
Benchmarks for Pathfinding in 3D Voxel Space

Daniel Brewer
Digital Extremes

London, Ontario, Canada
silentbob.za@gmail.com

Nathan R. Sturtevant
Department of Computer Science

University of Denver
Denver, CO, USA

sturtevant@cs.du.edu

Abstract
The problem of finding optimal paths in 3D space is compu-
tationally more complex than in a 2D plane. While a range
of different approaches have been developed across different
fields, there has been relatively little work studying the com-
plexities and tradeoffs of implementations for path planning
in 3D space. This paper describes the 3D path planning prob-
lem faced in the game Warframe. The solution used by indus-
try was tuned for their own constraints, but little is known
about the applicability of other approaches to solving this
problem. Thus, the makers of this game have made their un-
derlying planning data available for researchers to use. This
paper describes this new data set which is publicly available
for study and dissemination.

Introduction
While optimal path planning in visibility graphs or through
discretized 2D grid maps can be done in polynomial time
(Welzl 1985), optimal path planning through a three dimen-
sional volume is NP-hard (Canny and Reif 1987). In vis-
ibility graphs or grids, optimal paths always pass through
the corners of obstacles. But, in three dimensions an optimal
path may cross an edges at an arbitrary location and thus
may not correspond to the shortest path between two ver-
tices of a finite graph. The location which a path cross an
edge can require exponentially many bits to describe (Bajaj
1988). Additionally, the number of distinct edge sequences
that need to be considered may be exponentially large.

When faced with a three dimensional planning problem
the most common approach is to discretize the world rep-
resentation in some way (randomly or uniformly) and then
plan directly in that representation, restricting paths to only
pass through discretize vertices (Yang and Sukkarieh 2008;
Colas et al. 2013), as this reduces the overall complex-
ity. Although planning in three dimensional space has been
reasonably-well studied in robotics (Bortoff 2000; Petres et
al. 2007), this is often in the context of a configuration space
that has even higher dimension, and not directly in the three
dimensional space.

Thus, in comparison with 2D grid maps, relatively lit-
tle work has been done on planning directly in a 3D space
representation. In particular, it is not clear how the many

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimizations for grid maps (Sturtevant et al. 2015) or for
road networks (Bast et al. 2016) apply in three dimensional
space. One key to answering these questions is the availabil-
ity of data for testing. This paper describes a new data set of
3D voxel1 maps that come from the online game Warframe.
The data is being made publicly available to encourage fur-
ther research on 3D path planning that may be applicable
not only to games like Warframe, but also to scenarios in
augmented and virtual reality. Augmented reality is a partic-
ularly compelling future application for 3D path planning,
as augmented reality agents must both model and interact
with the real world in a believable manner.

This paper describes (1) the game from which the map
sets are taken, (2) the origins of the maps within the game,
(3) the format of the maps in the benchmark set, and (4)
how sample benchmark problems were created. The bench-
mark problems are developed in a simple discretized envi-
ronment, but the maps themselves can be used for general
shortest path queries in free space. This is one of several
future research directions that could build upon this data. Fi-
nally, the benchmark sets are available for download from
http://www.movingai.com/benchmarks/ along
with other previously created benchmark sets for 2D grid
maps.

Warframe Description and Constraints
Warframe is an online, sci-fi, action game that originally
shipped in March, 2013, although the game is continually
updated. One part of the game which was introduced in
November, 2014 is the archwing space combat. The arch-
wing gameplay involves flying through procedurally gener-
ated debris fields and combating enemy spaceships. These
enemy spaceships are required to navigate the debris field
with full three dimensional flight paths. The debris fields
are constructed procedurally at run-time, so it is unknown
what the particular layout will be ahead of time. The de-
bris is made up of various prefabricated objects representing
large chunks of destroyed spaceships or asteroids and these
objects are highly complex, concave collision meshes. It is
important for the enemy ships to be able to navigate through
these complex pieces of debris as they need to be able to

1voxels are volume elements, the 3D equivalent of pixels (pic-
ture elements)



follow and engage the player in these areas, and not just fly
around them.

The overall size of the procedural levels can be up to a
maximum volume of 2km×2km×2km and the density of the
debris is non-uniform and very sparse. There are no dynamic
changes to the map after it has been generated. There are
typically between four and twenty enemy spaceships alive at
any time that require paths. Before the enemy spaceships en-
gage with the player, they fly in formation on patrol routes.
After combat has started, the enemy spaceships select desti-
nations within a set distance range from their target. As the
player is almost always in constant motion, both paths and
target destinations are recomputed for each agent approxi-
mately twice every second. Paths need to be found as fast as
possible, with target ideal times of less than 1ms, and worst
case of 100ms. Typical hardware requirements are similar to
an XBOX ONE: 8GB Ram with a 8 Core 1.75 GHz CPU.

Existing Path Planning Approach
A complete description of the path planning approach in
Warframe has been published elsewhere (Brewer 2017), but
we provide a brief overview of the approach here. The ap-
proach uses sparse voxel octrees (Schwarz and Seidel 2010)
to represent the free and passable space. The work is analo-
gous to two-dimensional planning on quadtrees (Yahja et al.
1998) with planning performed between different levels of
the octree. That is, a path will contain larger and smaller vox-
els and different levels in the octree, with special data struc-
tures designed to make these connections efficient. Note that
this contrasts with alternate approaches that find paths in
higher levels of abstraction and then refine them (Sturte-
vant and Jansen 2007). Overall the approach is optimized to
jointly minimize memory and the time required for finding
suboptimal paths.

It is important to note that the shipped approach in the
game is optimizing three different metrics. It is easy to im-
prove any one of these three metrics at the cost of the other
two, but all three must be balanced in practice to be feasible.

Map Types
The data set contains 44 maps that range from 1.5 million to
500 million voxel cells. The majority of these maps are taken
from the in-game generator, however two maps (simple and
complex) are not gameplay maps. These maps are smaller
than the other maps and were designed for testing purposes.

A description of the maps is found in Table 1, and pictures
and the dimensions of each map can be found in Table 2. The
data in Table 1 describes both how the maps are created (top)
and how they are used in the game (bottom). A majority of
the maps are composed of large debris fields where the play-
ers navigate, although different fields have different features.
The images in Table 2 are a flat projection of the x/y plane,
with the color determined by the relative z-depth, with the
darkest pixels farthest away and the lighter pixels closest.

The game features other types of maps, such maps with
gameplay primarily taking place inside a narrow trench, but
these are not currently included in the official map set due
to technical limitations. (Gameplay is restricted to certain

playable spaces both by map and physics constraints, mean-
ing that it is significantly more complex to reason about
physics constraints when exporting maps.)

3D Benchmark Format
For the purpose of simplicity, a very simple text format has
been used to represent the voxel maps. The file contains the
dimensions of each of the x/y/z coordinates, followed by a
list of voxels that are filled. While this makes the text signif-
icantly larger than a compact or binary representation, this
ensures that the files will be easy to read and parse by those
wishing to use the benchmarks in any language or applica-
tion.

voxel 105 132 105
50 50 50
50 50 51
50 50 52
...

Figure 1: Map format

Sample data from the Simple map is shown in Figure 1.
The first line indicates that the x coordinates range from
0. . . 104, y coordinates range from 0. . . 131, and the z co-
ordinates range from 0. . . 104. The first three blocked vox-
els are shown, with coordinates of {50, 50, 50}, {50, 50, 51}
and {50, 50, 52} respectively.

In practice, a low-level bitwise representation can easily
be created from the data, but this type of representation has
two significant drawbacks that made it infeasible for use in
Warframe. First, the amount of memory required would be
too large. As a majority of the space in the maps is empty, it
isn’t efficient to represent this memory directly. Second, in
three dimensional maps the locality of data in cache/memory
is significantly reduced, since a simple action can move in
three different dimensions of space. Thus, a good represen-
tation will also work to improve the cache locality of access.
Warframe represents the data in a sparse voxel octree, and
uses a Morton (or z-order) encoding to improve spatial lo-
cality (Morton 1966).

Sample Problem Instances
There are multiple problem definitions that can be used for
path planning in the voxel maps provided. The most general
definition would allow for arbitrary movement between free
space, subject to the constraints of obstacles. As this prob-
lem is NP-hard (Canny and Reif 1987), we instead choose
the simplest problem definition for our sample problem in-
stances. This state space is defined by integer {x, y, z} co-
ordinates, where each coordinate corresponds to the center
of a single voxel. The legal actions are based on movement
to the 26 adjacent locations where the absolute change in
each of the x/y/z coordinates is at most 1. Diagonal actions
(where two or more coordinates change their value) are only
allowed if each of the individual cardinal actions, where only
a single coordinate changes, are also possible. That is, the



Table 1: Description of maps in the data set.

Map Count Description
Simple 1 A single pillar.

Complex 1 A single, large piece of debris from a destroyed spaceship. The debris is
quite complex - a concave piece of hull with several holes and ruins of
bulkheads and decking.

A* 5 Simple linear random debris field. The debris ranges from pieces of de-
stroyed spaceship (a single piece is in Complex map) up to large asteroids
with space stations attached.

C* 4 Debris field surrounding massive Fomorian capitol ship. The Fomorian
is hollow and players are required to fly inside to destroy its power gen-
erators.

B*, D*, E*, F* 33 Denser debris fields generated along curved splines through space. The
letters denote the procedural template used to generate the maps. The
numbers denote different sample permutations of the generated maps.

A*, B*, D* 20 Exterminate missions, where the player is required to navigate the debris
field and eliminate all enemies.

E*, F* 18 Interception missions, where players are required to capture and hold a
number of positions in the map while waves of enemies try to recapture
those positions.

representation assumes an agent which occupies a full voxel
cell and thus cannot cut through the corners of obstacles.

In this problem definition we can define a simple memory-
free heuristic between arbitrary locations called the voxel
heuristic. The voxel heuristic that we used is the generaliza-
tion of the two-dimensional octile distance heuristic. Given
two points which are distance x and y apart, the octile dis-
tance heuristic for a two dimensional plane with 8-connected
movement is hoctile = min(x, y) ∗ (

√
2− 1) + max(x, y).

The voxel heuristic for three-dimensional free space
on a 26-connected grid is similar, although slightly more
complex to compute. Given two points which are dis-
tance x∆, y∆, and z∆ apart in each of the three di-
mensions respectively, let dmax = max(x∆, y∆, z∆),
dmin = min(x∆, y∆, z∆) and dmid = {x∆, y∆, z∆} \
{dmax, dmin}. (This assumes that x∆, y∆, and z∆ are dis-
tinct.) Then, the voxel grid heuristic hvoxel = (

√
3 −√

2)dmin + (
√
2− 1)dmid + dmax.

The easiest way to generate problem instances on a map
is to generate random start and goal locations and to then
find paths between them. However, in the voxel maps in this
repository there is often significant amounts of empty space
in the full voxel world, meaning that direct paths are possi-
ble. Additionally, players (and the AI) will be vulnerable in
open space, so these areas are typically avoided. Finally, the
regions inside obstacles are not stored, so random pathfind-
ing requests may result in unsolvable queries.

Thus, to model more realistic problem instances, we fol-
lowed the following procedure. First, we find all free voxels
that were within 5 voxels of an obstacle. Then, we selected
random points from this set of free voxels, and found the
optimal solution between them with the assumption of 26-
connected movement on the voxel grid. If there is no feasi-
ble solution (because one point is inside an obstacle) or if

the voxel heuristic was perfect, the problem was discarded.
This procedure was repeated until 10,000 unique paths were
found on each map, although individual start and goal loca-
tions are not necessarily unique.

version 1
Complex.3dmap
101 104 104 143 65 71 71.66073800 1.044
103 106 93 118 58 98 58.73059289 1.052
117 65 71 120 90 96 44.21927406 1.218
...

Figure 2: Map instances

The resulting problem instances are demonstrated in Fig-
ure 2. The first line is the version number for the prob-
lem instance file format. The second line is the name of
the map. The following lines contain the starting x/y/z co-
ordinates of the start and the goal followed by the opti-
mal distance between them and the ratio between the op-
timal distance and the heuristic distance. The first prob-
lem is from {101, 104, 104} to {143, 65, 71} and has length
71.66073800 while the shortest voxel distance, also the
heuristic distance, would be 68.64295804, with a ratio of
1.044. The ratio is a rough proxy for the difficulty of a prob-
lem, although difficulty is also impacted by other factors
such as path length and the number of reachable states.

Research on Path Planning in Voxel Spaces
In this section we point out the work we are aware of
that studies approaches for simple 3D pathfinding in voxel
spaces – where there are no constraints other than the obsta-
cles in the environment. First, Carsten, Ferguson, and Stentz
(2006) showed how to adapt Field D* to 3D maps. Next,
Nash, Koenig, and Tovey (2010) analyzed the suboptimal-



ity of 3D grid movement and showed that Theta* variants
could decrease the suboptimality of 3D planning. Finally,
Wardhana, Johan, and Seah (2013) applied abstraction and
refinement techniques to three dimensional free space.

Conclusions
There has been relatively little work on 3D path planning
in simple voxel spaces. Part of this can be attributed to the
lack of good test data on which to test algorithms; a problem
which this data set remedies. Some areas for future work
include but are not limited to:

• Research on map representations. This includes work
on representations that are both memory efficient and
query efficient for the queries performed in a shortest path
request.

• Research on adapting known grid techniques. This
work would analyze existing approaches and see how they
apply or can be adapted to three dimensional space.

• Research on shortest path techniques. While the dis-
cretized 3D pathfinding problem is polynomial and the
problem of finding true shortest paths is NP-hard, it is
unclear how hard it is to find true shortest paths on the
Warframe instances. Although the map representation is
discretized, this doesn’t prevent a path planning approach
from finding true shortest paths that deviate from the
voxel grid.

• Research on new techniques. It is often possible to make
more specific assumptions about a fixed data set than in
general. Thus, there may be new optimizations that can
be discovered for this data set that drive the field forward.

Clearly there is significant room for new research in this
area. We hope that this data set spurs new innovate research
on the problem of 3D pathfinding.

References
Bajaj, C. 1988. The algebraic degree of geometric opti-
mization problems. Discrete and Computational Geometry
3:177–191.
Bast, H.; Delling, D.; Goldberg, A.; Müller-Hannemann,
M.; Pajor, T.; Sanders, P.; Wagner, D.; and Werneck, R. F.
2016. Route Planning in Transportation Networks. Cham:
Springer International Publishing. 19–80.
Bortoff, S. A. 2000. Path planning for uavs. In Proceedings
of the 2000 American Control Conference. ACC (IEEE Cat.
No.00CH36334), volume 1, 364–368 vol.1.
Brewer, D. 2017. 3d flight navigation using sparse voxel
octrees. In Game AI Pro 3: Collected Wisdom of Game AI
Professionals. CRC Press.
Canny, J. F., and Reif, J. H. 1987. New lower bound tech-
niques for robot motion planning problems. In 28th Annual
Symposium on Foundations of Computer Science, Los Ange-
les, California, USA, 27-29 October 1987, 49–60.
Carsten, J.; Ferguson, D.; and Stentz, A. 2006. 3d field D:
improved path planning and replanning in three dimensions.
In 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IROS 2006, October 9-15, 2006, Bei-
jing, China, 3381–3386.
Colas, F.; Mahesh, S.; Pomerleau, F.; Liu, M.; and Siegwart,
R. 2013. 3d path planning and execution for search and
rescue ground robots. In 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Tokyo, Japan,
November 3-7, 2013, 722–727.
Morton, G. M. 1966. A computer oriented geodetic data
base and a new technique in file sequencing. International
Business Machines Company.
Nash, A.; Koenig, S.; and Tovey, C. A. 2010. Lazy theta*:
Any-angle path planning and path length analysis in 3d. In
Proceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010.
Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans, J.; and
Lane, D. 2007. Path planning for autonomous underwater
vehicles. IEEE Transactions on Robotics 23(2):331–341.
Schwarz, M., and Seidel, H.-P. 2010. Fast parallel sur-
face and solid voxelization on GPUs. ACM Transac-
tions on Graphics 29(6 (Proceedings of SIGGRAPH Asia
2010)):179:1–179:9.
Sturtevant, N., and Jansen, M. 2007. An analysis of map-
based abstraction and refinement. In SARA, 344–358.
Sturtevant, N. R.; Traish, J.; Tulip, J.; Uras, T.; Koenig, S.;
Strasser, B.; Botea, A.; Harabor, D.; and Rabin, S. 2015.
The grid-based path planning competition: 2014 entries and
results. In Eighth Annual Symposium on Combinatorial
Search, 241–251.
Wardhana, N. M.; Johan, H.; and Seah, H. S. 2013. En-
hanced waypoint graph for surface and volumetric path plan-
ning in virtual worlds. The Visual Computer 29(10):1051–
1062.
Welzl, E. 1985. Constructing the visibility graph for n-
line segments in o(n2) time. Information Processing Letters
20(4):167 – 171.
Yahja, A.; Stentz, A.; Singh, S.; and Brumitt, B. L. 1998.
Framed-quadtree path planning for mobile robots operating
in sparse environments. In Proceedings. 1998 IEEE In-
ternational Conference on Robotics and Automation (Cat.
No.98CH36146), volume 1, 650–655 vol.1.
Yang, K., and Sukkarieh, S. 2008. 3d smooth path plan-
ning for a UAV in cluttered natural environments. In 2008
IEEE/RSJ International Conference on Intelligent Robots
and Systems, September 22-26, 2008, Acropolis Convention
Center, Nice, France, 794–800.



Table 2: Maps in the Warframe Test Set

A1 A2 A3 A4 A5 BA1
896× 390× 255 896× 390× 255 896× 390× 255 896× 390× 255 896× 390× 255 745× 527× 615

BA2 BA3 BB1 BB2 BC1 BC2
756× 527× 617 788× 527× 604 662× 549× 662 662× 549× 680 853× 245× 321 853× 245× 342

C1 C2 C3 C4 Complex DA1
1108× 647× 723 1093× 647× 725 1021× 647× 633 1029× 647× 645 246× 154× 205 389× 313× 511

DA2 DA3 DB1 DB2 DC1 DC2
377× 314× 535 386× 331× 517 409× 261× 462 418× 260× 466 396× 344× 533 375× 354× 554

DC3 EB1 EB2 EC1 EC2 EC3
375× 351× 563 445× 306× 617 465× 321× 617 500× 312× 562 468× 314× 565 480× 306× 562

ED1 EE1 EE2 FA1 FA2 FB1
485× 294× 616 541× 288× 591 476× 288× 591 770× 466× 564 826× 493× 574 812× 358× 578

FB2 FC1 FC2 Full1 Full2 Full3
831× 364× 525 568× 331× 868 497× 342× 868 659× 549× 624 851× 288× 326 659× 569× 675

Full4 Simple
834× 360× 553 105× 132× 105


