Entailment

- \(\alpha \) entails \(\beta \) or \(\alpha \models \beta \)
 - \(\beta \) follows logically from \(\alpha \)
 - In every model in which \(\alpha \) is true, \(\beta \) is also true
 - \(M(\alpha) \subseteq M(\beta) \)

Class Overview

- Review from Wednesday
- Inference in propositional logic
- Propositional logic agents
- First-Order Logic (Ch 8)
Propositional Logic Syntax

- \(\text{Sentence} \rightarrow \text{AtomicSentence} \mid \text{ComplexSentence} \)
- \(\text{AtomicSentence} \rightarrow \text{True} \mid \text{False} \mid P \mid Q \mid R \mid \ldots \)
- \(\text{Complex Sentence} \rightarrow (\text{Sentence}) \mid [\text{Sentence}] \)
 - \(\neg \text{Sentence} \mid \text{Sentence} \land \text{Sentence} \)
 - \(\text{Sentence} \lor \text{Sentence} \mid \text{Sentence} \Rightarrow \text{Sentence} \)
 - \(\text{Sentence} \Leftrightarrow \text{Sentence} \)
- Operator precedence: \(\neg, \land, \lor, \Rightarrow, \Leftrightarrow \)

Example statements

- There is no pit in [1, 1]
- A square is breezy iff there is a pit in a neighboring square
- If there is no smell in [1, 1], there can’t be a wumpus in [1, 2]

Model checking

- How does it work?
- What is the running time?
- What is the space required?

Theorem proving [7.5]

- No longer consult models
 - Derive inferences (entailment) directly from KB
- In some ways this mimics algebraic theorem proving
 - Start with the known
 - Apply rules/transformations
 - Reach the desired result (if possible)
Logical equivalence

- Two statements are logically equivalent if they are true in the same set of models
 - $\alpha = \beta$
 - $\alpha = \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

Standard logical equivalences

- $(\alpha \land \beta) = (\beta \land \alpha)$
- $(\alpha \lor \beta) = (\beta \lor \alpha)$
- $((\alpha \land \beta) \land \gamma) = (\alpha \land (\beta \land \gamma))$
- $((\alpha \lor \beta) \lor \gamma) = (\alpha \lor (\beta \lor \gamma))$
- $\neg (\neg \alpha) = \alpha$
Validity

- A sentence is valid if it is true in all models
 - $P \lor \neg P$
 - $Q \Rightarrow Q$

- Valid sentences are tautologies

Deduction theorem
- For any sentences α and β, $\alpha \models \beta$ iff $(\alpha \Rightarrow \beta)$ is valid
- Essence of model checking algorithm

Satisfiability

- A sentence is satisfiable if it is true in some model
 - Abbreviated as SAT
 - Can we find a variable assignment that makes some statement true

Validity and Satisfiability

- α is satisfiable iff $\neg \alpha$ is not valid
- $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
 - Proof? [Hint: $\alpha \models \beta$ iff $(\alpha \Rightarrow \beta)$ is valid]
- This is the logical basis of proof by contradiction

Validity and Satisfiability (Proof)

- α is satisfiable iff $\neg \alpha$ is not valid
 - if α is unsatisfiable, $\neg \alpha$ is valid
 - if $\neg \alpha$ is unsatisfiable, α is valid
- $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $(\alpha \Rightarrow \beta)$ is valid
 - $\alpha \models \beta$ iff $\neg (\alpha \Rightarrow \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $\neg (\neg \alpha \lor \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
Inference & Proofs

- New notation for inference rules
 \[
 \text{given}_1, \quad \text{given}_2 \quad \text{conclusion}
 \]
- We supply the items on the top and conclude what is on the bottom

Modus Ponens

- Latin for mode that affirms
 \[
 \alpha \Rightarrow \beta, \quad \alpha \quad \Rightarrow \beta
 \]

And-Elimination

\[
\frac{\alpha \land \beta}{\alpha}
\]

Biconditional elimination

\[
\frac{\alpha \leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}
\]

\[
(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)
\]

\[
\alpha \leftrightarrow \beta
\]
Book Examples

- Question 7.4

Search

- We can formulate theorem proving as a search problem
 - Initial state: KB
 - Actions: all inference rules that apply (top of rule)
 - Result: inference in bottom of rule added to KB
 - Goal: sentence we want to prove

Monotonicity

- The set of entailed sentences can only increase as information is added to the KB
 - if KB |= α then KB ∧ β |= α
 - Adding β to our KB will not decrease what we can entail from the KB

Inference: sound & complete

- The previous inference rules were all sound
 - Derive entailed sentences
- Are they complete? No
 - There are some things they can’t derive
 - (Example?)
Unit Resolution

\[l_1 \lor l_2, \neg l_2 \]
\[\overset{\text{Resolution}}{\Rightarrow} l_1 \]

- Can be generalized to more clauses (see book)

Resolution

- Generalized resolution can handle more clauses

\[l_1 \lor l_2, \neg l_2 \lor l_3 \]
\[\overset{\text{Resolution}}{\Rightarrow} l_1 \lor l_3 \]

- Completely general form in the book

Examples

Conjunctive Normal Form (CNF)

- Resolution only applies to clauses with disjunction (\(\lor \))
 - All propositional logic can be reduce to clauses or conjunctive normal form (CNF)
Using resolution

- Proofs using resolution are proofs by contradiction
 - \(\alpha \models \beta \) iff \((\alpha \land \neg \beta)\) is unsatisfiable
- Assume we want to prove \(\alpha \models \beta \)
 - Add \(\neg \beta \) to KB
 - If we can infer \(\text{false} \), we have a contradiction
 - If we can’t, then \(\alpha \not\models \beta \)

Example

- \(B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}) \)
- \(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1}) \land (P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1} \)
- \((\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \)
- \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \)
 - \((\neg P_{1,2} \lor \neg P_{2,1}) \lor B_{1,1}\)
 - \(((B_{1,1} \lor \neg P_{1,2}) \land (B_{1,1} \lor \neg P_{2,1}))\)
 - \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (B_{1,1} \lor \neg P_{1,2}) \land (B_{1,1} \lor \neg P_{2,1})\)

Special Case: Horn & definite Clauses

- A Horn clause is a disjunction of literals of which *at most one* is positive
 - \(\neg A \lor \neg B \lor C \)
 - In Definite clause *exactly one* is positive
 - Definite clauses correspond to implications
 - \(A \land B \Rightarrow C \)
 - Modus Ponens is sound and complete with Horn clauses
Building Logic Agents

- Can we now build propositional logic agents?
 - There are a few important details!
- All percepts depend on the current time/location of the agent
 - Frame problem: need to reason about what does/does not change as time goes forward
 - This tremendously complicates writing proper logical descriptions of the world

First-Order Logic: Motivation

- Returning to fred likes bones:
 - Expensive to have to specify if everyone likes bones
 - Works in wumpus world, but can be computationally infeasable
 - Cannot make statements like:
 - “All dogs like bones”

Building Logic Agents

- Can now build an agent
 - Use A* to plan movement
 - Use logical inference to decide where to go
 - Caveat: planning gets more expensive as more time passes, even if the agent just moves around the know part of the state space
 - Harder to build an agent that generates a full plan

First-Order Logic

- Propositional logic only has variables
 - These are true or false
- First-order logic adds objects, functions and relations
- Also adds quantifiers:
 - \exists: There exists
 - \forall: For all
First-Order Logic Examples

- \textit{Occupation}(p, o); \textit{Boss}(p1, p2); \textit{Customer}(p1, p2)
- \textit{Emily}; \textit{Doctor, Surgeon, Lawyer}

- Emily is either a surgeon or a lawyer.
- All surgeons are doctors.
- Emily has a boss who is a lawyer.
- Every surgeon has a lawyer.

Homework: 8.10