We next want to define what a line is in S^2. If you start at any point of S^2 and move “straight ahead” then you will trace out a “great circle” and end up back where you started. In terms of the surrounding context, this is the intersection of a plane in \mathbb{R}^3 through the origin with S^2. These will be our lines.

Definition 1. A line in S^2 is the set $\ell = \{ x \in S^2 : \langle u, x \rangle = 0 \}$ for some unit vector u in \mathbb{R}^3. We refer to u as the pole of ℓ.

Notice that the line ℓ with pole u is the intersection of the plane in \mathbb{R}^3 having normal vector u with S^2.

Definition 2. Two points P and Q of S^2 are **antipodal** if $P = -Q$.

Theorem 3. If u is a pole of ℓ, then so is $-u$. If P lies on ℓ, then so does $-P$.

Theorem 4. If P and Q are distinct points that are not antipodal, then there is a unique line containing P and Q.

Proof. (i) Existence: let ℓ be the line with pole $P \times Q/|P \times Q|$. Both P and Q lie on ℓ since P and Q are both perpendicular to $P \times Q$.

(ii) Uniqueness: Let u be a pole of any line through P and Q, then $\langle P, u \rangle = 0$ and $\langle Q, u \rangle = 0$. From above: $u \times v \times w = \langle u, w \rangle v - \langle v, w \rangle u$. So $(P \times Q) \times u = 0$, i.e. u is parallel to $P \times Q$. But since $|u| = 1$ this means $u = \pm(P \times Q)/|P \times Q|$, in other words u is a pole of the line ℓ from part (i). □

Theorem 5. Let ℓ, m be distinct lines in S^2, then they have exactly 2 points of intersection and these points are antipodal.

Proof. Let u, v be poles of ℓ, m respectively. The two lines are distinct so u, v are not parallel and hence $u \neq \pm v$, or $u \times v \neq 0$. Points $\pm(u \times v)/|u \times v|$ are on both ℓ and m since they are perpendicular to both u and v. Thus ℓ, m have at least 2 points of intersection.

If P is a third point of intersection, then P is not antipodal to either $\pm(u \times v)/|u \times v|$ so by the previous theorem there is a unique line through $(u \times v)/|u \times v|$ and P, a contradiction. □

Corollary 6. No two lines of S^2 are parallel.

Note: even lines with a common perpendicular intersect.

Definition 7. The **distance between two points** $P, Q \in S^2$ is given by $d(P, Q) = \cos^{-1} \langle P, Q \rangle$.

Remark: The range of the inverse cosine function is $[0, \pi]$ so that $0 \leq d(P, Q) \leq \pi$.

Theorem 8. Let $P, Q, R \in S^2$, then

(i) $d(P, Q) \geq 0$;
(ii) $d(P, Q) = 0$ if and only if $P = Q$;
(iii) $d(P, Q) = d(Q, P)$;
(iv) $d(P, Q) + d(Q, R) \geq d(P, R)$. 1
Proof. We shall prove (iv). Recall that $|u \times v|^2 = |u|^2|v|^2 - \langle u, v \rangle^2$ (Theorem 6.2). Thus, $\langle u, v \rangle^2 \leq |u|^2|v|^2$. Now, let $r = d(P, Q)$, $p = d(Q, R)$, $q = d(P, R)$, then $\langle P \times R, Q \times R \rangle^2 \leq |P \times R|^2|Q \times R|^2$. Calculating the left and right sides separately gives

\[
\langle P \times R, Q \times R \rangle^2 = \langle P, R \times Q \times R \rangle^2
\]
\[
= \langle P, (\langle R, R \rangle Q - \langle Q, R \rangle R) \rangle^2
\]
\[
= (\langle R, R \rangle \langle P, Q \rangle - \langle Q, R \rangle \langle P, R \rangle)^2
\]
\[
= (\cos r - \cos q \cos p)^2 ,
\]

and

\[
|P \times R|^2|Q \times R|^2 = (|P|^2|R|^2 - \langle P, R \rangle^2)(|Q|^2|R|^2 - \langle Q, R \rangle^2)
\]
\[
= (1 - \cos^2 q)(1 - \cos^2 p)
\]
\[
= \sin^2 q \sin^2 p .
\]

Thus $(\cos r - \cos q \cos p)^2 \leq \sin^2 q \sin^2 p$ and hence $\cos r - \cos q \cos p \leq \sin q \sin p$ since $0 \leq p, q \leq \pi$. This gives $\cos r \leq \sin q \sin p + \cos q \cos p$ and then $\cos r \leq \cos(q - p)$. Since $\cos x$ is decreasing on $[0, \pi]$, we obtain $r \geq q - p$ provided that $0 \leq q - p \leq \pi$, i.e. $r + p \geq q$. Since $0 \leq p, q \leq \pi$, clearly $p - q \leq \pi$. If $q - p \leq 0 \leq r$ then $q \leq p + r$ as required. □