
Algorithms and Data StruturesChapter 10
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/26

Chapter 10

A dynami set, that is, a set that an have elements added ordeleted, is a fundamental abstrat data type. A data strutureimplementing a dynami set will typially support queries,
SEARCH(S, k), insertion, INSERT(S, x), and deletion,
DELETE(S, x). Additional operations may be available.Chapter 10 presents four basi data strutures: staks, queues,linked lists, and rooted trees. These data strutures an be used toimplement dynami sets, We will examine the performane ofthese data strutures on the basi operations, and additionaloperations suited to the data strutures.

1. Algorithms and Data Structures – 2/26

Staks

A stak is an implementation of a dynami set in whihthe element removed from the set must be the one mostreently added (LIFO). The basi operations are
PUSH(S, x) (the stak version of INSERT(S, x)) and
POP(S), whih removes and returns the 'top' of the stak,the value most reently added.

1. Algorithms and Data Structures – 3/26

Array-based Stak

A stak an be implemented onveniently with an array.The stak onsists of the elements S[1..S.top].
STACK-EMPTY(S)1. if S.top == 02. return TRUE3. else return FALSE

1. Algorithms and Data Structures – 4/26

ont.

PUSH(S, x)1. S.top = S.top+ 12. S[S.top] = x

POP(S)1. if STACK-EMPTY(S)2. error underflow3. else S.top = S.top− 14. return S[S.top+ 1]Asymptoti bounds?
1. Algorithms and Data Structures – 5/26

Some Appliations

Staks are used to keep trak of funtion alls, to heksyntax, in evaluating post�x expressions, and inonverting expressions in standard algebrai notation,alled in�x, to post�x, a form more easily evaluated bythe omputer.Post�x example: 5, 3,+, 10, ∗ is evaluated reading fromleft to right. Operands are staked. When an operator isread, the appropriate number of operands are popped,the operator applied, and the result pushed. [5] [5, 3] [8]
[8, 10] [80]

1. Algorithms and Data Structures – 6/26

In�x to Post�x

The onversion from in�x to post�x uses two staks, an expressionstak and an operator stak. The expression is read from left to right.operands are pushed onto the expression stak.Operators * and / have higher priority than + and -, whih have higherpriority than '('. When an operator *,/,+, or - is read, the operatorstak is popped and the result pushed onto the expression stak untilthe top of the operator stak is of lower priority that the operator justread. Then that operator is pushed onto the operator stak.When a '(' is enountered, it is pushed onto the operator stak. When a')' is read, the operator stak is popped and the result pushed onto theexpression stak until the '(' is enountered. It is popped and disarded.At the end of the expression, pop and push all remaining operators inthe operator stak.
1. Algorithms and Data Structures – 7/26

Example

(10− 2)/8:expression:[10, 2]operator:[(,−]expression:[10, 2,−, 8]operator:[/]expression:[10, 2,−, 8, /]operator:[]

1. Algorithms and Data Structures – 8/26

Queues

A queue is an implementation of a dynami set in whihelements are added to the 'bak' and removed from the'front' (FIFO). The basi operations are ENQUEUE(S, x)(the queue version of INSERT(S, x)) and DEQUEUE(S),whih removes and returns the 'front' of the queue, theoldest remaining value.A queue may be implemented with an array if the arrayis treated as irular.
1. Algorithms and Data Structures – 9/26

Array-based Queue
ENQUEUE(Q, x)1. Q[Q.tail] = x2. if Q.tail == Q.length3. Q.tail = 14. else Q.tail = Q.tail + 1

DEQUEUE(Q)1. x = Q[Q.head]2. if Q.head == Q.length3. Q.head = 14. else Q.head = Q.head+ 15. return xInitially, Q.head = Q.tail = 1. A more robust implementationwould detet over�ow and under�ow.Asymptoti performane? 1. Algorithms and Data Structures – 10/26

Linked List

A linked list is a data struture in whih the elements arearranged in linear order, but that order is maintained bypointers, rather than by position in an array.The list has a single data member, the list element headat the front of the list. An empty list head = NIL.

1. Algorithms and Data Structures – 11/26

List Varieties

In a singly linked list, eah element x onsists of a key
x.key and a pointer x.next to the next element in thelist. The �nal element in the list has a NIL pointer as
x.next.In a doubly linked list, eah element x onsists of a key

x.key , a pointer x.next to the next element in the list,and a pointer x.prev to the previous element in the list.The �nal element in the list has a NIL pointer as x.next.The �rst element in the list has a NIL pointer as x.prev.

1. Algorithms and Data Structures – 12/26

List Searh

LIST-SEARCH(L, k)1. x = L.head2. while x 6= NIL and x.key 6= k3. x = x.next4. return xThis works for doubly linked lists and for singly linkedlists. What is its worst ase running time?

1. Algorithms and Data Structures – 13/26

List Insertion

LIST-INSERT(L, x)1. x.next = L.head2. if L.head 6= NIL3. L.head.prev = x4. L.head = x5. x.prev = NILHow should this be altered for singly linked lists?. Whatis its worst ase running time?

1. Algorithms and Data Structures – 14/26

List Deletion

LIST-DELETE(L, x)1. if x.prev 6= NIL2. x.prev.next = x.next3. else L.head = x.next4. if x.next 6= NIL5. x.next.prev = x.prevHow should this be altered for singly linked lists (trikquestion)? What is its worst ase running time?

1. Algorithms and Data Structures – 15/26

Sentinel Links

Alternatively, a list may be implemented with an emptysentinel link, L.nil at the head. At the end of the list, apointer to L.nil is used instead of a NIL pointer. Also,
L.nil.next points to the �rst element in the list. Thussimpli�es the insertion and deletion ode, but requiresextra spae. Searh is essentially unhanged.
LIST-SEARCH’(L, k)1. x = L.nil.next2. while x 6= L.nil and x.key 6= k3. x = x.next4. return x

1. Algorithms and Data Structures – 16/26

Mutators with Sentinel
LIST-DELETE’(L, x)1. x.prev.next = x.next2. x.next.prev = x.prev

LIST-INSERT’(L, x)1. x.next = L.nil.next2. L.nil.next.prev = x3. L.nil.next = x4. x.prev = L.nil

1. Algorithms and Data Structures – 17/26

Issues

Note that the deletion assumes you have the element todelete, x, not just the value.Insertion and deletion after a partiular list element xan also be done. For a singly linked list, insertion ordeletion in front of an element x requires �nding theprevious element, Θ(n) worst ase, unless you do a 'lazy'version, whih leaves the desired values in the list, butmay make element variables obsolete.

1. Algorithms and Data Structures – 18/26

Implementation

In Java, link nodes for a doubly linked list will have thevalue stored in the link node and the link nodes nextand prev as data members.In C or C++, the link node will have value stored in thelink node and the link node pointers next and prev asdata members.To implement singly linked lists in lower level languages,you an use two arrays, one for values and one for theindies of the next value.
1. Algorithms and Data Structures – 19/26

List with Arrays

Delare two arrays of size n, one for values, K and onefor next indies, N . Delare index variables head and
free. Initialize N = [2, 3, ...n,NIL], free = 1, and
head = NIL.When the list is up and running, if ith position isoupied, K[i] will hold a value and N [i] is the index ofthe next list element.

1. Algorithms and Data Structures – 20/26

Insert

INSERT-HEAD (K,N, head, free, k)1. if free == NIL2. error ’out of space’3. x = free /pop x from the free stack4. free = N [free]5. K[x] = k /load the new node at x6. N [x] = head7. head = x

1. Algorithms and Data Structures – 21/26

Delete

DELETE-NEXT (K,N, head, free, x)1. if N(x) == NIL2. error ’NIL delete’3. y = N(x)4. N [x] = N [y] /update ’next’ for x5. N [y] = free /push y onto the free stack6. free = y

1. Algorithms and Data Structures – 22/26

Doubly Linked

Your text implements a doubly linked list with threearrays. The pseudoode provided is for alloating andfreeing list nodes. These would be alled by insertionand deletion routines.
1. Algorithms and Data Structures – 23/26

Rooted Trees

For a binary tree, eah tree node will typially have left,right, and parent nodes or pointers, as well as a value.The tree will just store the root node, or a pointer to theroot.A tree with unbounded branhing an be representedusing nodes that have parent, left hild, and right siblingpointers.
1. Algorithms and Data Structures – 24/26

Tree Operations

Breadth-�rst searh an be aomplished using a queue:hek the root, and queue all hildren of the root. Whilethe queue is not empty, dequeue and hek a node, thenenqueue its hildren.
1. Algorithms and Data Structures – 25/26

Arrays?

How do staks, queues, and lists improve on arrays? Amajor liability of arrays is that insertion and deletion mayneessitate rewriting a substantial portion of the data,making these worst-ase Θ(n) operations.Staks and queues simplify ahieving Θ(1) performaneby for insertion and deletion by allowing only restriteddeletions. Lists allow for general insertions and deletions.These strutures do not failitate time-e�ient searhes.

1. Algorithms and Data Structures – 26/26

	{Chapter 10}
	{Stacks}
	{Array-based Stack}
	{cont.}
	{Some Applications}
	{Infix to Postfix}
	{Example}
	{Queues}
	{Array-based Queue}
	{Linked List}
	{List Varieties}
	{List Search}
	{List Insertion}
	{List Deletion}
	{Sentinel Links}
	{Mutators with Sentinel}
	{Issues}
	{Implementation}
	{List with Arrays}
	{Insert}
	{Delete}
	{Doubly Linked}
	{Rooted Trees}
	{Tree Operations}
	{Arrays?}

