
Algorithms and Data StruturesChapter 11
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/28

Chapter 11

Staks, queues and lists support Θ(1) insertion, and deletion.However, searh is a worst ase Θ(n) operation, where n is thenumber of items in the dynami set. In this hapter we will studya data struture, the hash table, that, under reasonableassumptions, has Θ(1) expeted searh time. Hash tables arewell-suited to implementing ditionaries, partiularly if deletionsare rare. For example, the map data type may be implementedwith a hash table.A hash table basially augments the struture of an array bystoring data in indies omputed from the data's keys, assumed tobe distint for distint data items.

1. Algorithms and Data Structures – 2/28

Warning

In this hapter only, array indies start

at 0.
1. Algorithms and Data Structures – 3/28

Diret Address Table

If we have a set of keys U = {0, 1, 2, ...m − 1}, and thenumber of values that we plan to store is less than m,but on the order of m, we an reate an array T oflength m, initialized to hold all NILs. We then populate

T with reords by storing the reord with the key k in

T [k].How are insertion, deletion, and searh performed?What asymptoti behavior do they have?

1. Algorithms and Data Structures – 4/28

Diret Address Operations
DIRECT-ADDRESS_SEARCH(T, k)1. return T [k]

DIRECT-ADDRESS_INSERT(T, x)1. T [x.key] = x

DIRECT-ADDRESS_DELETE(T, x)1. T [x.key] = NIL

1. Algorithms and Data Structures – 5/28

Large U

If U is large, storing a table of size |U | may beimpratial. If U is large relative to the total number ofitems, a diret adress table of size |U | may be a poor useof memory. For example, storing data for 30 employeesin a diret address table by soial seurity number seemsa bit silly.Instead of diretly using the key as an index, a hashtable of size m uses a hash funtion
h : U → {0, 1, 2, ..m − 1} to alulate an index for eahkey.

1. Algorithms and Data Structures – 6/28

Division Method

One way to de�ne h is by the division method . if
U ⊆ Z, and the table is of size m, take h (k) = k

mod m. A prime not to lose to an exat power of 2 isoften a good hoie for m. (What would determine
h (k) if m = 2p?)This form of h an be evaluatated quikly.

1. Algorithms and Data Structures – 7/28

Example

Say U =
{

1, 2, ..109
}, and we expet to store about 40items. Choose m = 83, say.

k = 18 h(k) = 18

k = 115 h(k) = 32

k = 74062 h(k) = 26

k = 848 h(k) = 18Is there a problem?
1. Algorithms and Data Structures – 8/28

Collisions

If the size of the hash table is less than the size of theuniverse, then there will be distint keys that hash to thesame plae, ie k1 6= k2 with h (k1) = h (k2). This isalled a ollision. To implement a hash table, one mustresolve ollisions, that is, determine a strategy for storingitems with the same hash value.

1. Algorithms and Data Structures – 9/28

Chaining

One simple approah to ollision resolution is for eahindex j to hold the head of a linked list of the items withkeys k having h(k) = j.

CHAINED-HASH-SEARCH(T, k)1. search the list T [h(k)] for an element with key k

CHAINED-HASH-INSERT(T, x)1. insert x at the head of the list T [h (x.key)]

CHAINED-HASH-DELETE(T, x)1. delete x from the list T [h (x.key)]

1. Algorithms and Data Structures – 10/28

Performane of Chaining

Given x as opposed to the key x.key and doubly linkedlists, what is the worst-ase asymptoti bound on thetime required to perform searh, insertion, and deletion?As ever, to alulate average ase performane, we needa model for the frequeny of di�erent ases. Theassumption that any given element is equally likely tohash to any of the m slots, independently of where otherelements have hashed, is alled the assumption ofsimple uniform hashing .

1. Algorithms and Data Structures – 11/28

Performane Bounds

With doubly linked lists, CHAINED-HASH-INSERT and
CHAINED-HASH-DELETE have Θ(1) worst-ase timebounds. For CHAINED-HASH-SEARCH, the worst-asetime bound is Θ(n) where n is the number of items inthe dynami set.In terms of the load fator α = n

m , under simple uniformhashing, the expeted running time of an unsuessfulsearh is Θ(1 + α). The expeted running time of asuessful searh under these assumptions is also

Θ(1 + α). (Calulations follow.)

1. Algorithms and Data Structures – 12/28

Expeted Chain Length

Let nj denote the length of the list T [j]. If j is equallylikely to be any index in {0, 1, ..m − 1}, then
E [nj] =

∑m−1
i=0 niPr(i)

=
∑m−1

i=0 ni
1
m = 1

m

∑m−1
i=0 ni =

n
m

1. Algorithms and Data Structures – 13/28

Unsuessful Searh

Under simple uniform hashing, onstant time evaluationof h(k), and ollision resolution by haining, anunsuessful searh takes Θ(1 + α) time.The unsuessful searh for a key k goes to the end ofthe T [h (k)] list. The expeted number of elements inthis list is α = n
m by the argument above. The time toevaluate h(k) is onstant. Thus the expeted time to�nd and traverse the T [h (k)] list is Θ(1 + α) .

1. Algorithms and Data Structures – 14/28

Suessful Searh Setup

Under the assumption of simple uniform hashing, theassumption that any key in the table is equally likely tobe the query key, and using ollision resolution byhaining, a suessful searh takes average-ase time
Θ(1 + α).The number of elements examined in the searh of the

T [h (x.key)] list equals the number of elements insertedinto T [h (x.key)] after x.Let xi be the ith element inserted. Let ki = xi.key. For

ki and kj, de�ne the indiator random variable

Xij = X{T :h(ki)=h(kj)} on the probability spae of tablesformed by inserting n items under simple uniformhashing. 1. Algorithms and Data Structures – 15/28

Suessful Searh Expetation

Beause Pr (h (ki) = h (kj)) =
1
m , E [Xij] =

1
m .For a �xed ki, the number of elements searhed to �nd

ki is 1 +∑n
j=i+1Xij.Any ki is equally likely to be the query term, so theexpetation over i and T is

E
[

1
n

∑n
i=1

(

1 +
∑n

j=i+1Xij

)]

= 1
n

∑n
i=1

(

1 +
∑n

j=i+1E [Xij]
)

= 1
n

∑n
i=1

(

1 +
∑n

j=i+1
1
m

)

1. Algorithms and Data Structures – 16/28

some algebra

E
[

1
n

∑n
i=1

(

1 +
∑n

j=i+1Xij

)]

= 1
n

∑n
i=1

(

1 +
∑n

j=i+1
1
m

)

= 1
n

(

n+
∑n

i=1

∑n
j=i+1

1
m

)

= 1 + 1
nm

∑n
i=1 (n− i)

= 1 + 1
nm (

∑n
i=1 n−∑n

i=1 i)

= 1 + 1
nm

(

n2 − n(n+1)
2

)

= 1− 1
nm

(

2n2−n2−n
2

)

= 1 + n2−n
2nm = 1 + n−1

2m

= 1+α
2 − α

2n = Θ(1 + α)

1. Algorithms and Data Structures – 17/28

Impliations for Hash Tables

If n = O (m), that is, the number of items is boundedby a �xed multiple of the number of hash table slots,then α = O (1). Under these irumstanes, and underthe assumption of simple uniform hashing,
CHAINED-HASH-SEARCH has Θ(1) expeted runningtime.The Θ(1) expeted running time makes hash tables veryuseful in algorithms requiring fast data look-up onaverage.For data that is not dynami, perfet hashes, hasheswith no ollisions, an be found fairly e�iently (Ch. 11,setion 5, not overed in this ourse).

1. Algorithms and Data Structures – 18/28

Assumption Violation

That bound is on expeted running time, not worst aserunning time. For example, a ouple years ago, it wasnoted (Klink and Wälde) that a number of languagesused in web development used very preditable hashfuntions. Attakers ould mount a Denial of Servieattak by submitting POST form data that would ausethe hash tables used to store the data to degenerate,slowing hash table operations.In suh an attak, the assumption of simple uniformhashing is dramatially false. Randomized hashfuntions, suh as those provided by universalhashing , are a defense against this type of attak.

1. Algorithms and Data Structures – 19/28

Hash Funtions

Ideally, a hash funtion approximates simple uniformhashing.We have already mentioned the division method.The multipliation method uses a real number
A ∈ (0, 1) along with the table size m. Given A and m,de�ne the hash funtion h (k) = ⌊m (Ak − ⌊Ak⌋)⌋.(This an be alulated e�iently using bit operations if m = 2p forsome positive integer p, and A = s

2w

where w is the word length and sis an integer with 0 < s < 2w. Then sk = r12
w + r0, so

Ak − ⌊Ak⌋ = r02
−w and ⌊m (Ak − ⌊Ak⌋)⌋ = ⌊r02p−w⌋, the p mostsigni�ant bits of r0. A ≈

(√
5− 1

)

/2 has some redibility as a goodhoie.)
1. Algorithms and Data Structures – 20/28

Open Address Hashing

In open addressing , all keys are stored in the tableitself. This is aomplished by there being a sequene ofloations for eah key, h(k, i), i ∈ {0, 1, ..m − 1}. A key
k is stored in T in the �rst unoupied loation in thesequene h(k, i).

1. Algorithms and Data Structures – 21/28

Probe Sequene Calulation

Standard methods for omputing a probe sequene
h(k, 0), h(k, 1)...h(k,m − 1) inlude linear probing:
h(k, i) = (h′(k) + i) mod m, quadrati probing:
h(k, i) =

(

h′(k) + c1i+ c2i
2
)

mod m for arefullyhosen c1 and c2, and double hashing:
h(k, i) = (h1(k) + ih2(k)) mod m.How would you searh an open address hash table?

1. Algorithms and Data Structures – 22/28

Searh

To searh for k, one follows the same sequene,
h(k, 0), h(k, 1) . . ., until �nding k (suessful searh), oran empty slot (unsuessful searh).How would you delete an item?

1. Algorithms and Data Structures – 23/28

Deletion

Deletion is imperfet. Typially, the slot oupied by thedeleted item is just marked as deleted. When too muh'dead wood' builds up, the table is rehashed.

1. Algorithms and Data Structures – 24/28

Probe Sequene Issues

Linear probing, while straightforward, has the drawbakof primary lustering. Under simple uniform hashing, theslot after a run of r oupied slots will be hashed to withprobability r+1
m . Long runs of oupied slots get longer,and performane degrades.Example: use linear probing with the division method toinsert 14, 22, 3, and 70 into a hash table with m = 11.

1. Algorithms and Data Structures – 25/28

Quadrati Probe Example

In order for quadrati probing:

h(k, i) =
(

h′(k) + c1i+ c2i
2
)

mod m to take fulladvantage of the table, h (k, i)for i ∈ {0, 1, 2..m − 1}must be m distint positions. If m = 2p , c1 = 1
2 and

c2 =
1
2 , this will in fat be the ase (problem 11-3).

1. Algorithms and Data Structures – 26/28

Double Hashing Example

In order for double hashing: h(k, i) = (h1(k) + ih2(k))
mod m to take full advantage of the table, h (k, i)for
i ∈ {0, 1, 2..m − 1} must be m distint positions. If
h2(k) and m are relatively prime, this will be true. Thisan be aomplished by setting m = 2p and arrangingfor h2(k) to be odd for all k.Alternatively, one an take m to be prime, h1(k) = k

mod m, and h2(k) = 1 + k mod (m− 1).

1. Algorithms and Data Structures – 27/28

Analysis

The assumption of uniform hashing states that the probe sequeneof k is equally likely to be any of the m! possible probe sequenes.Under this assumption, with a load fator α < 1, the expetednumber of probes for an unsuessful searh is at most 1

1−α

.Hene this is also the expeted number of probes to insert k.The expeted number of probes in a suessful searh is at most

1

α
ln
(

1

1−α

), assuming uniform hashing, and that eah key in thetable is equally likely to be searhed for.Note that none of our methods satisfy the assumptions.Empirially, the performane of double hashing tends to be loseto these bounds.
1. Algorithms and Data Structures – 28/28

	{Chapter 11}
	{Warning}
	{Direct Address Table}
	{Direct Address Operations}
	{Large U}
	{Division Method}
	{Example}
	{Collisions}
	{Chaining}
	{Performance of Chaining}
	{Performance Bounds}
	{Expected Chain Length}
	{Unsuccessful Search}
	{Successful Search Setup}
	{Successful Search Expectation}
	{some algebra}
	{Implications for Hash Tables}
	{Assumption Violation}
	{Hash Functions}
	{Open Address Hashing}
	{Probe Sequence Calculation}
	{Search}
	{Deletion}
	{Probe Sequence Issues}
	{Quadratic Probe Example}
	{Double Hashing Example}
	{Analysis}

