Theorem 1 (Three Reflection Theorem for parallel lines). If \(\alpha, \beta, \gamma \) are all parallel, then there exists a line \(\delta \) parallel to \(\alpha, \beta, \gamma \) such that \(\Omega_\alpha \Omega_\beta \Omega_\gamma = \Omega_\delta. \)

Proof. Let \(\ell \) be a line perpendicular to \(\alpha, \beta, \gamma \). Since \(\Omega_\alpha \Omega_\beta \) is a translation, if follows that if we can find a line \(m \) perpendicular to \(\ell \) such that \(\Omega_\alpha \Omega_\beta = \Omega_m \Omega_\gamma \), then \(\Omega_\alpha \Omega_\beta \Omega_\gamma = \Omega_m \) as required, since \(\Omega_m^{-1} = \Omega_\gamma \).

Now, if \(P \) is a point on \(\ell \), \(N \) is a unit vector perpendicular to \(\ell \), and \(m \) is any line perpendicular to \(\ell \), then we may choose \(a, b, c \) and \(d \) so that

\[
P + aN \in \alpha \text{ and } P + bN \in \beta \text{ so } \Omega_\alpha \Omega_\beta(x) = x + 2(a - b)N
\]

\[
P + dN \in m \text{ and } P + cN \in \gamma \text{ so } \Omega_m \Omega_\gamma(x) = x + 2(d - c)N
\]

To obtain \(\Omega_\alpha \Omega_\beta = \Omega_m \Omega_\gamma \) we must choose \(d \) such that \(2(a - b) = 2(d - c) \), i.e. \(d = a - b + c \). Therefore \(m = P + (a - b + c)N \) which completes the proof. \(\square \)

Corollary 2. If \(T = \Omega_\alpha \Omega_\beta \) is a translation along a line \(\ell \), and \(m \) is any line perpendicular to \(\ell \), then there exists lines \(n \) and \(n' \) such that

\[
T = \Omega_\alpha \Omega_\beta = \Omega_m \Omega_n = \Omega_{n'} \Omega_m.
\]

Proof. Apply the previous theorem to \(\Omega_m \Omega_\alpha \Omega_\beta \) to find a line \(n \) such that \(\Omega_m \Omega_\alpha \Omega_\beta = \Omega_n \). Then \(\Omega_\alpha \Omega_\beta = \Omega_m \Omega_n \). Similarly for \(\Omega_\alpha \Omega_\beta \Omega_m \).

Theorem 3 (Three Reflection Theorem for concurrent lines). Let \(\alpha, \beta \) and \(\gamma \) be lines intersecting in a point \(P \). There exists a line \(\delta \) through \(P \) such that \(\Omega_\alpha \Omega_\beta \Omega_\gamma = \Omega_\delta \).

Proof (Version 1). Case 1: \(P = (0, 0) \). Let \(\theta, \phi, \psi \) be such that \(\Omega_\alpha = \text{ref}(\theta) \) and \(\Omega_\beta = \text{ref}(\phi) \) and \(\Omega_\gamma = \text{ref}(\psi) \). We may calculate directly (by matrix multiplication)

\[
\Omega_\alpha \Omega_\beta \Omega_\gamma = \text{ref}(\theta - \phi + \psi) = \Omega_{\theta - \phi + \psi},
\]

a reflection in the line through the origin with direction vector \((\cos(\theta - \phi + \psi), \sin(\theta - \phi + \psi))\).

Case 2: \(P \neq (0, 0) \). Now, \(\tau_\alpha \Omega_\alpha = \text{ref}(\theta) \), \(\tau_\beta \Omega_\beta = \text{ref}(\phi) \) and \(\tau_\gamma \Omega_\gamma = \text{ref}(\psi) \) are all reflections in lines through \(P \) so that \(\Omega_\alpha \Omega_\beta \Omega_\gamma = \tau_\alpha \Omega_\alpha \Omega_\beta \Omega_\gamma \).

By the previous theorem,

\[
(\tau_\alpha \Omega_\alpha \tau_\beta)(\tau_\alpha \Omega_\alpha \tau_\beta)(\tau_\alpha \Omega_\alpha \tau_\beta) = \tau_\alpha \Omega_\alpha \Omega_\beta \Omega_\gamma
\]

and so \(\Omega_\alpha \Omega_\beta \Omega_\gamma = \tau_\alpha \Omega_\alpha \Omega_\beta \Omega_\gamma \), a reflection in the line through \(P \) with direction \((\cos(\theta - \phi + \gamma), \sin(\theta - \phi + \gamma))\)). \(\square \)

Proof (Version 2). If \(P \) is the origin, then the reflections are linear transformations and the determinant of each matrix is \(-1\) so the determinant of the product is \(-1\) and hence a reflection (because rotations have determinant \(+1\)). Of course, we haven’t said anything about determinants, so to make this into a real proof one would first have to do the work on determinants. For \(P \neq \) not the origin the proof is as for Case 2 above. \(\square \)

Proof (Version 3). Again we start with \(P \) the origin. We know that if \(\Omega_\alpha = \text{ref}(\theta) \) and \(\Omega_\beta = \text{ref}(\phi) \) and \(\Omega_\gamma = \text{ref}(\psi) \), then \(\Omega_\alpha \Omega_\beta = \text{rot}(2(\theta - \phi)) \) is a rotation. If \(\delta \) is any line through the origin with direction \((\cos \kappa, \sin \kappa)\), then \(\Omega_\delta \Omega_\gamma = \text{rot}(2(\kappa - \psi)) \). Setting \(\delta = \theta - \phi + \kappa \) gives \(\Omega_\alpha \Omega_\beta = \Omega_\delta \Omega_\gamma \).
Multiplying both sides on the right by Ω_γ completes the proof. As before the case for P not the origin is as for Case 2 in Version 1.

\begin{corollary}
Let $T = \Omega_\alpha \Omega_\beta$ be a rotation about point P and let ℓ be any line through P. There exist lines m and m' through P with $T = \Omega_\ell \Omega_m = \Omega_{m'} \Omega_\ell$.

The proof is essentially the same as that of Corollary 2.
\end{corollary}

\begin{theorem}
Let Ω_α, Ω_β, Ω_γ be three distinct reflections not all parallel or concurrent. Then $\Omega_\alpha \Omega_\beta \Omega_\gamma$ is a glide reflection.

Note: A glide reflection is a reflection followed by a translation along the line of reflection, i.e. $\tau_v \Omega_n$ where v is parallel to n.

\begin{proof}
Case 1: α and β intersect in P. We shall apply Corollary 4 to construct a line n and lines m, m' perpendicular to n so that $\Omega_\alpha \Omega_\beta \Omega_\gamma = \Omega_m \Omega_{m'} \Omega_n$, a glide reflection as required.

Let ℓ be the line through P perpendicular to γ and let F be the intersection of ℓ and γ. Next, using Corollary 4, choose a line m through P so that $\Omega_\alpha \Omega_\beta = \Omega_m \Omega_\ell$ and hence

$$\Omega_\alpha \Omega_\beta \Omega_\gamma = \Omega_m \Omega_\ell \Omega_n .$$

Let n be the line through F perpendicular to m and let m' be the line through F perpendicular to n. Now, n and m' are perpendicular and intersect in F, ℓ and γ are perpendicular and intersect in F, so they are both half turns and hence represent the same isometry (see exercises). Thus, $\Omega_m \Omega_n = \Omega_\ell \Omega_\gamma$ and therefore

$$\Omega_\alpha \Omega_\beta \Omega_\gamma = \Omega_m \Omega_{m'} \Omega_n ,$$

a glide reflection.
\end{proof}

Case 2: β and γ intersect. Apply Case 1 to $(\Omega_\alpha \Omega_\beta \Omega_\gamma)^{-1} = \Omega_\gamma \Omega_\beta \Omega_\alpha = \tau_v \Omega_n$ to obtain $\Omega_\gamma \Omega_\beta \Omega_\alpha = \tau_v \Omega_n$ and hence

$$\Omega_\alpha \Omega_\beta \Omega_\gamma = (\tau_v \Omega_n)^{-1} = \Omega_\alpha \tau_{-v} = \tau_{-v} \Omega_n,$$

again a glide reflection. \square