Algorithms and Data Structures
Chapter 11

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/2

Chapter 11

Stacks, queues and lists support © (1) insertion, and deletion.
However, search is a worst case © (n) operation, where n is the
number of items in the dynamic set. In this chapter we will study
a data structure, the hash table, that, under reasonable
assumptions, has © (1) expected search time. Hash tables are
well-suited to implementing dictionaries, particularly if deletions
are rare. For example, the map data type may be implemented
with a hash table.

A hash table basically augments the structure of an array by
storing data in indices computed from the data’s keys, assumed to

be distinct for distinct data items.

1. Algorithms and Data Structures — 2/28

Warning

In this chapter only, array indices start
at 0.

1. Algorithms and Data Structures — 3/28

Direct Address Table

If we have a set of keys U = {0,1,2,...m — 1}, and the
number of values that we plan to store is less than m,
but on the order of m, we can create an array T" of
length m, initialized to hold all NILs. We then populate
T" with records by storing the record with the key £ in
Tk].

How are insertion, deletion, and search performed?
What asymptotic behavior do they have?

1. Algorithms and Data Structures — 4/28

Direct Address Operations

DIRECT-ADDRESS_SEARCH(T, k)
1. return 1| k]

DIRECT-ADDRESS_INSERT(T’, x)
1. Tlxkeyl =x

DIRECT-ADDRESS_DELETE(T, x)
1. T|x.key|] = NIL

1. Algorithms and Data Structures — 5/28

Large U

If U is large, storing a table of size |U| may be
impractical. If U is large relative to the total number of
items, a direct adress table of size |U| may be a poor use
of memory. For example, storing data for 30 employees
in a direct address table by social security number seems
a bit silly.

Instead of directly using the key as an index, a hash
table of size m uses a hash function

h:U —{0,1,2,..m — 1} to calculate an index for each
key.

1. Algorithms and Data Structures — 6/28

Division Method

One way to define h is by the division method. it

U C Z, and the table is of size m, take h (k) =k
mod m. A prime not to close to an exact power of 2 is
often a good choice for m. (What would determine

h (k) if m = 2P7)
This form of h can be evaluatated quickly.

1. Algorithms and Data Structures — 7/28

Example

Say U = {1, 2, ..109}, and we expect to store about 40
items. Choose m = 83, say.

k=18 h(k)=18
k=115 h(k) = 32
k = 74062 h(k) = 26

k=848 h(k) =18

Is there a problem?

Collisions

If the size of the hash table is less than the size of the
universe, then there will be distinct keys that hash to the
same place, ie k1 # ko with h (k1) = h (ky). This is
called a collision. To implement a hash table, one must
resolve collisions, that is, determine a strategy for storing
items with the same hash value.

1. Algorithms and Data Structures — 9/28

Chaining

One simple approach to collision resolution is for each
index 7 to hold the head of a linked list of the items with
keys k having h(k) = 7.

CHAINED-HASH-SEARCH(T', k)
1. search the list T'|h (k)| for an element with key k

CHAINED-HASH-INSERT (T, z)
1 insert - at the head of the list T" [h (x.key)]

CHAINED-HASH-DELETE(T),)
1. delete x from the list T' |h (x.key)]

1. Algorithms and Data Structures — 10/28

Performance of Chaining

Given x as opposed to the key x.key and doubly linked
lists, what is the worst-case asymptotic bound on the
time required to perform search, insertion, and deletion?

As ever, to calculate average case performance, we need
a model for the frequency of different cases. The
assumption that any given element is equally likely to
hash to any of the m slots, independently of where other
elements have hashed, is called the assumption of
simple uniform hashing .

1. Algorithms and Data Structures — 11/28

Performance Bounds

With doubly linked lists, CHAINED-HASH-INSERT and
CHAINED-HASH-DELETE have O (1) worst-case time
bounds. For CHAINED-HASH-SEARCH, the worst-case
time bound is © (n) where n is the number of items in
the dynamic set.

In terms of the load factor a = -, under simple uniform

hashing, the expected running time of an unsuccesstful
search is © (1 4+ «). The expected running time of a
successful search under these assumptions is also

O (1 4+ «). (Calculations follow.)

1. Algorithms and Data Structures — 12/28

Expected Chain Length

Let n; denote the length of the list T"[7]. If j is equally
likely to be any index in {0,1,..m — 1}, then

E [n;] = Z:“zf miPr(i)
Z 0 nzm: 12 0 nz

1. Algorithms and Data Structures — 13/28

Unsuccessful Search

Under simple uniform hashing, constant time evaluation
of h(k), and collision resolution by chaining, an
unsuccessful search takes © (1 + a) time.

The unsuccesstul search for a key k goes to the end of
the T"|h (k)] list. The expected number of elements in
this list is & = = by the argument above. The time to

evaluate h(k) is constant. Thus the expected time to
find and traverse the T'|h (k)] list is © (1 4+ «) .

1. Algorithms and Data Structures — 14/28

Successtul Search Setup

Under the assumption of simple uniform hashing, the
assumption that any key in the table is equally likely to
be the query key, and using collision resolution by
chaining, a successful search takes average-case time

O(1+).

The number of elements examined in the search of the
T |h (z.key)] list equals the number of elements inserted

into 1" |h (x.key)| after x.

Let z; be the ¢th element inserted. Let k; = x;.key. For
k; and k;, define the indicator random variable

Xij = X{T:n(k)=n(k;)} ON the probability space of tables
formed by inserting n items under simple uniform

h a S h I n g . 1. Algorithms and Data Structures — 1

5/28

Successful Search Expectation

Because Pr(h(k;) = h(kj)) = =, E[X;;] = +.

For a fixed k;, the number of elements searched to find
ki s 1+ Z?:i—i—l ng

Any k; is equally likely to be the query term, so the
expectation over ¢z and 1" is

L {% D i (1 + D i X@'j)}
— % ?:1 (1 T Z?:Z'H L [Xz])
=3, (1 + D i %)

some algebra

2 n(n+1)\ __ 1 2In?—n’?—n
nm (n 2) — - nm (2
. n?—n n—1
" 2nm 1+ om
| 2 2n — @ (1 T Oé)

1. Algorithms and Data Structures — 17/28

Implications for Hash Tables

If n =0 (m), that is, the number of items is bounded
by a fixed multiple of the number of hash table slots,
then @ = O (1). Under these circumstances, and under
the assumption of simple uniform hashing,
CHAINED-HASH-SEARCH has © (1) expected running
time.

The © (1) expected running time makes hash tables very
useful in algorithms requiring fast data look-up on
average.

For data that is not dynamic, perfect hashes, hashes
with no collisions, can be found fairly efficiently (Ch. 11,
section 5, not covered in this course).

1. Algorithms and Data Structures — 18/28

Assumption Violation

That bound is on expected running time, not worst case
running time. For example, a couple years ago, it was
noted (Klink and Walde) that a number of languages
used in web development used very predictable hash
functions. Attackers could mount a Denial of Service
attack by submitting POST form data that would cause
the hash tables used to store the data to degenerate,
slowing hash table operations.

In such an attack, the assumption of simple uniform
hashing is dramatically false. Randomized hash
functions, such as those provided by universal
hashing, are a defense against this type of attack.

1. Algorithms and Data Structures — 19/28

Hash Functions

ldeally, a hash function approximates simple uniform
hashing.

We have already mentioned the division method.

The multiplication method uses a real number
A € (0,1) along with the table size m. Given A and m,

define the hash function h (k) = |m (Ak — | Ak])].

(This can be calculated efficiently using bit operations if m = 2P for
some positive integer p, and A = 55 where w is the word length and s
is an integer with 0 < s < 2%, Then sk = r12% + rg, so

Ak — |Ak] =7r927" and |m (Ak — |Ak]|)| = |ro2P~"], the p most
significant bits of rg. A ~ (v/5 — 1) /2 has some credibility as a good

choice.)

1. Algorithms and Data Structures — 20/28

Open Address Hashing

In open addressing, all keys are stored in the table
itself. This is accomplished by there being a sequence of

locations for each key, h(k,7), 1 € {0,1,..m — 1}. A key
k is stored in T in the first unoccupied location in the

sequence h(k,1).

1. Algorithms and Data Structures — 21/28

Probe Sequence Calculation

Standard methods for computing a probe sequence
h(k,0),h(k,1)...h(k,m — 1) include linear probing:
h(k,i) = (h'(k) +¢) mod m, quadratic probing:
h(k,i) = (W (k) + c1i + 2i®) mod m for carefully
chosen ¢; and ¢y, and double hashing:

h(k,i) = (hy(k) + iha(k)) mod m.

How would you search an open address hash table?

Search

To search for k, one follows the same sequence,
h(k,0),h(k,1)..., until finding k (successful search), or

an empty slot (unsuccessful search).

How would you delete an item?

1. Algorithms and Data Structures — 23/28

Deletion

Deletion is imperfect. Typically, the slot occupied by the
deleted item is just marked as deleted. When too much
'dead wood’ builds up, the table is rehashed.

1. Algorithms and Data Structures — 24/28

Probe Sequence Issues

Linear probing, while straightforward, has the drawback
of primary clustering. Under simple uniform hashing, the
slot after a run of r occupied slots will be hashed to with
probability % Long runs of occupied slots get longer,
and performance degrades.

Example: use linear probing with the division method to

insert 14, 22. 3. and 70 into a hash table with m = 11.

1. Algorithms and Data Structures — 25/28

Quadratic Probe Example

In order for quadratic probing:

h(k,i) = (W(k) + c1i + c2i*) mod m to take full
advantage of the table, h (k,i)for i € {0,1,2..m — 1}
must be m distinct positions. If m = 2P |, ¢ = % and

¢y = 2, this will in fact be the case (problem 11-3).

1. Algorithms and Data Structures — 26/28

Double Hashing Example

In order for double hashing: h(k,i) = (hi(k) + iho(k))
mod m to take full advantage of the table, A (k,)for

i € {0,1,2..m — 1} must be m distinct positions. If
ho(k) and m are relatively prime, this will be true. This
can be accomplished by setting m = 2P and arranging

for ho(k) to be odd for all k.

Alternatively, one can take m to be prime, hy(k) = k
mod m, and he(k) =14+ k mod (m —1).

Analysis

The assumption of uniform hashing states that the probe sequence
of k is equally likely to be any of the m! possible probe sequences.
Under this assumption, with a load factor v < 1, the expected
number of probes for an unsuccessful search is at most ﬁ
Hence this is also the expected number of probes to insert k.

The expected number of probes in a successful search is at most

éln (L) assuming uniform hashing, and that each key in the

l—«

table is equally likely to be searched for.

Note that none of our methods satisfy the assumptions.

Empirically, the performance of double hashing tends to be close
to these bounds.

1. Algorithms and Data Structures — 28/28

	{Chapter 11}
	{Warning}
	{Direct Address Table}
	{Direct Address Operations}
	{Large U}
	{Division Method}
	{Example}
	{Collisions}
	{Chaining}
	{Performance of Chaining}
	{Performance Bounds}
	{Expected Chain Length}
	{Unsuccessful Search}
	{Successful Search Setup}
	{Successful Search Expectation}
	{some algebra}
	{Implications for Hash Tables}
	{Assumption Violation}
	{Hash Functions}
	{Open Address Hashing}
	{Probe Sequence Calculation}
	{Search}
	{Deletion}
	{Probe Sequence Issues}
	{Quadratic Probe Example}
	{Double Hashing Example}
	{Analysis}

