Lecture Overview [7.1-7.4]

- Logical Agents
- Wumpus World
- Propositional Logic
- Inference
- Theorem Proving via model checking

Motivation

- Existing techniques help us solve:
 - Shortest path problems
 - Some classes of optimization problems
- What about problems that require logical reasoning?
 - eg creating a Sherlock Holmes agent
 - “When you have eliminated the impossible, whatever remains, however improbable, must be the truth.”

Logical Agents

- Maintain representation of knowledge of the world
- Use factored state representation
 - States are assignments of values to variables
- Like CSPs can generalize to many different problems
- Can also generalize to different goals
Knowledge-based agents

• Logical agents maintain world knowledge
 • Knowledge base (KB)
 • Knowledge stored in *sentences*
 • Each sentence represents knowledge about the world
 • Sherlock Holmes was a fictional detective

• Add knowledge: TELL
• Query knowledge: ASK

• Agent loop:
 • TELL KB about perceptions
 • ASK actions to perform
 • ASK not necessarily formulated explicitly

Knowledge

• Declarative:
 • TELL an agent what is needed
 • No extra knowledge

• Procedural:
 • Encode knowledge in program code
 • SAS is often procedural
 • Generalized planning is declarative

Wumpus World

• Performance
 • 1000 for getting gold and returning to start
 • -1000 for dying
 • -10 for shooting the arrow
 • -1 for each action
Wumpus World

- Environment
 - 4x4 grid of rooms
 - Agent has heading
 - Agent starts at [1, 1]
 - Gold & wumpus randomly placed
 - Probability 0.2 of a pit

Wumpus World (WW)

- Sensors
 - Can perceive *stench* from location adjoining (vertically/horizontally) a wumpus
 - Can perceive *breeze* from location adjoining a pit
 - Can perceive *glitter* in cell with gold
 - Can perceive *scream* when wumpus dies

Wumpus World

- Actuators
 - Turn right
 - Turn left
 - Forward
 - Shoot
 - Grab
 - Exit
Logic

• Syntax: defines well-formed sentences
• Semantics: what sentences mean
 • \(x + y = 4 \) is true when \(x = 2 \) and \(y = 2 \)
• Model: possible world
 • Includes all assignments of values to \(x/y \)
 • If \(\alpha \) is true in \(m \): \(m \) satisfies \(\alpha \)
 • \(M(\alpha) \) is the set of all models of \(\alpha \)
• What models exist for WW problem?

Entailment

• \(\alpha \) entails \(\beta \) or \(\alpha \models \beta \)
 • \(\beta \) follows logically from \(\alpha \)
 • In every model in which \(\alpha \) is true, \(\beta \) is also true
 • \(M(\alpha) \subseteq M(\beta) \)

Entailment examples

• Reminder \(\alpha \models \beta \): \(\beta \) follows logically from \(\alpha \); \(M(\alpha) \subseteq M(\beta) \)
• \(\alpha = (x = 0), \beta = (xy = 0) \)
• \(\alpha = (\text{AI lectures on Wednesday}), \beta = (\text{No AI lectures on the weekends}) \)
• \(\alpha = (\text{dogs have tails}), \beta = (\text{puppies have tails}) \)
• \(\alpha = (\text{girls like flowers; Rachel is a girl}), \beta = (\text{Rachel likes flowers}) \)
• Everyone in class give their own example
\[\alpha = \text{KB} \]
\[\beta = \text{No pit in [2, 2]} \]

Entailment
- This shows how entailment can be used to derive conclusions about the world
 - Performing *logical inference*
 - Model checking
 - Generate all possible models
 - Must be a finite number of models
 - Check if hypothesis is true

Inference
- \(\text{KB} \vdash \alpha \)
 - \(\alpha \) is derived from KB by inference algorithm \(i \)
 - A *sound* inference algorithm only derives entailed sentences
 - A *complete* inference algorithm can derive any entailed sentence
 - Model checking is sound & complete (when applicable)

Propositional Logic
- Simple form of logic
- Can seem limited, but more complex forms of logic can be reduced to propositional logic
Propositional Logic: Symbols

- Not: \(\neg \)
- And: \(\land \)
- Or: \(\lor \)
- Implies: \(\Rightarrow \) or \(\rightarrow \)
- If and only if: \(\Leftrightarrow \)

Prop. Logic Syntax

- Sentence \(\rightarrow \) AtomicSentence \(\mid \) ComplexSentence
- AtomicSentence \(\rightarrow \) True \(\mid \) False \(\mid \) P \(\mid \) Q \(\mid \) R \(\mid \) ...
- Complex Sentence \(\rightarrow \) (Sentence) \(\mid \) [Sentence]
 \(\mid \) \(\neg \) Sentence \(\mid \) Sentence \(\land \) Sentence
 \(\mid \) Sentence \(\lor \) Sentence \(\mid \) Sentence \(\Rightarrow \) Sentence
 \(\mid \) Sentence \(\Leftrightarrow \) Sentence
- Operator precedence: \(\neg \), \(\land \), \(\lor \), \(\Rightarrow \), \(\Leftrightarrow \)

Prop. Logic Semantics

- A model fixes the values of all variables to true or false
- True/False are always True/False
- Variables have their values defined in a model
- \(\neg P \) is true iff P is false in model
- \(P \land Q \) is true iff P and Q are both true in model
- \(P \lor Q \) is true iff P or Q are both true in model
- \(P \Rightarrow Q \) is true iff P is false or P&Q are both true in model
- \(P \Leftrightarrow Q \) is true iff P&Q have the same values in model

Semantics

- \(\Rightarrow \) and \(\Leftrightarrow \) not strictly needed
- \(A \Rightarrow B \) is the same as \(\neg A \lor B \)
- \(A \Leftrightarrow B \) is the same as \((A \Rightarrow B) \land (B \Rightarrow A) \)
Construct WW KB

- \(P_{x,y} \) is true if there is a pit in \([x, y]\)
- \(W_{x,y} \) is true if there is a wumpus in \([x, y]\)
- \(B_{x,y} \) is true if the agent perceives breeze in \([x, y]\)
- \(S_{x,y} \) is true if the agent perceives stench in \([x, y]\)

WW KB

- There is no pit in \([1, 1]\)
 - \(R_1: \neg P_{1,1} \)
- A square is breezy iff there is a pit in a neighboring square
 - \(R_2: B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)
 - \(R_3: B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \)
- Percepts:
 - \(R_4: \neg B_{1,1} \)
 - \(R_5: B_{2,1} \)

Prop. Logic: Simple inference

- How many variables? How many models?
- In how many is KB true?
Selection of possible models

<table>
<thead>
<tr>
<th>B_{11}</th>
<th>B_{21}</th>
<th>P_{11}</th>
<th>P_{12}</th>
<th>P_{21}</th>
<th>P_{22}</th>
<th>P_{31}</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Simple model checking

- How could we turn this into an algorithm?
- What is the running time?

Homework: 7.2