Project 1, COMP 1572, Winter 2007, due Monday, February 5

Background:

Sudoku  puzzles are logic puzzles that have enjoyed growing popularity in recent years. A puzzle consists of a 9x9 grid of squares. Each square may be occupied by any digit between 1 and 9, inclusive. However, every row in the grid must have one of each digit and every column in the grid must have one of each digit. Further, if you view the grid as being composed of 9 3x3 sub grids as follows,

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	


then each of the 3x3 squares must also have one of each digit. The puzzle's designer provides digits in some of the squares in such a way that there is only one way to fill the rest of the squares with 1-9 according to these rules. The player uses logic and trial and error to fill in the rest of the squares.

The player generally fills in each square with all the digits still possible for that square on the basis of the digits given in the puzzle or deduced or guessed to that point. With that information, the player can often deduce additional digits, or at least make an informed guess at some digit.


Program:

The objective of the program is to provide the user with a way to load a particular puzzle into the program, then to assist the user to solve the puzzle by filling in the set of possibilities in each square, prompting the user for a guess, then updating the possibilities to reflect that guess. This process repeats until the user asks to quit or solves the puzzle.

The data for the program is a text file containing 81 space-separated digits 0-9. The program should interpret these as the entries in the grid in order from top left to bottom right. The digit 0 represents a blank square.

The program should display the corresponding puzzle, but with the set of possible digits in the squares left blank by the puzzle's author.

The program should then prompt the user to quit or to specify a square and a guess for that square and respond appropriately to that guess. Please ask the user to specify the square by providing a row index, 0-8, and a column index 0-8. If the guess is superficially valid, that is, does not force multiple copies of any particular digit into any row, column, or 3x3 sub-grid, the program should update the display. If the user has completed the puzzle, the program should congratulate the user and exit. If not, the program should prompt the user to quit or guess again. If the guess was not superficially valid, the program should state that, and prompt the user to quit or guess again. 

Grading: 

The project grade will be based on the creation of a program that works correctly, up to some details (45%), the clear and efficient organization of the program (20%), the appropriate use of functions, structures, and containers (10%), the production of clear output, with readable formatting and without unnecessary repetition (15%), and the composition of informative comments (10%). Programs must compile. If necessary, comment out problem code, describe the actual performance of the program, and describe the intended performance.

Restrictions:
You may work individually or in groups of two. Use only material from class or from the text, chapters 0-5, inclusive. All code must be the work of the individual or group. Do not share or discuss specific strategies.

Addendum

You will receive extra credit if your program also allows you to remove some of the possibilities from a square.

Two basic deductions dictate appropriate response to a puzzle configuration, either on startup or after a guess. If one square in the puzzle has a single value possible, then no other square in its row, column, or block has that value as a possibility. Also, if a particular value appears as a possibility in only one square of a row, then that square must have exactly that value. The same applies to columns and blocks.

