
Using Hierarchical Constraints to Avoid Conflicts in Multi-Agent Pathfinding

Thayne T. Walker and David M. Chan and Nathan R. Sturtevant
Department of Computer Science, University of Denver

Denver, CO, USA
thayne.walker@du.edu, davidchan@cs.du.edu, sturtevant@cs.du.edu

Abstract

Recent work in multi-agent path planning has provided a
number of optimal and suboptimal solvers that can efficiently
find solutions to problems of growing complexity. Solvers
based on Conflict-Based Search (CBS) combine single-agent
solvers with shared constraints between agents to find feasi-
ble solutions. Suboptimal variants of CBS introduce alternate
heuristics to avoid conflicts. In this paper we study the multi-
agent planning problem in the context of non-holonomic ve-
hicles planning on a lattice. We propose that in addition to
using heuristics to avoid conflicts, we can plan using a hier-
archy of movement constraints to efficiently avoid conflicts.
We develop a new extension to the CBS algorithm, CBS with
constraint layering (CBS+CL), which iteratively applies dif-
ferent movement constraint models during the CBS planning
process. Our results show that this approach allows us to solve
for about 2.4 times more agents in the same amount of time
when compared to regular CBS without using a constraint hi-
erarchy.

1 Introduction
Consider the problem of coordinating unmanned aerial ve-
hicles (UAVs) when fighting a forest fire. Each vehicle may
have different capabilities for sensing, communicating, or
even deploying fire-fighting resources. These vehicles will
need to travel from their respective take-off and landing
zones to perform sensing, communication, or delivery tasks,
and then return without collision. This is just one example
of the multi-agent pathfinding (MAPF) problem, where mul-
tiple agents must coordinate movement and avoid conflicts.
Other examples include package delivery, land surveys, se-
curity patrolling, search and rescue, and farm upkeep.

An instance of the MAPF problem is defined by a graph
G = (V,E) of the search space, a set of k agents labeled
a1...ak, and a set of start and goal locations for each agent
si ∈ V and gi ∈ V where si 6= sj , gi 6= gj for all i 6= j.
A solution to a MAPF problem is a set of k paths which are
non-conflicting. That is, no two agents may traverse inter-
secting edges or occupy the same vertex at the same time
step. We seek solutions which minimize the sum of indi-
vidual path costs, and are interested in centralized plans, as
opposed to distributed agents.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MAPF is an NP-hard problem (Yu and LaValle 2013). For
a domain with N vertices and k agents, the state space con-
tains N !

(N−k)! states. However, where each agent can move in
bbase different ways, the branching factor b is bkbase – expo-
nential in the number of agents. Searching to a depth of t
time steps could yield a total search space of O(bt) nodes,
though many of them might be duplicates in the state space.

In this paper we study the MAPF problem in the context
of fixed-wing aircraft in a controlled airspace. This envi-
ronment has non-unit edge costs, non-unit time steps and
high dimensionality and thus a high branching factor, and
is subject to kinematic, orientation and speed constraints.
Our work contrasts from almost all previous work on MAPF
which has traditionally focused on two-dimensional grid
worlds with low branching factors and unit edge costs with
holonomic cardinal direction movement.

We develop a new sub-optimal approach, Conflict-Based
Search with Constraint Layering (CBS+CL), which uses a
hierarchy of edge subgraphs (subgraphs with edge deletions)
to simplify the planning process. CBS+CL plans individ-
ual agents in the world, successively removing artificially
added constraints from each agent as conflicts are discov-
ered. Initially, for instance, an agent may be constrained to
only move in the cardinal directions. But when collisions
must be resolved, constraints on an agent are relaxed to al-
low octile movement, giving it more freedom to move and
avoid conflicts. Our results show that this approach allows
us to solve about 2.4 times more agents than regular CBS
on the original graph and over 50% more agents in the same
amount of time when compared to regular CBS on edge sub-
graph abstractions.

2 Background
This paper studies MAPF in the aviation domain. Because of
the high branching factor, non-unit edge costs and kinematic
movement inherent to the domain, even single-agent search
is non-trivial.

There exist two major classes of sub-optimal MAPF al-
gorithms; sub-optimal variants of optimal algorithms which
aim for high-quality solutions and polynomial-time solvers
which only aim for valid solutions. In the latter class are
algorithms such as Parallel Push and Swap (PPS) (Sajid,
Luna, and Bekris 2012), Tree-based Agent Swapping Strat-

egy (TASS) (Khorshid, Holte, and Sturtevant 2011) and oth-
ers, but none of these are formulated for non-holonomic ve-
hicles. In the former class we have algorithms such as M*
(Wagner and Choset 2011), ICTS (Sharon et al. 2013) and
EPEA* (Goldenberg et al. 2014). But M* and ICTS are not
well-formulated for non-unit time step domains. The EPEA*
operator selection function (OSF) is extremely non-trivial
when dealing with non-unit edge costs and non-unit time
steps.

Sub-optimal algorithms which work readily for non-
holonomic movement and non-unit cost domains are CBS
variants such as GCBS, BCBS, ECBS (Barer et al. 2014) and
ECBS+HWY (Cohen, Uras, and Koenig 2015). There are
additional A*-based algorithms such as Weighted-A* (Pohl
1970), (Weighted) PEA* (Yoshizumi, Miura, and Ishida
2000) and Maximum Group Size (MGS) (Standley and Korf
2011).

We chose the CBS algorithm for the basis of our research
because it is well-formulated for non-unit time step and
non-unit-cost domains and because of its simplicity at the
domain-specific level. CBS allows us to use formulations
for a single-agent A* search without having to completely
re-formulate the environment and heuristics for the multi-
agent case.

The CBS Algorithm
The CBS algorithm (Sharon et al. 2012) is an optimal and
complete best-first search algorithm for MAPF. Pseudocode
for CBS is in Algorithm 1. In the CBS algorithm, paths are
initially found for each agent in a low-level search which
does not take other agents into account (line 3). Once indi-
vidual paths are found, a conflict check is performed (line
8). If no conflicts are found, the algorithm terminates with
the solution (line 10). If a conflict is found, the conflict is
added as a node in a high-level search tree (line 19).

CBS organizes conflicts into a conflict tree where each
node in the tree represents a potential solution (a collection
of agent paths) which contains a conflict. The cost of the
potential solution is the sum of the individual path costs or
SIC. A conflict is defined as a tuple 〈ai, aj , v, t〉 where ai,
aj are the conflicting agents, t is the time of the conflict, and
v is the vertex at which the conflict occurred. Alternatively, a
conflict can contain an edge e instead of a vertex if the con-
flict occurred at an edge. CBS can not tell which agent’s path
should be altered to achieve an optimal non-conflicting solu-
tion, and so it creates two conflict tree (CT) nodes: 〈ai, v, t〉
and 〈aj , v, t〉 (line 13). Then new constraints are added (line
15) and the low-level search is re-performed (line 17) for the
conflicting agent in both contexts to update the potential so-
lution and get the SIC (line 18). Then these nodes are placed
into the OPEN list (line 17). The search terminates when a
valid solution is found or when the OPEN list is empty.

CBS Enhancements
Several enhancements to the CBS algorithm have been pro-
posed. CBS+BP (Boyarski et al. 2015a) proposes finding an
alternate, non-conflicting path called a “bypass”, which may
allow an early search termination or preclude the creation
of extraneous constraint nodes. The Improved-CBS (ICBS)

Algorithm 1 CBS
1: Input: MAPF instance
2: R.constraints = ∅
3: R.solution = find individual paths using the low-level()
4: R.cost = SIC(R.solution)
5: insert R to OPEN
6: while OPEN not empty do
7: P ← best node from OPEN // lowest solution cost
8: Validate the paths in P until a conflict occurs.
9: if P has no conflict then

10: return P .solution // P is goal
11: end if
12: C ← first conflict (ai, aj , v, t) in P
13: for agent ai in C do
14: A← new node
15: A.constraints← P .constraints + (ai, s, t)
16: A.solution← P .solution.
17: Update A.solution by invoking low-level(ai)
18: A.cost = SIC(A.solution)
19: Insert A to OPEN
20: end for
21: end while

algorithm (Boyarski et al. 2015b), uses the BP notion of con-
flict count to prioritize the high-level search.

The Enhanced-CBS (ECBS) (Barer et al. 2014) group of
algorithms focus on sub-optimal search, with algorithms for
bounded and unbounded sub-optimal solutions. They ob-
served that weighted A* search at the low-level produces
longer paths, and thus increases the probability of conflicts.
Instead, a non-weight-based sub-optimal heuristic for the
low-level search, along with several heuristics for the high-
level search were proposed. One such heuristic is the number
of conflicts, NC, rather than the SIC. It was shown that when
ordering the OPEN list by NC, a sub-optimal solution was
often found in less time on unit-cost domains.

The meta-agent CBS (MA-CBS) (Sharon et al. 2015) al-
gorithm proposed an additional enhancement which uses an
adjustable conflict threshold parameter. If the number of
conflicts between two agents exceeds the threshold, a new
meta-agent is created to handle finding a conflict-free solu-
tion for that subset of agents. Meta-agents may be solved via
a different MAPF algorithm such as M* (Wagner and Choset
2011), EPEA* (Goldenberg et al. 2014), ICTS (Sharon et al.
2013) or even MA-CBS with different thresholds. Then, the
meta-agents are handled as a single agent from the CBS per-
spective.

3 Method
CBS+CL uses a hierarchy of environment abstractions, but
not all abstraction techniques are applicable for use with
CBS+CL.

Environment Abstraction
Environment abstractions can be created by forming sub-
graphs via node contractions, edge deletions or adding new
embeddings to the original search graph (Hoffmann 2005).

Various abstraction techniques have been published viz.
Clique Abstraction, Sector Abstraction, Line Abstraction,
STAR (Holte et al. 1996; Sturtevant and Jansen 2007) and
JPS (Harabor and Grastien 2011). All of these abstractions
rely on the downward refinement property which means that
a path between nodes in an abstracted graph must be refin-
able to a path in the original graph.

The intuition behind our approach is to combine the
strengths of constrained and unconstrained environments.
To mitigate the cost of search in environments with high
branching factors it is helpful to perform the low-level
search on a constrained/abstracted version of the original
environment. By introducing movement constraints into the
original environment we reduce the branching factor, allow-
ing better performance in the CBS low-level search step.

We formulate constrained environments as graph abstrac-
tions where the graph is the lattice on which agents move.
The process of enforcing constraints on an agent is anal-
ogous to removing edges from the planning lattice that it
moves on. Conversely, adding edges to the planning lattice
is analogous to removing constraints.

Formally, graphs formed by edge deletion are known as
edge subgraphs (Gaschnig 1981). An edge subgraph is a
graph G′ ⊆ G s.t. G′ = (V,E′), E′ = E\X where X is
the set of edges deleted from the initial graph G.

Search on edge subgraphs does not require special down-
ward refinement as edge subgraphs contain a subset of the
edges in the original domain. Additionally, this method of
abstraction maintains the original edge lengths which allows
conflict detection logic to be the same for all abstractions.

Abstraction For Conflict Avoidance A sub-optimal
method of conflict avoidance at the low-level is to direct the
search in ways that produce fewer conflicts. Direction maps
(Jansen and Sturtevant 2008) have been proposed to aug-
ment heuristics. Direction maps provide an underlying flow
field which agents are penalized if they do not follow. Direc-
tion maps can be formulated as highways or circular move-
ment patterns. In ECBS+HWY, (Cohen and Koenig 2016)
direction maps are used to influence agent movement to pro-
duce significant performance improvements.

Edge subgraphs are similar to flow fields because possi-
ble movements are restricted. Flow-Annotation Replanning
(FAR) (Wang and Botea 2008) performs static analysis of
the search graph and creates edge subgraphs, favoring di-
rected edges so that collisions are less likely.

Instead of augmenting heuristics or abstraction via node
contraction, we have taken an approach similar to FAR,
which is abstraction via the creation of edge subgraphs.
However, unlike FAR, we do not perform static analysis and
augmentation of the environment. Instead, we apply uniform
edge deletions across the entire search graph.

Constraint Layering for Conflict Avoidance
Consider an environment where agents are allowed to move
on an octile grid. The search will have a maximum branch-
ing factor of 9 if waiting is allowed. If we restrict agents to
cardinal directions or wait, the maximum branching factor
is reduced to 5 which may speed up pathfinding, however

(a) (b)

Figure 1: Comparison of grid-based search with differing
movement constraints. In (a), movement for both agents is
constrained to be 5 connected, thus paths must conflict in
any of the grey squares. In (b), agent S2 moves on a 5 con-
nected grid, but agent S1 moves on a 9 connected grid.

collisions become more likely. This scenario is illustrated
in Figure 1, where both agents may only choose to move
in a cardinal direction or wait. In this example, on any op-
timal path the agents will collide in the gray area. In fact,
CBS will exhaustively examine all optimal paths for both
agents before trying any sub-optimal paths, producing a CT
node for each square in the gray area. Figure 1b shows a new
scenario where agent A is allowed to use octile movement
rules. Now, both agents can reach their goals optimally in
their own environment without collision.

The proposed modification to the CBS algorithm
CBS+CL is shown in Algorithm 2. We first define several
environment abstractions, ranging from coarser (more con-
strained) to finer (less constrained) which we reference in
the algorithm (line 2). Then we set a conflict threshold for
each environment (line 3). When the number of conflicts be-
tween two agents meets the threshold for a particular envi-
ronment, we still create two CT nodes as in traditional CBS,
except in CBS+CL we re-plan the conflicted agent path in
each CT node using the new environment (line 21). If we set
our thresholds to be incremental, our search environments
become “layered” in the sense that we can search on increas-
ingly fine environments.

4 Theoretical Analysis
To begin our theoretical analysis, we introduce the following
two concepts:

Definition 4.1. Edge Subgraph Abstraction
Let M be a graph M = (V,E). Then an edge sub-

graph abstration M ′ of M is a subgraph of M s.t. M ′ =
(V,E′), E′ ⊆ E.

Definition 4.2. Abstraction Set
An Abstraction Set of the graph M0 with size n is a par-

tially ordered set M of edge subgraph abstractions of M0,
such thatM = {M0, . . . ,Mn−1} where the ordering of the
set is with respect to the subgraph (≤) operation. Note that
∀i 6= 0Mi ≤ M0. If for some 0 ≤ i, j < n,Mi ≤ Mj , we
call Mi a finer abstraction with respect to Mj , and we call
Mj a coarser abstraction with respect to Mi. We call M0

(the finest abstraction) the base abstraction.

Algorithm 2 CBS+CL
1: Input: MAPF instance
2: Env = List of Environments
3: T = List of conflict thresholds per environment
4: R.constraints = ∅
5: R.solution = find individual paths using the low-level()

on Env[0]
6: R.cost = SIC(R.solution)
7: insert R to OPEN
8: while OPEN not empty do
9: P ← best node from OPEN // lowest solution cost

10: Validate the paths in P until a conflict occurs.
11: if P has no conflict then
12: return P .solution // P is goal
13: end if
14: C ← first conflict (ai, aj , v, t) in P
15: for agent ai in C do
16: A← new node
17: A.constraints← P .constraints + (ai, s, t)
18: n← size ofA.constraints
19: i← get-environment-index(n, T)
20: A.solution← P .solution.
21: Update A.solution by invoking low-level(ai) on

Env[i]
22: A.cost = SIC(A.solution)
23: Insert A to OPEN
24: end for
25: end while

Traditional CBS runs as a best first search over sets of
paths found in the base abstraction M0. In CBS+CL, how-
ever, we identify each agent with a member of an abstraction
setM ofM0 which that agent uses for planning. Agents can
be promoted from a coarser abstraction inM to a finer ab-
straction in M, creating additional paths for agents to ex-
plore, but simultaneously increasing the branching factor
of the single-agent search. In CBS+CL, we define the set
K ⊆ P(N) = {κ0, . . . , κn−1} to be a set of conflict thresh-
olds (an algorithm hyper-parameter) such that if an agent
participates in κi conflicts or more it must be promoted to
an abstraction at least as fine as Mi. K must have the prop-
erties κi > κi+1 and κn−1 = 0. An agent will be promoted
from Mi to Mi+1 when the number of conflicts reaches the
threshold κi+1. In our current implementation of CBS+CL,
we enforce a total ordering onM and begin with all agents
in the coarsest abstraction Mn−1, however the proofs below
are for an arbitrary partial ordering where any agent begins
in a coarse abstraction ofM. CBS+CL terminates only if a
solution is found by the algorithm, and a solution exists.

Unlike CBS, the suboptimality of CBS+CL is not easily
bounded. Consider Figure 2. In this figure, agent s1 is plan-
ning to goal state g1, and agent s2 is planning to goal state
g2. The optimal paths for both agents conflict in stateB. The
agents cannot see the edge between states A and C because
they are planning in an edge subgraph abstraction, so either
agent s2 is forced to take a high cost path to g2 through state
F or s1 must take the high cost path through state G - even

Figure 2: Example showing that in some general directed
graphs, edge deletion abstraction may lead to large subo-
timality. The dotted line between s1 and g1 lies in a finer
abstraction, but because the abstraction is never visited and
in the directed graph, all agents must move, one of the cost
100 loops must be taken.

though a very quick path exists for agent s1. The path di-
rectly from A to C for agent s1 is never explored in this
example, because CBS+CL has found a valid solution in a
coarser abstraction. Because path costs like those through
nodes F and G in this example may be altered arbitrarily,
it is impossible to trivially bound the suboptimality of the
algorithm.

Thus, we see that because agents plan independently from
each other, and in independent environments, an agent may
have a cheaper optimal path in a finer abstraction, however
that path may never be explored as the agent may not reach
the number of conflicts necessary to investigate that path.

CBS+CL is, however, guaranteed to find the solution if
one exists, which follows directly from the fact that CBS
has the same guarantee (Sharon et al. 2012). The intuition
for such a proof is that given any set of agents, if no solu-
tion is found, each agent will eventually be promoted into
the base environment M0. In the base environment, the op-
eration of CBS+CL is identical to the operation of CBS, as
no promotion is possible for any agent (and agent promo-
tion is the only way that CBS+CL differs from CBS in any
abstraction). The proof, and all assumptions are as follows:

Assumption 1. There is a solution in M0.

In the case of an unsolvable instance, CBS+CL will run
forever, generating conflicts out to future time steps ad in-
finitum. Fortunately, (Yu and Rus 2015) have shown a poly-
nomial time algorithm to determine solvability of a MAPF
instance. We make the assumption that problem instances
are checked for solvability before running CBS+CL.

Assumption 2. M is finite. M0 has finite branching factor.

We require that there be a finite number of abstractions,
as otherwise CBS+CL is unable to guarantee termination in
the case of a solution, as it may run forever examining ab-

stractions in which there are no possible solutions. We re-
quire that M0 have a finite branching factor, otherwise A∗
is not guaranteed to return even in the case of single agent
searches.

Assumption 3. LetMi ∈M. Then for all a = (s, g) ∈ A if
there exists a path from s to g in M0 then there exists a path
from s to g in Mi.

The above assumption requires that any Mi is connected
for each pair of start and goal vertices in the graph if the orig-
inal graph M0 is connected in those vertices. In fact, this is
very difficult to accomplish for a general abstraction. In our
implementation of CBS+CL, we enforce that within a fixed
radius of all start and goal vertices, agents have free range of
motion to ensure this property. Note that this is not necessary
in all abstractions, however making it the case allows each
abstraction to be solved in any single-agent context, greatly
increasing the performance of the algorithm.

Assumption 4. For any Mi ∈M all edge costs are strictly
greater than zero.

This assumption is necessary for A∗, but also guarantees
that at some point in the graph, we will have non-decreasing
node costs, as demonstrated in a later lemma. Further, this
allows us to bound the amount of time to solution.We con-
tinue the proof, and begin with a pair of lemmas:

Lemma 4.1. If a solution exists in M0, any k agents cannot
conflict forever to the complete exclusion of another set of
agents.

Proof. Because κ0 is finite, any set of agents will eventually
be promoted to M0 after enough conflicts occur between
them. Therefore following the proof that regular CBS will
find a solution if one exists under assumption 1, k agents
cannot conflict forever without eventually finding a feasible
solution. Thus any other set of agents will eventually be al-
lowed to plan to a solution or potentially be promoted.

Lemma 4.2. Every path (possibly infinite length) from the
root of the conflict tree of CBS+CL to a potential leaf of
the confict tree of CBS+CL either terminates with a feasible
solution, or there exists an earliest node N on the path of
finite depth such that all of the paths inN are planned in the
base abstraction M0.

Proof. Suppose first that the path does not terminate at a fea-
sible solution. We will prove by contradiction that N as de-
fined above must exist. Suppose that N does not exist, thus
for every node in the path from root to leaf there must be at
least one agent, a, that is not inM0 and has no solution in its
current abstractionMi. Because CBS+CL requires a conflict
to create a child CT node, the number of conflicts must in-
crease for some agent at each level in the tree. Additionally,
CBS+CL requires an agent to be promoted to abstraction
Mi when the number of conflicts reaches κi. Because K is
finite and κ0 is fixed, it is impossible for a to remain at< κ0
conflicts under the condition that a solution is not found at
a higher level in the conflict tree. In other words, at some
point along a traversal from the root of the conflict tree to-
ward a leaf, the number of conflicts involving amust exceed

κ0 and a will be promoted, contradicting the fact that a is
never promoted to a finer abstraction. Thus, every path from
the root of the conflict tree of CBS+CL to a potential leaf of
the conflict tree of CBS+CL either terminates with a feasi-
ble solution, or there exists an earliest nodeN on the path of
finite depth such that all of the paths in N are planned in the
base abstraction M0.

Corollary 4.3. After a finite amount of time, CBS+CL has
the property that nodes on the frontier of the search have
children of non-decreasing cost.

Proof. By lemma 4.2 each path from a root to a potential
leaf eventually (in finite time) has all agents in the M0 envi-
ronment with no possibility of promotion. CBS re-plans only
one agent at a time (with an added constraint) when there is
a conflict. Because of the added constraint any re-planned
path will necessarily have cost greater than or equal to the
cost of its path in the parent node. Thus it is not possible to
have a child node with cost less than its parent.

Lemma 4.4. There is always a valid path from the root of
the CBS+CL tree to the abstraction-relative optimal solu-
tion, if a solution exists.

Proof. Consider a traversal from the root of the tree to
the optimal solution. At each node in the conflict tree of
CBS+CL, a conflict in a location L is resolved between
agent a1, or agent a2. Three scenarios are possible - 1) In
the optimal set of paths a1 is present in location L, 2) in the
optimal set of paths a2 is present in location L or 3) neither
a1 nor a2 are present in locationL in the optimal set of paths.
If scenario three occurs, then both branches of the tree may
contain the optimal set of paths as a leaf node. If scenario
one or two happens, then exclusively either the left or right
branch must contain the optimal set of paths as a leaf node.
In no scenario does neither path contain the optimal solution
(if it exists), thus, there must be some traversal in which the
optimal solution (if it exists) is valid as a leaf node.

Theorem 4.5. CBS+CL will terminate with a solution if
such a solution exists.

Proof. By corollary 4.3, we know that after a finite amount
of time, either a solution has been reached, or the costs in the
CBS+CL tree are non-decreasing for all of the nodes on the
frontier of the search. If no solution has been found, then by
lemma 4.4 the optimal solution (if it exists) must still be in
the sub-trees of one of the nodes on the frontier of the search.
The optimal solution must be identified with some cost c,
and by assumption 4, we can conclude that there are finite
number of nodes per cost (Sharon et al. 2012), and that we
must examine a finite number of nodes before arriving at c
as the smallest node cost on the frontier. Thus, in finite time,
we will arrive at the node containing the optimal solution,
and CBS+CL will terminate.

Thus, we have shown theoretically that even though it is
difficult to easily bound the suboptimality of CBS+CL, we
guarantee that CBS+CL terminates with a solution if one ex-
ists. Further, our empirical results show that CBS+CL does

Figure 3: Grid-based vertical and horizontal aircraft move-
ment model

not, in practice, generate extremely costly paths for agents
compared to optimal algorithms.

5 Domain
In this paper we apply both traditional CBS and our pro-
posed improvements to a model of an aviation environment.
Agents in this model are non-holonomic, having kinematic,
orientation and speed constraints. One might think that colli-
sions are unlikely in 3D airspace. However, there are scenar-
ios where traffic can be extremely congested, such as landing
and takeoff points, urban environments, choke-points, etc.
While ensuring vertical separation could be an easy solution
(e.g. assigning a unique altitude for each agent), such solu-
tions are wasteful as time and fuel must be spent to climb to
the assigned heights.

Note that fixed-winged aircraft (as opposed to helicopters
or balloon-type aircraft), cannot hover to avoid collisions.
Furthermore, such aircraft cannot slow down below their
stall speed, nor speed up past their maximum speed, and
operate most efficiently at a unqiue cruise speed. Finally,
winged aircraft are limited in their turn radius and require
time and space to perform turns.

Aviation Domain Model Implementation
Our model is based on the kinematics of fixed-wing aircraft.
We modeled the airspace with a three-dimensional grid, the
width of which will allow an aircraft moving at maximum
speed to negotiate a 90◦ turn. Each grid cell forms a cube
with all three dimensions being the same.

In our model, we have a maximum branching factor
of 63 - all combinations of heading changes: {0◦, +45◦,
-45◦, +90◦, -90◦, left shift, right shift}, speed changes:
{no change, speed up, slow down} and height changes:
{no change, climb, descend}. A shift is a maneuver where
the aircraft moves in the diagonal direction but does not
change heading. This environment which allows simultane-
ous change in heading, height and speed will be referred to
in this paper as the “base” environment. See Figure 3 for a
representation of the movement model.

Our cost function is the same for all environment types
and is based on fuel consumption. We base our fuel con-
sumption on distance (liters per grid). The cost function is
implemented with rules derived from (Jameson 2009):

• Climbing adds fuel cost. (We used cclimb = 0.001L.)

• Descending saves fuel to half the cost of climbing. (We
used cdesc = −0.0005L.)

• Traveling faster or slower than cruise speed decreases the
fuel efficiency. We used 5 speeds with consumption rates
of: cspeed = [0.008, 0.007, 0.006, 0.007, 0.008]. The mid-
dle speed is cruise speed.

• Diagonal moves (45◦ turn and shift maneuver) multiply
the cost by

√
2 except for the cost of vertical movement,

which is not affected by diagonal movement.
Given vector-valued aircraft states containing the

variables: 〈x, y, z, heading, speed〉, the cost function
C(to, from) (the cost from the state “from” to the state
“to”) is described by:

C = cspeed(to.speed) · α+ β

Where:

α =

{
1 |from.x− to.x| 6= |from.y− to.y|√
2 otherwise

β =

cclimb to.z− from.z > 0

cdesc to.z− from.z < 0

0 to.z− from.z = 0

Time is incremented based on speed and distance trav-
eled. Thus, agents moving at higher speeds arrive at the next
lattice point sooner and agents moving on a diagonal edge
require additional traversal time.

Domain-Specific Heuristics
We formulate single-agent search goals in this environment
to include constraints on both heading and speed in addi-
tion to x, y and z position. Because of the goal restrictions
on heading and speed, a simple octile distance heuristic per-
forms poorly when the direction of travel does not align with
the goal heading, as extra maneuvering becomes necessary
in order to get the agent pointing in the goal direction. Head-
ing and speed constraints at the goal are important for some
use-cases, such as landing or sensing with fixed sensor ori-
entations. Some scenarios such as parachute drops or liquid
dispensing may not require such restrictions.

This problem can be mitigated by the use of a perime-
ter heuristic designed for movement-constrained domains
(Manzini 1995). We found that states within a 2-grid-cell
radius of the goal and oriented within 90◦ of facing the
goal position, regardless of the goal orientation, are able
to reach the goal with the right speed and heading without
leaving a 2-grid radius of the goal position. By computing
a small perimeter heuristic with radius 2 and combining it
with a computed estimate up to the perimeter edge, we have
a strong admissible heuristic.

Given a distance estimation function est(s, p) and a
perimeter database lookup function perim(p, g), we com-
pute:

MINp∈P (est(s, p) + perim(p, c))

where s is the start location, g is the goal location and P is
the set of all nodes on the edge of the perimeter. It is possible
to select a subset of P on a case-by-case basis, however the
method is domain-specific and too complex for the scope of
this paper.

Abstractions
All environments used in our experiments are abstractions
formed by deleting edges from the “base environment”. Be-
cause edge deletions never decrease path lengths from start
to goal, admissible heuristics in the base environment re-
main admissible in an abstraction. It should be clear that the
base heuristic may be weak in the abstracted environment,
necessitating unique heuristics on a per-abstraction basis.

Highway Abstractions
We form highway abstractions by converting all bi-
directional edges in the x, y and z dimensions to directional
ones. We formulate vertically separated highways where
agents flying at the same height fly in the same direction.
The highway above or below a given height has edges point-
ing in an adjacent horizontal direction. Thus if an agent
needs to turn, it must simultaneously change altitude to en-
ter the highway for the desired direction. Thus we retain
edges that simultaneously change altitude and heading into
the highway just above and below a given highway.

Because agent heading is restricted, some goal or start
states may be invalid. We cannot simply restrict all start/goal
states to be within the highway abstraction, thus we relax the
abstraction via adaptive dimensionality (Gochev et al. 2011)
for such states near the start and goal of the search:
• If an agent’s start state does not have a heading that con-

forms to the highway based on its height, it is only al-
lowed to make moves that put it in alignment with the
highway which lies in the direction of its goal.

• If an agent’s goal state is invalid with respect to the high-
way system, the agent is allowed to move freely when it
is within 2 grid spaces from it’s goal.

6 Experimental Results & Analysis
All of our experiments are for a set of k agents with ran-
dom start and goal locations inside an 80x80x20 three-
dimensional grid world. Each configuration was run on a set
of 100 MAPF instances with random start and goal posi-
tions. Our current implementation also assumes that agents
disappear, i.e. do not remain in the collision space once
reaching their goal. We tested on a progressively increas-
ing number of agents. If a problem takes longer than five
minutes to terminate, we mark it as a failure and set its com-
pletion time to five minutes. All experimental results shown
were run on servers with Intel Xeon processors running at
2.4GHz with 12GB of memory.

Experimental Environments
All environments were benchmarked using the regular CBS
algorithm. We also benchmarked against an unbounded sub-
optimal variant of ECBS called Greedy-CBS (GCBS).
Base (8-Way) Environment This is the environment de-
scribed at the beginning of this section. Agents are allowed
to turn, change height and/or change speed simultaneously.
The maximum branching factor is 63.
4-Way Environment This abstraction is the same as the
“Base” environment except turns are restricted to 90◦. The
maximum branching factor is 27.

Simple Environment This abstraction restricts actions to
one change per movement: heading, speed or height. The
maximum branching factor is 11.
Highway-8 Environment We implemented an 8-directional
highway system which enforces height-separated directional
highways where agent heading is forced to be congruent to
height modulo 8. The maximum branching factor is 9.
Highway-4 Environment This is similar to “Highway-8”
except directions are restricted to height modulo 4. The max-
imum branching factor is 9.

Experimental Implementations
CBS We implemented CBS+BP (Boyarski et al. 2015a) with
the SIC heuristic in the high-level search with tie breaking
toward CT nodes with lower conflict counts.
Greedy-CBS We consider GCBS (Barer et al. 2014) to be
state-of-the-art for unbounded sub-optimal MAPF solvers
which are formulated for non-holonomic vehicles. It was
shown that the performance of GCBS is on par with or better
than MGS1 (Standley and Korf 2011) for their experiments.
We implemented GCBS-H which uses the number of con-
flicts heuristic at the high level. We include the performance
of GCBS on the H4 environment as a benchmark because it
is empirically the most performant abstraction.

Qualitative & Performance Results
Benchmark Environments Figure 4 shows the results for
mean time-to-solution. These results show that when us-
ing the traditional CBS algorithm, using any of the abstrac-
tions decreases the time-to-solution relative to the “Base”
environment. The “Highway-4” abstraction is the best per-
former, allowing us to solve roughly twice as many agents
in the same amount of time when compared to the “Base”
environment.

We attribute the better run-times to reduced branching
factor and reduced conflicts due to highway traffic flows.
Analysis of the number of conflicts that occurred during
the search in each environment indicated that the time-to-
solution strongly correlates to the number of conflicts.

We also saw that using GCBS on the Highway-4 environ-
ment improved performance, allowing us to solve for about
30% more agents in the same amount of time.

We also note in passing that MA-CBS was also tested and
found to be less than adequate. When implemented with a
pure A* meta-agent solver it performed poorly due to large
branching factors, the meta-agent solver suffered due to a
very large OPEN list. (Note that neither M*, ICTS were at-
tempted due to difficulties with the formulation for non-unit
time steps. EPEA* was not attempted due to the requirement
of an extremely non-trivial operator selection function.)

Analysis of path lengths showed that solutions produced
using the “Highway-4” environment are maximally 18%
suboptimal when compared to the “Base” environment.
GCBS seemed to have a minimal impact on solution qual-
ity. Table 2 shows the path quality and time to solution for
various configurations. These results are from a subset of the
100 instances with 40 agents in which all environments were
able to terminate with a result under the 5-minute time limit.

Layered Environments Finally, we show our results for
CBS+CL. We experimented with various abstraction lay-
erings and various switching thresholds. We found that it
is generally most beneficial to set layer promotion thresh-
olds at increments of 1 so that upon encountering a conflict,
the environment is switched immediately. We found that
“Highway-4→Highway-8” had the best overall performance
as shown in Figure 4. These combinations allowed us to find
solutions for roughly 50% more agents when compared to
just using “Highway-4”, and 20% more agents when Com-
pared to GCBS on “Highway-4”.

Table 1 shows CT node and A* expansion counts for a set
of problems which were solvable under the time limit by all
configurations. Analysis of work done at the high and low
level searches revealed that CBS+CL consistently lowered
the number of conflicts found in the high-level search. Low-
level expansion counts are affected both by the branching
factors of the mixture of environment abstractions used in
the test and the number of CT nodes. For example, although
H4→ H8→ Base had fewer conflicts overall than H4→
H8 → Simple, the number of expansions is higher due to
the high branching factor induced by switching some of the
agents into the Base environment. Notice however that both
choices are better than using H4 alone.

We also experimented with GCBS+CL on “Highway-
4→Highway-8” and found that it provided a slight improve-
ment over CBS+CL on the same configuration. We believe
the set of conflicts resolved by GCBS and CBS+CL have
overlap, and thus using them in conjunction does not give a
large incremental improvement.

Table 2 shows solution qualities for the same set of
problems as Table 1. We found that in the “Highway-
4→Highway-8” configuration, optimality varied between
18% and 3% sub-optimal depending on the percentage
of agents in the search instance that switched to the
“Highway-8” environment. Not only does switching into
less-constrained abstractions reduce the number of conflicts
and time-to-solution, it also improves the optimality of the
solutions.

7 Conclusions And Future Work
In this work we found that leveraging the strengths of high-
ways and various granularities of environment abstractions
can result in significant performance improvements. The

Table 1: High and Low-Level Work by Configuration
Configuration CT Nodes Low-Level Expansions

H4→H8→Base 5.53 312099
H4→H8→Simple 5.61 294901
H4→H8→4-Way 5.61 301112

H4→H8 5.69 294712
H4→H8 GCBS 6.56 324818

H8→Simple→Base 8.62 303680
H4 GCBS 9.64 426309

H4 20.76 427492
H8 GCBS 28.62 305683

Base 29.32 2834728
4-Way 69.77 1219804

H8 84.62 471414
Simple 105.69 1372531

Figure 4: Comparison of performance of different environ-
ment configurations

CBS+CL algorithm leverages these strengths by refining
environments in an iterative fashion during the CBS re-
planning stage. Using this approach, our results show that
with CBS+CL we can solve roughly 2.4 times more agents
than we could with regular CBS on the base environment,
and about 54% more than on the H4 environment.

There are a large number of extensions possible to
CBS+CL. One of the major sources of conflict in the do-
main comes from highly constrained resources such as land-
ing strips. Further research into CBS+CL will investigate us-
ing additional constraints locally to avoid conflicts. Another
channel for future research involves calculating respective
optimality using FOCAL list search such as in (Barer et
al. 2014). A final possible extension to this work would be
to prepare the CBS+CL algorithm for use in cooperation
with human traffic controllers by examining the importance
of human understandability. Using pre-formulated highways
and/or circular paths may be easier for humans to visualize
and thus help build more understandable solvers.

8 Acknowledgements
This work was supported in part by NSF IUCRC grant
#1439693.

Table 2: Quality and Performance by Configuration
Configuration Sol. Cost Optimality Time

H4→H8 GCBS 4.44 0.83 0.84
H4→H8 4.43 0.83 0.85

H4→H8→4-Way 4.43 0.83 0.88
H4→H8→Base 4.43 0.83 0.91

H4→H8→Simple 4.43 0.83 0.92
H4 4.46 0.82 0.99

H4 GCBS 4.46 0.82 1.04
H8→Simple→Base 3.78 0.97 1.42

H8 GCBS 3.79 0.97 4.36
H8 3.79 0.97 6.92

Simple 3.72 0.99 10.77
4-Way 4.28 0.86 22.43

Base 3.67 1.00 67.86

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of the
Seventh Annual Symposium on Combinatorial Search, SOCS
2014, Prague, Czech Republic, 15-17 August 2014.
Boyarski, E.; Felner, A.; Sharon, G.; and Stern, R. 2015a.
Don’t split, try to work it out: Bypassing conflicts in multi-
agent pathfinding. In Proceedings of the Twenty-Fifth Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015b. Icbs: Improved
conflict-based search algorithm for multi-agent pathfinding.
In IJCAI.
Cohen, L., and Koenig, S. 2016. Bounded suboptimal multi-
agent path finding using highways. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016.
Cohen, L.; Uras, T.; and Koenig, S. 2015. Feasibility study:
Using highways for bounded-suboptimal multi-agent path
finding. In Lelis, L., and Stern, R., eds., SOCS, 2–8. AAAI
Press.
Gaschnig, J. 1981. A problem similarity approach to devis-
ing heuristics: First results. In Readings in Artificial Intelli-
gence.
Gochev, K.; Cohen, B. J.; Butzke, J.; Safonova, A.; and
Likhachev, M. 2011. Path planning with adaptive dimen-
sionality. In SOCS. AAAI Press.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturte-
vant, N.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced
partial expansion a*. Journal of Artificial Intelligence Re-
search (JAIR) 50:141–187.
Harabor, D. D., and Grastien, A. 2011. Online graph pruning
for pathfinding on grid maps. In AAAI.
Hoffmann, J. 2005. Where ’ignoring delete lists’ works:
local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Holte, R.; Mkadmi, T.; Zimmer, R.; and MacDonald, A. J.
1996. Speeding up problem solving by abstraction: A graph
oriented approach. Artificial Intelligence (AIJ).
Jameson, T. 2009. A fuel consumption algorithm for un-
manned aircraft systems. Technical report, DTIC Document.
Jansen, M., and Sturtevant, N. 2008. Direction maps for
cooperative pathfinding. In Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE).
Khorshid, M. M.; Holte, R. C.; and Sturtevant, N. R. 2011.
A polynomial-time algorithm for non-optimal multi-agent
pathfinding. In Proceedings of the Fourth Annual Sympo-
sium on Combinatorial Search, SOCS 2011, Castell de Car-
dona, Barcelona, Spain, July 15.16, 2011.
Manzini, G. 1995. Bida: An improved perimeter search
algorithm. Artif. Intell.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence.

Sajid, Q.; Luna, R.; and Bekris, K. E. 2012. Multi-
agent pathfinding with simultaneous execution of single-
agent primitives. In SOCS.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2012.
Conflict-based search for optimal multi-agent path finding.
In AAAI Conference on Artificial Intelligence, 563–569.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artif. Intell. 470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
In Artificial Intelligence.
Standley, T. S., and Korf, R. E. 2011. Complete algo-
rithms for cooperative pathfinding problems. In IJCAI. IJ-
CAI/AAAI.
Sturtevant, N., and Jansen, R. 2007. An analysis of map-
based abstraction and refinement. Symposium on Abstrac-
tion, Reformulation and Approximation (SARA) 344–358.
Wagner, G., and Choset, H. 2011. M*: A complete mul-
tirobot path planning algorithm with performance bounds.
In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2011, San Francisco, CA, USA,
September 25-30, 2011.
Wang, C., and Botea, A. 2008. Fast and memory-efficient
multi-agent pathfinding. In In ICAPS.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
partial expansion for large branching factor problems. In
AAAI/IAAI.
Yu, J., and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In Proceed-
ings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, AAAI’13, 1443–1449. AAAI Press.
Yu, J., and Rus, D. 2015. Pebble motion on graphs with
rotations: Efficient feasibility tests and planning algorithms.
In Algorithmic Foundations of Robotics XI, Springer Tracts
in Advanced Robotics (STAR).

