Binary, Hexadecimal, and Octal numbering in Computing
1. Binary

In the early days of the development of the computer, schemes for representing data with units with three or more levels, high, medium, low, and such, were considered and rejected in favor of the more reliable two level system, on/off or 1/0, now used. These early computers were built to do numerical calculations. Base 2, or binary representation is a natural way to use two symbols, 0 and 1, to represent numbers.
As a preliminary to understanding binary representation, let’s think more deeply about decimal representation of numbers, the method we know and love. We use ten symbols, 0,1,2,3,4,5,6,7,8,9, called digits, and positional information to represent whole numbers. For example, 583 represents 5 hundreds, 8 tens, and 3 ones. From right to left, the positions in a decimal representation tell how many 100’s, 101’s, 102’s, 103’s…are in the number. 

A parallel analysis gives us the basics of binary representation. We use two symbols, 0,1, called bits, and positional information to represent whole numbers. From right to left, the positions in a binary representation tell how many 20’s, 21’s, 22’s, 23’s… are in a number. For example, 11010 represents 1*24+1*23+0*22+1*21+0*20, or 16+8+2=26 in decimal notation. You see how this gives a method, or algorithm, for computing the decimal representation from the binary representation.

To convince yourself that all whole numbers can be represented in binary notation, imagine a monetary system with 1 dollar coins, 2 dollar coins, 4 dollar coins, 8 dollar coins, and  2k dollar coins, for any whole number k. Could you make up any dollar amount using at most one of each type of coin? You can. Use one coin of the largest denomination, say 2k, less than or equal to the required amount. What’s left must be less than the value of that coin (or else you could have used double the value of the first coin, 2k+1). Take a coin of the largest denomination that’s less than or equal to the remaining amount. Repeat until you don’t need any more coins.

This technique indicates an algorithm for computing the binary representation of a decimal number. For example, let’s convert the decimal 25 to binary. Find the highest power of 2 less than or equal to the number in question, 25. That’s 16= 24, subtract it from 25 to get 9, and note that the binary representation begins with a 1 in the 24‘s place, its leftmost bit. The value 8= 23 is the highest power of 2 less than or equal to the remaining amount, 9.  Subtract 8 from 9, leaving 1. Note that the binary representation of 25 has a 1 in the 23‘s place, second from the leftmost. Now 1=20, so there are 0’s in the 22, and the 21 places, and a 1 in the 20 place: 11001.
The two algorithms above are, perhaps, the most intuitive conversion algorithms.

Another method for converting from binary to decimal requires just multiplication by 2 and addition of  1 or 0. This method consists of taking the leftmost bit. If it is not the in the 1’s place multiply it by 2 and add the next bit to the right. If that bit was not in the 1’s place, multiply the sum just produced by 2 and add the next bit to the right, etc. Stop after adding the bit in the 1’s place. Applying this to 11010, begin with 1*2+1 (aka 3). Next, get (1*2+1)*2+0 (aka 3*2+0=6). Then get ((1*2+1)*2+0)*2+1 (aka 6*2+1=13). Finally, multiply by 2 and add 0: (((1*2+1)*2+0)*2+1)*2+0 (aka 13*2+0=26).
There is a computationally simpler, conceptually trickier, method for converting from decimal to binary, also. This uses successive divisions by 2 of the number to be converted. For example, to write 22 in base two, divide by 2. The quotient is 11, and the remainder is 0. Record the remainder, 0, as the rightmost bit. We know that there are 11 2’s in 22. Now divide 11 by 2. This tells us the number of 4’s in 22. The quotient is 5, and the remainder is 1. Record a 1 to the left of the bit most recently computed. The representation is 10, so far. Divide 5 by 2. The quotient is 2, and the remainder is 1. Record the remainder to the left of the representation so far: 110. Divide 2 by 2. The quotient is 1 and the remainder is 0. The updated representation is 0110. Divide 1 by 2. The quotient is 0, and the remainder is 1. Record the 1 at the left of the representation, giving 10110. Once the quotient reaches 0, the representation is complete.

Arithmetic in base 2 is quite simple, though the numbers tend to get rather long. A child learning to add and multiply base 10 has to learn a comparatively large addition table. Having mastered that and carrying, the child can add any two whole numbers. The base 2 addition table is quite small:

	+
	0
	1

	0
	0
	1

	1
	1
	10


 Now our binary child adds 111+10=1101 by starting at the right and working left, “1+0 is 1. Write 1. 1+1 is 10. Write 0, and carry 1. 1+1 is 10, and that is the end, so write 10.”  Try this with the numbers written one below the other, as for hand computation base 10.
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Adding 1 and 1 is relaxing compared to many activities required of us, so let’s do another: 1011+111.
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To multiply in base 10 by hand you multiply one factor by each digit of the other factor, putting 0’s to the right of this subproduct to show the column from which the digit came. Then add the separate products. For example, 53*27 produces the following computation.
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	3
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	7
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	4
	3
	1


The base 2 multiplication table shows four products.

	x
	0
	1

	0
	0
	0

	1
	0
	1


Computing products of larger numbers base 2 parallels the base 10 computation.
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2. Hexadecimal
Hexadecimal notation refers to representation base 16. This time we need 16 symbols. They are conventionally chosen to be 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f.  From right to left, the positions in a hexadecimal representation tell how many 160’s, 161’s, 162’s, 163’s…are in the number.  For example the hexadecimal number 2c7 in decimal notation is 2*162 +12* 161 + 7*160 = 711. To convert a hexadecimal representation to binary, replace each symbol in the hexadecimal representation by the corresponding 4-bit binary representation: 0000 for 0, 0001 for 1,…1110 for e, 1111 for f. The hexadecimal value 2c7 is then 0010 1100 0111, or 1011000111. Reverse this technique, first padding the binary representation with leading 0’s, if necessary, to make the number of bits a multiple of 4. Thus the binary number 101110101101010001 becomes 0010 1110 1011 0101 0001, with hexadecimal representation 2eb5.
This discussion shows the strength of hexadecimal notation for humans working with binary machines. The hexadecimal representation of a value will be shorter and easier to remember than the binary representation, but easy to convert to binary if necessary.  Display of memory addresses in C and custom colors in html are two current applications of hexadecimal representation.

3. Octal
You will also run across octal, or base 8, representation in, for example, file permissions in LINUX. Here, the necessary symbols are 0,1,2,3,4,5,6,7, and the places represent successive powers of 8. To convert from octal to binary, replace each symbol by its 3-bit representation: 000 for 0, 001 for 2,…110 for 6, 111 for 7.

