
Algorithms and Data Stru
turesChapter 10
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/26



Chapter 10

A dynami
 set, that is, a set that 
an have elements added ordeleted, is a fundamental abstra
t data type. A data stru
tureimplementing a dynami
 set will typi
ally support queries,
SEARCH(S, k), insertion, INSERT(S, x), and deletion,
DELETE(S, x). Additional operations may be available.Chapter 10 presents four basi
 data stru
tures: sta
ks, queues,linked lists, and rooted trees. These data stru
tures 
an be used toimplement dynami
 sets, We will examine the performan
e ofthese data stru
tures on the basi
 operations, and additionaloperations suited to the data stru
tures.

1. Algorithms and Data Structures – 2/26



Sta
ks

A sta
k is an implementation of a dynami
 set in whi
hthe element removed from the set must be the one mostre
ently added (LIFO). The basi
 operations are
PUSH(S, x) ( the sta
k version of INSERT(S, x)) and
POP(S), whi
h removes and returns the 'top' of the sta
k,the value most re
ently added.

1. Algorithms and Data Structures – 3/26



Array-based Sta
k

A sta
k 
an be implemented 
onveniently with an array.The sta
k 
onsists of the elements S[1..S.top].
STACK-EMPTY(S)1. if S.top == 02. return TRUE3. else return FALSE

1. Algorithms and Data Structures – 4/26




ont.

PUSH(S, x)1. S.top = S.top+ 12. S[S.top] = x

POP(S)1. if STACK-EMPTY(S)2. error underflow3. else S.top = S.top− 14. return S[S.top+ 1]Asymptoti
 bounds?
1. Algorithms and Data Structures – 5/26



Some Appli
ations

Sta
ks are used to keep tra
k of fun
tion 
alls, to 
he
ksyntax, in evaluating post�x expressions, and in
onverting expressions in standard algebrai
 notation,
alled in�x, to post�x, a form more easily evaluated bythe 
omputer.Post�x example: 5, 3,+, 10, ∗ is evaluated reading fromleft to right. Operands are sta
ked. When an operator isread, the appropriate number of operands are popped,the operator applied, and the result pushed. [5] [5, 3] [8]
[8, 10] [80]

1. Algorithms and Data Structures – 6/26



In�x to Post�x

The 
onversion from in�x to post�x uses two sta
ks, an expressionsta
k and an operator sta
k. The expression is read from left to right.operands are pushed onto the expression sta
k.Operators * and / have higher priority than + and -, whi
h have higherpriority than '('. When an operator *,/,+, or - is read, the operatorsta
k is popped and the result pushed onto the expression sta
k untilthe top of the operator sta
k is of lower priority that the operator justread. Then that operator is pushed onto the operator sta
k.When a '(' is en
ountered, it is pushed onto the operator sta
k. When a')' is read, the operator sta
k is popped and the result pushed onto theexpression sta
k until the '(' is en
ountered. It is popped and dis
arded.At the end of the expression, pop and push all remaining operators inthe operator sta
k.
1. Algorithms and Data Structures – 7/26



Example

(10− 2)/8:expression:[10, 2]operator:[(,−]expression:[10, 2,−, 8]operator:[/]expression:[10, 2,−, 8, /]operator:[]

1. Algorithms and Data Structures – 8/26



Queues

A queue is an implementation of a dynami
 set in whi
helements are added to the 'ba
k' and removed from the'front' (FIFO). The basi
 operations are ENQUEUE(S, x)( the queue version of INSERT(S, x)) and DEQUEUE(S),whi
h removes and returns the 'front' of the queue, theoldest remaining value.A queue may be implemented with an array if the arrayis treated as 
ir
ular.
1. Algorithms and Data Structures – 9/26



Array-based Queue
ENQUEUE(Q, x)1. Q[Q.tail] = x2. if Q.tail == Q.length3. Q.tail = 14. else Q.tail = Q.tail + 1

DEQUEUE(Q)1. x = Q[Q.head]2. if Q.head == Q.length3. Q.head = 14. else Q.head = Q.head+ 15. return xInitially, Q.head = Q.tail = 1. A more robust implementationwould dete
t over�ow and under�ow.Asymptoti
 performan
e? 1. Algorithms and Data Structures – 10/26



Linked List

A linked list is a data stru
ture in whi
h the elements arearranged in linear order, but that order is maintained bypointers, rather than by position in an array.The list has a single data member, the list element headat the front of the list. An empty list head = NIL.

1. Algorithms and Data Structures – 11/26



List Varieties

In a singly linked list, ea
h element x 
onsists of a key
x.key and a pointer x.next to the next element in thelist. The �nal element in the list has a NIL pointer as
x.next.In a doubly linked list, ea
h element x 
onsists of a key

x.key , a pointer x.next to the next element in the list,and a pointer x.prev to the previous element in the list.The �nal element in the list has a NIL pointer as x.next.The �rst element in the list has a NIL pointer as x.prev.

1. Algorithms and Data Structures – 12/26



List Sear
h

LIST-SEARCH(L, k)1. x = L.head2. while x 6= NIL and x.key 6= k3. x = x.next4. return xThis works for doubly linked lists and for singly linkedlists. What is its worst 
ase running time?

1. Algorithms and Data Structures – 13/26



List Insertion

LIST-INSERT(L, x)1. x.next = L.head2. if L.head 6= NIL3. L.head.prev = x4. L.head = x5. x.prev = NILHow should this be altered for singly linked lists?. Whatis its worst 
ase running time?

1. Algorithms and Data Structures – 14/26



List Deletion

LIST-DELETE(L, x)1. if x.prev 6= NIL2. x.prev.next = x.next3. else L.head = x.next4. if x.next 6= NIL5. x.next.prev = x.prevHow should this be altered for singly linked lists (tri
kquestion)? What is its worst 
ase running time?

1. Algorithms and Data Structures – 15/26



Sentinel Links

Alternatively, a list may be implemented with an emptysentinel link, L.nil at the head. At the end of the list, apointer to L.nil is used instead of a NIL pointer. Also,
L.nil.next points to the �rst element in the list. Thussimpli�es the insertion and deletion 
ode, but requiresextra spa
e. Sear
h is essentially un
hanged.
LIST-SEARCH’(L, k)1. x = L.nil.next2. while x 6= L.nil and x.key 6= k3. x = x.next4. return x

1. Algorithms and Data Structures – 16/26



Mutators with Sentinel
LIST-DELETE’(L, x)1. x.prev.next = x.next2. x.next.prev = x.prev

LIST-INSERT’(L, x)1. x.next = L.nil.next2. L.nil.next.prev = x3. L.nil.next = x4. x.prev = L.nil

1. Algorithms and Data Structures – 17/26



Issues

Note that the deletion assumes you have the element todelete, x, not just the value.Insertion and deletion after a parti
ular list element x
an also be done. For a singly linked list, insertion ordeletion in front of an element x requires �nding theprevious element, Θ(n) worst 
ase, unless you do a 'lazy'version, whi
h leaves the desired values in the list, butmay make element variables obsolete.

1. Algorithms and Data Structures – 18/26



Implementation

In Java, link nodes for a doubly linked list will have thevalue stored in the link node and the link nodes nextand prev as data members.In C or C++, the link node will have value stored in thelink node and the link node pointers next and prev asdata members.To implement singly linked lists in lower level languages,you 
an use two arrays, one for values and one for theindi
es of the next value.
1. Algorithms and Data Structures – 19/26



List with Arrays

De
lare two arrays of size n, one for values, K and onefor next indi
es, N . De
lare index variables head and
free. Initialize N = [2, 3, ...n,NIL], free = 1, and
head = NIL.When the list is up and running, if ith position iso

upied, K[i] will hold a value and N [i] is the index ofthe next list element.

1. Algorithms and Data Structures – 20/26



Insert

INSERT-HEAD (K,N, head, free, k)1. if free == NIL2. error ’out of space’3. x = free /pop x from the free stack4. free = N [free]5. K[x] = k /load the new node at x6. N [x] = head7. head = x

1. Algorithms and Data Structures – 21/26



Delete

DELETE-NEXT (K,N, head, free, x)1. if N(x) == NIL2. error ’NIL delete’3. y = N(x)4. N [x] = N [y] /update ’next’ for x5. N [y] = free /push y onto the free stack6. free = y

1. Algorithms and Data Structures – 22/26



Doubly Linked

Your text implements a doubly linked list with threearrays. The pseudo
ode provided is for allo
ating andfreeing list nodes. These would be 
alled by insertionand deletion routines.
1. Algorithms and Data Structures – 23/26



Rooted Trees

For a binary tree, ea
h tree node will typi
ally have left,right, and parent nodes or pointers, as well as a value.The tree will just store the root node, or a pointer to theroot.A tree with unbounded bran
hing 
an be representedusing nodes that have parent, left 
hild, and right siblingpointers.
1. Algorithms and Data Structures – 24/26



Tree Operations

Breadth-�rst sear
h 
an be a

omplished using a queue:
he
k the root, and queue all 
hildren of the root. Whilethe queue is not empty, dequeue and 
he
k a node, thenenqueue its 
hildren.
1. Algorithms and Data Structures – 25/26



Arrays?

How do sta
ks, queues, and lists improve on arrays? Amajor liability of arrays is that insertion and deletion mayne
essitate rewriting a substantial portion of the data,making these worst-
ase Θ(n) operations.Sta
ks and queues simplify a
hieving Θ(1) performan
eby for insertion and deletion by allowing only restri
teddeletions. Lists allow for general insertions and deletions.These stru
tures do not fa
ilitate time-e�
ient sear
hes.

1. Algorithms and Data Structures – 26/26


	{Chapter 10}
	{Stacks}
	{Array-based Stack}
	{cont.}
	{Some Applications}
	{Infix to Postfix}
	{Example}
	{Queues}
	{Array-based Queue}
	{Linked List}
	{List Varieties}
	{List Search}
	{List Insertion}
	{List Deletion}
	{Sentinel Links}
	{Mutators with Sentinel}
	{Issues}
	{Implementation}
	{List with Arrays}
	{Insert}
	{Delete}
	{Doubly Linked}
	{Rooted Trees}
	{Tree Operations}
	{Arrays?}

