

C

C

C

C

C
C

C
C C C C

1 22 4 8 16
1/64

1/32
1/16 1/8 1/4 1/2

Memory, multiples of |V|

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9
1

1.1

1.2

1.3

T
im

e
re

la
ti

v
e

to
 t

h
e

b
as

e
h
eu

ri
st

ic

Octile distance
DHD D
CDHC C

(a) ost100d

D D D D D D

D

D

D
D

D

C

C

C

C

C

C
C

C C C

1 22 4 8 16
1/64

1/32
1/16 1/8 1/4 1/2

Memory, multiples of |V|

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9
1

1.1

1.2

1.3

T
im

e
re

la
ti

v
e

to
 t

h
e

b
as

e
h
eu

ri
st

ic

Air distance
DHD D
CDHC C

(b) SF Bay Area map (c) Best CDH improvement factor

Figure 5: Pathfinding experiments.

Bucket ost100d SF Bay
Hops Time Hops Time
1 58.69 0.66 134.46 1.14
4 233.24 1.36 412.05 1.85
7 408.31 2.17 551.68 2.32
10 745.01 4.34 806.06 2.50

Table 4: Improvement of CDH for different path lengths.

for this problem set. Furthermore, CDH solved 86 problem
instances in total, while the base heuristic solved only 80.

7.4 CDH for problems of varying difficulty
To explore how the length of the optimal solution affects
CDH’s performance, we fix the available memory and di-
vide the problem set into buckets according to the cost of
the optimal solution. We chose |V |/2 memory and used ten
buckets, each consisting of 100 problem instances. In Ta-
ble 4, the average number of hops in the optimal solution
and the improvement factor in time of CDH over the base
heuristic are shown for the ost100d DAO map and the SF
Bay Area road map. We observe that the improvement fac-
tor of CDHs over the octile/air distance heuristic increases
as the length of the optimal solution increases. Some devia-
tions from this trend were observed in our experiments. We
attribute these deviations to cache effects.

8 Conclusions and future work
We introduce a compression method for DHs which stores
only a portion of the original uncompressed DH, while pre-
serving enough information to enable efficient search. Ex-
perimental results for three real-world domains show that
the resulting heuristic achieves several-fold improvement in
time performance over the regular DH when a moderate (i.e.
not enough to make the regular DH almost perfect) amount
of memory is given. When the amount of memory is less
than the memory needed to store the input graph (as is the
case for many practical applications such as video games),
DH is not applicable, but CDH achieves a several-fold im-
provement over the base heuristic of the domain.

We would like to continue this work by exploring more
sophisticated ways of distributing distances to pivots among

the states, for both implicit and explicit storage of pivot iden-
tities. A starting point in this direction is to prioritize the
pivots, so that distances to some pivots can be stored with
greater frequency than to the other pivots.

9 Acknowledgements
This research was supported by the Israeli Science Founda-
tion (ISF) under grant no. 305/09 to Ariel Felner. Finan-
cial support of iCORE and NSERC to Jonathan Schaeffer is
greatly appreciated.

References
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases. Com-
putational Intelligence 14(3):318–334.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C. 2007.
Compressed pattern databases. JAIR 30:213–247.
Felner, A.; Berrer, M.; Sturtevant, N.; and Schaeffer, J. 2009.
Abstraction-based heuristics with true distance computations. In
Proceedings of SARA.
Goldberg, A., and Harrelson, C. 2005. Computing the shortest
path: A* search meets graph theory. In SODA, 156–165.
Goldberg, A., and Werneck, R. 2005. Computing point-to-point
shortest paths from external memory. In ALENEX, 26–40.
Goldberg, A.; Kaplan, H.; and Werneck, R. 2009. Reach for A*:
Shortest path algorithms with preprocessing. In Ninth DIMACS
Implementation Challenge, 93–140.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and Schaeffer, J. 2010.
Portal-based true-distance heuristics for path finding. In Proceed-
ings of SoCS.
Ng, T., and Zhang, H. 2002. Predicting internet network distance
with coordinates-based approaches. In INFOCOM, 170–179.
Sturtevant, N.; Felner, A.; Barer, M.; Schaeffer, J.; and Burch, N.
2009. Memory-based heuristics for explicit state spaces. IJCAI
609–614.
Zahavi, U.; Felner, A.; Schaeffer, J.; and Sturtevant, N. R. 2007.
Inconsistent heuristics. In AAAI, 1211–1216.
Zhang, Z.; Sturtevant, N.; Holte, R.; Schaeffer, J.; and Felner, A.
2009. A* search with inconsistent heuristics. In Proceedings of
IJCAI, 634–639.

