Motivation

- Existing techniques help us solve:
 - Shortest path problems
 - Some classes of optimization problems
- What about problems that require logical reasoning?
 - eg creating a Sherlock Holmes agent
 - “When you have eliminated the impossible, whatever remains, however improbable, must be the truth.”

Logical Agents

- Maintain representation of knowledge of the world
- Use factored state representation
 - States are assignments of values to variables
- Like CSPs can generalize to many different problems
- Can also generalize to different goals
Knowledge-based agents

- Logical agents maintain world knowledge
- Knowledge base (KB)
- Knowledge stored in sentences
 - Each sentence represents knowledge about the world
 - Sherlock Holmes was a fictional detective

Knowledge-based agents

- Add knowledge: TELL
- Query knowledge: ASK

Agent loop:
- TELL KB about perceptions
- ASK actions to perform
- ASK not necessarily formulated explicitly

Knowledge

- Declarative:
 - TELL an agent what is needed
 - No extra knowledge
- Procedural:
 - Encode knowledge in program code
 - SAS is often procedural
 - Generalized planning is declarative

Wumpus World

- Performance
 - 1000 for getting gold and returning to start
 - -1000 for dying
 - -10 for shooting the arrow
 - -1 for each action
Wumpus World

- Environment
 - 4x4 grid of rooms
 - Agent has heading
 - Agent starts at [1, 1]
 - Gold & wumpus randomly placed
 - Probability 0.2 of a pit

Wumpus World (WW)

- Sensors
 - Can perceive *stench* from location adjoining (vertically/horizontally) a wumpus
 - Can perceive *breeze* from location adjoining a pit
 - Can perceive *glitter* in cell with gold
 - Can perceive *scream* when wumpus dies

Wumpus World

- Actuators
 - Turn right
 - Turn left
 - Forward
 - Shoot
 - Grab
 - Exit
Logic

- Syntax: defines well-formed sentences
- Semantics: what sentences mean
 - $x + y = 4$ is true when $x = 2$ and $y = 2$
- Model: possible world
 - Includes all assignments of values to x/y
 - If α is true in m: m satisfies α
 - $M(\alpha)$ is the set of all models of α
 - What models exist for WW problem?

Entailment

- α entails β or $\alpha \models \beta$
- β follows logically from α
- In every model in which α is true, β is also true
 - $M(\alpha) \subseteq M(\beta)$

Entailment examples

- Reminder $\alpha \models \beta$; β follows logically from α; $M(\alpha) \subseteq M(\beta)$
- $\alpha = (x = 0)$, $\beta = (xy = 0)$
- $\alpha = (\text{AI lectures on only Wednesday})$, $\beta = (\text{No AI lectures on the weekends})$
- $\alpha = (\text{dogs have tails})$, $\beta = (\text{Fido has a tail})$
- $\alpha = (\text{girls like flowers}; \text{Rachel is a girl})$, $\beta = (\text{Rachel likes flowers})$
- Everyone in class give their own example
\[\alpha = \text{KB} \]
\[\beta = \text{No pit in [2, 2]} \]

Entailment

- This shows how entailment can be used to derive conclusions about the world
 - Performing *logical inference*
 - Model checking
 - Generate all possible models
 - Must be a finite number of models
 - Check if hypothesis is true

Inference

- \(\text{KB} \vdash \alpha \)
 - \(\alpha \) is derived from \(\text{KB} \) by inference algorithm \(i \)
 - A *sound* inference algorithm only derives entailed sentences
 - A *complete* inference algorithm can derive any entailed sentence
 - Model checking is sound & complete (when applicable)

Propositional Logic

- Simple form of logic
 - Can seem limited, but more complex forms of logic can be reduced to propositional logic
Propositional Logic: Symbols

- Not: ¬
- And: ∧
- Or: ∨
- Implies: ⇒ or →
- If and only if: ⇔

Prop. Logic Syntax

- Sentence → AtomicSentence | ComplexSentence
- AtomicSentence → True | False | P | Q | R | ...
- Complex Sentence → (Sentence) | [Sentence]
 | ¬ Sentence | Sentence ∧ Sentence
 | Sentence ∨ Sentence | Sentence ⇒ Sentence
 | Sentence ⇔ Sentence
- Operator precedence: ¬, ∧, ∨, ⇒, ⇔

Prop. Logic Semantics

- A model fixes the values of all variables to true or false
- True/False are always True/False
- Variables have their values defined in a model
- ¬P is true iff P is false in model
- P ∧ Q is true iff P and Q are both true in model
- P ∨ Q is true iff P or Q or both true in model
- P ⇒ Q is true iff P is false or P&Q are both true in model
- P ⇔ Q is true iff P&Q have the same values in model

Semantics

- ⇒ and ⇔ not strictly needed
 - A⇒B is the same as ¬ A ∨ B
 - A⇔B is the same as (A⇒B) ∧ (B⇒A)
Task

- Can our agent safely walk to (1, 2).
- Solution Steps:
 - Build KB (α)
 - Build Query (β)
 - Test if $\alpha \models \beta$
 - Using model checking

Construct WW KB

- $P_{x, y}$ is true if there is a pit in [x, y]
- $W_{x, y}$ is true if there is a wumpus in [x, y]
- $B_{x, y}$ is true if the agent perceives breeze in [x, y]
- $S_{x, y}$ is true if the agent perceives stench in [x, y]

WW KB

![WW KB Diagram]
There is no pit in [1, 1]

• \(R_1: \neg P_{1,1} \)

A square is breezy iff there is a pit in a neighboring square

\[R_2: B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]
There is no pit in [1, 1]
R₁: ¬P₁,₁
A square is breezy iff there is a pit in a neighboring square
R₂: B₁,₁ ⇔ (P₁,₂ ∨ P₂,₁)
R₃: B₂,₁ ⇔ (P₁,₁ ∨ P₂,₂ ∨ P₃,₁)
Percepts:
R₄: ¬B₁,₁
Prop. Logic: Simple inference

- How many variables? How many models?
- In how many is KB true?

Simple model checking

- How could we turn this into an algorithm?
- What is the running time?

Selection of possible models

<table>
<thead>
<tr>
<th></th>
<th>B_{11}</th>
<th>B_{21}</th>
<th>P_{11}</th>
<th>P_{12}</th>
<th>P_{21}</th>
<th>P_{22}</th>
<th>P_{31}</th>
<th>R_{1}</th>
<th>R_{2}</th>
<th>R_{3}</th>
<th>R_{4}</th>
<th>R_{5}</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

Homework: 7.14(a)