Project 2, COMP1571, Fall 2005
The Problem:

Simulation is a major use of computing in engineering. Simulation of many phenomena requires a source of random numbers, for example for vibration, load, or yield. Random number generation challenges computer scientists on philosophical, mathematical, and technological levels. In the absence of specialized hardware, programmers rely on pseudorandom numbers, numbers generated by an algorithm, but having, one hopes, little regularity observable in application. In this project, you will develop software to assess the quality of the pseudorandom number generator available in C.
C provides pseudorandom numbers through the rand()function, accessed through the stdlib.h file. Unless the programmer alters the starting configuration of rand(), the first call produces the first number a fixed sequence of nonnegative integers. Each successive call to rand() produces the next in that sequence. The stdlib.h also gives access to that maximum possible value of rand(). For our implementation of C, the maximum is 2,147,483,647. The defined constant, RAND_MAX, stores that value. Note that every time a program using rand() runs, it will go through the same sequence of pseudorandom values. This can be useful for debugging.

In simulation or gaming applications, however, one often wants a different sequence each time. To access the sequence from a different point, programmers typically use the statement srand(time(NULL)) once, before the first call to rand(). This seeds the pseudorandom number generator with a different start location depending on the time at which the program is run. Due to the dependence of the seed on the time, programs run within a second or two will use closely related pseudorandom values.

Programmers use rand()and certain functions of rand(), assuming rand() has uniform distribution. A random number generator with a uniform distribution has the property that the number produced by a call to the generator is equally likely to fall anywhere in the full range of possible values. To visualize this property, imagine the range divided into subintervals of equal length. Generate many values. Display a bar graph of the number of values falling in each interval. The lengths of the bars should be approximately equal. To test the uniformity of a pseudorandom sequence, perform the same experiment. If the bars for the pseudorandom numbers in some portions of the range are consistently longer than the bars in other portions, the pseudorandom generator poorly approximates a uniform distribution. Likewise, the bars varying too greatly in length in each run, even without a particular pattern, indicates non-uniformity.
Investigators use the chi square statistic to obtain a quantitative measure of the likelihood of producing a giving bar graph with a specified distribution. To calculate the statistic, use the counts observed(1), observed(2)…observed(n), produced experimentally in each interval, or, more generally, category. Calculate the expected counts in each category, expected(1), expected(2), …expected(n). In the case of a uniform distribution, a total of k values and counts in n equal subintervals expected(i) =k/n for all i. Calculate the statistic with the following formula:

[image: image1.wmf]å

=

n

i

1

(observed(i)-expected(i))2/expected(i) .
Large values of this statistic indicate a large difference between the observed and the expected behavior. The significance of the statistic is the probability of obtaining a value greater than or equal to the observed value using the specified distribution. If n and the total count are moderate, the probability can be calculated directly. Otherwise, if the expected value in each category is at least 5, approximation using a chi square table becomes more practical. You will have access to a C function to calculate the probability directly for a uniform distribution and equal subintervals. Chi square tables are available on the web, for example at http://www.statsoft.com/textbook/sttable.html#chi . To use this table, find the row corresponding to one fewer than the number of subintervals chosen. In that row, locate the experimental value of the chi square statistic between two of the values listed. Read up to the column heads of those values. The probability of obtaining a chi square statistic at least as large as the experimental value with a uniform distribution is between the values at the column heads.
The program:
Due Wednesday, November 2
Write a program to test the uniformity assumption for C’s pseudorandom number generator under two scenarios. First, as discussed above, for each generated x= rand(), use x/(RAND_MAX/n) to place x in a category 0 through n-1. Second, for each generated x= rand(), use x%n to place x in its category, 0 through n-1
Your program should allow the user to specify the number k of values to generate and the value of n, up to 20. It should then generate the required number of values and create two arrays; one array containing the number of values in each subinterval according to the first method, and the other array containing the count of the number of remainders modulo n taking on each of the values in [0, n-1]. The program should print a bar graph from both arrays. You will see an illustration of such bar graphs in class. Your bar graph printing should use at most one asterisk per count, but should adjust the counts per asterisk to arrange that the bars have at most about 50 asterisks. The program should also report the value of the chi square statistic for each method.
Your program should include a header comment with your names, and a brief description of the program. Include additional comments to explain your work. The program should use well chosen functions to clarify the structure of the program and minimize repeated code. The behavior of each function should be commented. Please limit line lengths to 80 columns. Use indenting to reflect the flow of control in your code.

You may work alone or with a single partner.

To hand in:

Please hand in a printout of your source code during class. Please name your source file YourLastNames_proj2.c, and email your source code as an attachment to comp157x.cs.du.edu with the file name as the subject. If you change the program after you hand in the hard copy, comment that in the source.

_1190799295.unknown

