Algorithms and Data Structures
Chapter 10

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/2

Chapter 10

A dynamic set, that is, a set that can have elements added or
deleted, is a fundamental abstract data type. A data structure

implementing a dynamic set will typically support queries,
SEARCH(S, k), insertion, INSERT(.S, z), and deletion,
DELETE(.S, x). Additional operations may be available.

Chapter 10 presents four basic data structures: stacks, queues,
linked lists, and rooted trees. These data structures can be used to
implement dynamic sets, We will examine the performance of
these data structures on the basic operations, and additional
operations suited to the data structures.

1. Algorithms and Data Structures — 2/26

Stacks

A stack is an implementation of a dynamic set in which
the element removed from the set must be the one most
recently added (LIFO). The basic operations are
PUSH(S, x) (the stack version of INSERT(S, z)) and

POP(S), which removes and returns the 'top of the stack,
the value most recently added.

1. Algorithms and Data Structures — 3/26

Array-based Stack

A stack can be implemented conveniently with an array.
The stack consists of the elements S[1..5.top].

STACK-EMPTY(.S)
1. if S.top ==
2. return TRUE
3. else return FALSE

1. Algorithms and Data Structures — 4/26

cont.

PUSH(.S,)
1. S.top = S.top + 1
2. S|S.top] = x

POP(.S)

1 if STACK-EMPTY(.S)

2. error underflow

3. else S.top = S.top — 1
4, return S| S.top + 1]

Asymptotic bounds?

1. Algorithms and Data Structures — 5/26

Some Applications

Stacks are used to keep track of function calls, to check
syntax, in evaluating postfix expressions, and in
converting expressions in standard algebraic notation,
called infix, to posttix, a form more easily evaluated by
the computer.

Postfix example: 5, 3, +, 10, x is evaluated reading from
left to right. Operands are stacked. When an operator is
read, the appropriate number of operands are popped,
the operator applied, and the result pushed. [5] [5, 3] [§]
8,10] [80]

1. Algorithms and Data Structures — 6/26

Infix to Postfix

The conversion from infix to postfix uses two stacks, an expression
stack and an operator stack. The expression is read from left to right.

operands are pushed onto the expression stack.

Operators * and / have higher priority than 4+ and -, which have higher
priority than "(". When an operator *,/,+, or - is read, the operator
stack is popped and the result pushed onto the expression stack until
the top of the operator stack is of lower priority that the operator just

read. Then that operator is pushed onto the operator stack.

When a (' is encountered, it is pushed onto the operator stack. When a
') is read, the operator stack is popped and the result pushed onto the

expression stack until the (" is encountered. It is popped and discarded.

At the end of the expression, pop and push all remaining operators in

the operator stack.

1. Algorithms and Data Structures — 7/26

Example

(10 —2)/8:
expression: |10, 2|
operator:|(, —]
expression:|[10, 2, —, §]
operator:|/|
expression:[10, 2, —, 8, /]
operator:|]

1. Algorithms and Data Structures — 8/26

Queues

A queue is an implementation of a dynamic set in which
elements are added to the 'back and removed from the
front’ (FIFO). The basic operations are ENQUEUE(S,)
(the queue version of INSERT(.S, z)) and DEQUEUE(.S),

which removes and returns the 'front’ of the queue, the
oldest remaining value.

A queue may be implemented with an array if the array
is treated as circular.

1. Algorithms and Data Structures — 9/26

Array-based Queue

ENQUEUE(Q,)

1. QQ.tail] = x

2 if ().tail == ().length

3. Q.tail =1

4 else Q.tail = Q).tail + 1
DEQUEUE(Q)

1. r = Q|Q.head]

2. if ().head == ().length

3. Q.head =1

4. else ().head = ().head + 1
5. return x

Initially,).head = ().tail = 1. A more robust implementation

WO u |d d etect Ove r'H OW a n d u n d e rfl OW . 1. Algorithms and Data Structures — 10/26
AN - L L 9]

Linked List

A linked list is a data structure in which the elements are
arranged in linear order, but that order is maintained by
pointers, rather than by position in an array.

The list has a single data member, the list element head
at the front of the list. An empty list head = NIL.

1. Algorithms and Data Structures — 11/26

ist Varieties

In a singly linked list, each element x consists of a key
x.key and a pointer x.next to the next element in the
list. The final element in the list has a NIL pointer as
r.next.

In a doubly linked list, each element = consists of a key

x.key , a pointer x.next to the next element in the list,
and a pointer x.prev to the previous element in the list.
The final element in the list has a NIL pointer as x.next.
The first element in the list has a NIL pointer as x.prev.

1. Algorithms and Data Structures — 12/26

List Search

LIST-SEARCH(L, k)

1. x = L.head

2. while z #~ NIL and x.key #* k
3. r = r.next

4. return &

This works for doubly linked lists and for singly linked
lists. What is its worst case running time?

1. Algorithms and Data Structures — 13/26

| ist Insertion

LIST-INSERT(L,)

x.next = L.head

if L.head # NIL
L.head.prev = x

L.head = x

x.prev = NIL

1A Wi

How should this be altered for singly linked lists?. What
Is its worst case running time?

1. Algorithms and Data Structures — 14/26

List Deletion

LIST-DELETE(L,)

if x.prev # NIL
r.prev.next = r.next

else L.head = x.next

if x.next # NIL
xr.next.prev = r.prev

1A Wi

How should this be altered for singly linked lists (trick
question)? What is its worst case running time?

1. Algorithms and Data Structures — 15/26

Sentinel Links

Alternatively, a list may be implemented with an empty
sentinel link, L.nzl at the head. At the end of the list, a
pointer to L.nil is used instead of a NIL pointer. Also,
L.nil.next points to the first element in the list. Thus
simplifies the insertion and deletion code, but requires
extra space. Search is essentially unchanged.

LIST-SEARCH'(L, k)

1. r = L.nil.next

2 while x # L.nil and z.key # k
3. r = x.next

4 return x

1. Algorithms and Data Structures — 16/26

Mutators with Sentinel

LIST-DELETE'(L,)

1.
2.

r.prev.next = r.next
r.next.prev = x.prev

LIST-INSERT'(L, x)

1.

= W

x.next = L.nil.next
L.nil.next.prev =x
L.nil.next = x
x.prev = L.nil

1. Algorithms and Data Structures —

17/26

|ssues

Note that the deletion assumes you have the element to
delete, x, not just the value.

Insertion and deletion after a particular list element z
can also be done. For a singly linked list, insertion or
deletion in front of an element x requires finding the
previous element, ©(n) worst case, unless you do a 'lazy’
version, which leaves the desired values in the list, but
may make element variables obsolete.

1. Algorithms and Data Structures — 18/26

Implementation

In Java, link nodes for a doubly linked list will have the
value stored in the link node and the link nodes next
and prev as data members.

In C or C++, the link node will have value stored in the
link node and the link node pointers next and prev as
data members.

To implement singly linked lists in lower level languages,
you can use two arrays, one for values and one for the
indices of the next value.

1. Algorithms and Data Structures — 19/26

List with Arrays

Declare two arrays of size n, one for values, K and one
for next indices, N. Declare index variables head and
free. Initialize N = (2,3,..n, NIL], free =1, and
head = NIL.

When the list is up and running, if 7th position is
occupied, K|i| will hold a value and Ni| is the index of

the next list element.

1. Algorithms and Data Structures — 20/26

Insert

INSERT-HEAD (K, N, head, free, k)
if free == NIL
error 'out of space’
x = free Ipop x from the free stack

~No oA W=

free = N|free]

K |x] = k Noad the new node at x
N|z] = head

head = x

1. Algorithms and Data Structures — 21/26

Delete

DELETE-NEXT (K, N, head, free, x)

if N(z) == NIL
error 'NIL delete’
y = N(z)

N|x| = Nly| lupdate 'next’ for x
Nly| = free Ipush y onto the free stack
free =y

SO W=

1. Algorithms and Data Structures — 22/26

Doubly Linked

Your text implements a doubly linked list with three
arrays. [he pseudocode provided is for allocating and

freeing list nodes. These would be called by insertion
and deletion routines.

1. Algorithms and Data Structures — 23/26

Rooted Trees

For a binary tree, each tree node will typically have left,
right, and parent nodes or pointers, as well as a value.
The tree will just store the root node, or a pointer to the
root.

A tree with unbounded branching can be represented
using nodes that have parent, left child, and right sibling
pointers.

1. Algorithms and Data Structures — 24/26

Tree Operations

Breadth-first search can be accomplished using a queue:
check the root, and queue all children of the root. While

the queue is not empty, dequeue and check a node, then
enqueue its children.

1. Algorithms and Data Structures — 25/26

Arrays?

How do stacks, queues, and lists improve on arrays? A
major liability of arrays is that insertion and deletion may
necessitate rewriting a substantial portion of the data,
making these worst-case © (n) operations.

Stacks and queues simplify achieving © (1) performance
by for insertion and deletion by allowing only restricted
deletions. Lists allow for general insertions and deletions.

These structures do not facilitate time-efficient searches.

1. Algorithms and Data Structures — 26/26

	{Chapter 10}
	{Stacks}
	{Array-based Stack}
	{cont.}
	{Some Applications}
	{Infix to Postfix}
	{Example}
	{Queues}
	{Array-based Queue}
	{Linked List}
	{List Varieties}
	{List Search}
	{List Insertion}
	{List Deletion}
	{Sentinel Links}
	{Mutators with Sentinel}
	{Issues}
	{Implementation}
	{List with Arrays}
	{Insert}
	{Delete}
	{Doubly Linked}
	{Rooted Trees}
	{Tree Operations}
	{Arrays?}

