
Algorithms and Data Stru
turesChapter 11
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/28

Chapter 11

Sta
ks, queues and lists support Θ(1) insertion, and deletion.However, sear
h is a worst
ase Θ(n) operation, where n is thenumber of items in the dynami
 set. In this
hapter we will studya data stru
ture, the hash table, that, under reasonableassumptions, has Θ(1) expe
ted sear
h time. Hash tables arewell-suited to implementing di
tionaries, parti
ularly if deletionsare rare. For example, the map data type may be implementedwith a hash table.A hash table basi
ally augments the stru
ture of an array bystoring data in indi
es
omputed from the data's keys, assumed tobe distin
t for distin
t data items.

1. Algorithms and Data Structures – 2/28

Warning

In this
hapter only, array indi
es start

at 0.
1. Algorithms and Data Structures – 3/28

Dire
t Address Table

If we have a set of keys U = {0, 1, 2, ...m − 1}, and thenumber of values that we plan to store is less than m,but on the order of m, we
an
reate an array T oflength m, initialized to hold all NILs. We then populate

T with re
ords by storing the re
ord with the key k in

T [k].How are insertion, deletion, and sear
h performed?What asymptoti
 behavior do they have?

1. Algorithms and Data Structures – 4/28

Dire
t Address Operations
DIRECT-ADDRESS_SEARCH(T, k)1. return T [k]

DIRECT-ADDRESS_INSERT(T, x)1. T [x.key] = x

DIRECT-ADDRESS_DELETE(T, x)1. T [x.key] = NIL

1. Algorithms and Data Structures – 5/28

Large U

If U is large, storing a table of size |U | may beimpra
ti
al. If U is large relative to the total number ofitems, a dire
t adress table of size |U | may be a poor useof memory. For example, storing data for 30 employeesin a dire
t address table by so
ial se
urity number seemsa bit silly.Instead of dire
tly using the key as an index, a hashtable of size m uses a hash fun
tion
h : U → {0, 1, 2, ..m − 1} to
al
ulate an index for ea
hkey.

1. Algorithms and Data Structures – 6/28

Division Method

One way to de�ne h is by the division method . if
U ⊆ Z, and the table is of size m, take h (k) = k

mod m. A prime not to
lose to an exa
t power of 2 isoften a good
hoi
e for m. (What would determine
h (k) if m = 2p?)This form of h
an be evaluatated qui
kly.

1. Algorithms and Data Structures – 7/28

Example

Say U =
{

1, 2, ..109
}, and we expe
t to store about 40items. Choose m = 83, say.

k = 18 h(k) = 18

k = 115 h(k) = 32

k = 74062 h(k) = 26

k = 848 h(k) = 18Is there a problem?
1. Algorithms and Data Structures – 8/28

Collisions

If the size of the hash table is less than the size of theuniverse, then there will be distin
t keys that hash to thesame pla
e, ie k1 6= k2 with h (k1) = h (k2). This is
alled a
ollision. To implement a hash table, one mustresolve
ollisions, that is, determine a strategy for storingitems with the same hash value.

1. Algorithms and Data Structures – 9/28

Chaining

One simple approa
h to
ollision resolution is for ea
hindex j to hold the head of a linked list of the items withkeys k having h(k) = j.

CHAINED-HASH-SEARCH(T, k)1. search the list T [h(k)] for an element with key k

CHAINED-HASH-INSERT(T, x)1. insert x at the head of the list T [h (x.key)]

CHAINED-HASH-DELETE(T, x)1. delete x from the list T [h (x.key)]

1. Algorithms and Data Structures – 10/28

Performan
e of Chaining

Given x as opposed to the key x.key and doubly linkedlists, what is the worst-
ase asymptoti
 bound on thetime required to perform sear
h, insertion, and deletion?As ever, to
al
ulate average
ase performan
e, we needa model for the frequen
y of di�erent
ases. Theassumption that any given element is equally likely tohash to any of the m slots, independently of where otherelements have hashed, is
alled the assumption ofsimple uniform hashing .

1. Algorithms and Data Structures – 11/28

Performan
e Bounds

With doubly linked lists, CHAINED-HASH-INSERT and
CHAINED-HASH-DELETE have Θ(1) worst-
ase timebounds. For CHAINED-HASH-SEARCH, the worst-
asetime bound is Θ(n) where n is the number of items inthe dynami
 set.In terms of the load fa
tor α = n

m , under simple uniformhashing, the expe
ted running time of an unsu

essfulsear
h is Θ(1 + α). The expe
ted running time of asu

essful sear
h under these assumptions is also

Θ(1 + α). (Cal
ulations follow.)

1. Algorithms and Data Structures – 12/28

Expe
ted Chain Length

Let nj denote the length of the list T [j]. If j is equallylikely to be any index in {0, 1, ..m − 1}, then
E [nj] =

∑m−1
i=0 niPr(i)

=
∑m−1

i=0 ni
1
m = 1

m

∑m−1
i=0 ni =

n
m

1. Algorithms and Data Structures – 13/28

Unsu

essful Sear
h

Under simple uniform hashing,
onstant time evaluationof h(k), and
ollision resolution by
haining, anunsu

essful sear
h takes Θ(1 + α) time.The unsu

essful sear
h for a key k goes to the end ofthe T [h (k)] list. The expe
ted number of elements inthis list is α = n
m by the argument above. The time toevaluate h(k) is
onstant. Thus the expe
ted time to�nd and traverse the T [h (k)] list is Θ(1 + α) .

1. Algorithms and Data Structures – 14/28

Su

essful Sear
h Setup

Under the assumption of simple uniform hashing, theassumption that any key in the table is equally likely tobe the query key, and using
ollision resolution by
haining, a su

essful sear
h takes average-
ase time
Θ(1 + α).The number of elements examined in the sear
h of the

T [h (x.key)] list equals the number of elements insertedinto T [h (x.key)] after x.Let xi be the ith element inserted. Let ki = xi.key. For

ki and kj, de�ne the indi
ator random variable

Xij = X{T :h(ki)=h(kj)} on the probability spa
e of tablesformed by inserting n items under simple uniformhashing. 1. Algorithms and Data Structures – 15/28

Su

essful Sear
h Expe
tation

Be
ause Pr (h (ki) = h (kj)) =
1
m , E [Xij] =

1
m .For a �xed ki, the number of elements sear
hed to �nd

ki is 1 +∑n
j=i+1Xij.Any ki is equally likely to be the query term, so theexpe
tation over i and T is

E
[

1
n

∑n
i=1

(

1 +
∑n

j=i+1Xij

)]

= 1
n

∑n
i=1

(

1 +
∑n

j=i+1E [Xij]
)

= 1
n

∑n
i=1

(

1 +
∑n

j=i+1
1
m

)

1. Algorithms and Data Structures – 16/28

some algebra

E
[

1
n

∑n
i=1

(

1 +
∑n

j=i+1Xij

)]

= 1
n

∑n
i=1

(

1 +
∑n

j=i+1
1
m

)

= 1
n

(

n+
∑n

i=1

∑n
j=i+1

1
m

)

= 1 + 1
nm

∑n
i=1 (n− i)

= 1 + 1
nm (

∑n
i=1 n−∑n

i=1 i)

= 1 + 1
nm

(

n2 − n(n+1)
2

)

= 1− 1
nm

(

2n2−n2−n
2

)

= 1 + n2−n
2nm = 1 + n−1

2m

= 1+α
2 − α

2n = Θ(1 + α)

1. Algorithms and Data Structures – 17/28

Impli
ations for Hash Tables

If n = O (m), that is, the number of items is boundedby a �xed multiple of the number of hash table slots,then α = O (1). Under these
ir
umstan
es, and underthe assumption of simple uniform hashing,
CHAINED-HASH-SEARCH has Θ(1) expe
ted runningtime.The Θ(1) expe
ted running time makes hash tables veryuseful in algorithms requiring fast data look-up onaverage.For data that is not dynami
, perfe
t hashes, hasheswith no
ollisions,
an be found fairly e�
iently (Ch. 11,se
tion 5, not
overed in this
ourse).

1. Algorithms and Data Structures – 18/28

Assumption Violation

That bound is on expe
ted running time, not worst
aserunning time. For example, a
ouple years ago, it wasnoted (Klink and Wälde) that a number of languagesused in web development used very predi
table hashfun
tions. Atta
kers
ould mount a Denial of Servi
eatta
k by submitting POST form data that would
ausethe hash tables used to store the data to degenerate,slowing hash table operations.In su
h an atta
k, the assumption of simple uniformhashing is dramati
ally false. Randomized hashfun
tions, su
h as those provided by universalhashing , are a defense against this type of atta
k.

1. Algorithms and Data Structures – 19/28

Hash Fun
tions

Ideally, a hash fun
tion approximates simple uniformhashing.We have already mentioned the division method.The multipli
ation method uses a real number
A ∈ (0, 1) along with the table size m. Given A and m,de�ne the hash fun
tion h (k) = ⌊m (Ak − ⌊Ak⌋)⌋.(This
an be
al
ulated e�
iently using bit operations if m = 2p forsome positive integer p, and A = s

2w

where w is the word length and sis an integer with 0 < s < 2w. Then sk = r12
w + r0, so

Ak − ⌊Ak⌋ = r02
−w and ⌊m (Ak − ⌊Ak⌋)⌋ = ⌊r02p−w⌋, the p mostsigni�
ant bits of r0. A ≈

(√
5− 1

)

/2 has some
redibility as a good
hoi
e.)
1. Algorithms and Data Structures – 20/28

Open Address Hashing

In open addressing , all keys are stored in the tableitself. This is a

omplished by there being a sequen
e oflo
ations for ea
h key, h(k, i), i ∈ {0, 1, ..m − 1}. A key
k is stored in T in the �rst uno

upied lo
ation in thesequen
e h(k, i).

1. Algorithms and Data Structures – 21/28

Probe Sequen
e Cal
ulation

Standard methods for
omputing a probe sequen
e
h(k, 0), h(k, 1)...h(k,m − 1) in
lude linear probing:
h(k, i) = (h′(k) + i) mod m, quadrati
 probing:
h(k, i) =

(

h′(k) + c1i+ c2i
2
)

mod m for
arefully
hosen c1 and c2, and double hashing:
h(k, i) = (h1(k) + ih2(k)) mod m.How would you sear
h an open address hash table?

1. Algorithms and Data Structures – 22/28

Sear
h

To sear
h for k, one follows the same sequen
e,
h(k, 0), h(k, 1) . . ., until �nding k (su

essful sear
h), oran empty slot (unsu

essful sear
h).How would you delete an item?

1. Algorithms and Data Structures – 23/28

Deletion

Deletion is imperfe
t. Typi
ally, the slot o

upied by thedeleted item is just marked as deleted. When too mu
h'dead wood' builds up, the table is rehashed.

1. Algorithms and Data Structures – 24/28

Probe Sequen
e Issues

Linear probing, while straightforward, has the drawba
kof primary
lustering. Under simple uniform hashing, theslot after a run of r o

upied slots will be hashed to withprobability r+1
m . Long runs of o

upied slots get longer,and performan
e degrades.Example: use linear probing with the division method toinsert 14, 22, 3, and 70 into a hash table with m = 11.

1. Algorithms and Data Structures – 25/28

Quadrati
 Probe Example

In order for quadrati
 probing:

h(k, i) =
(

h′(k) + c1i+ c2i
2
)

mod m to take fulladvantage of the table, h (k, i)for i ∈ {0, 1, 2..m − 1}must be m distin
t positions. If m = 2p , c1 = 1
2 and

c2 =
1
2 , this will in fa
t be the
ase (problem 11-3).

1. Algorithms and Data Structures – 26/28

Double Hashing Example

In order for double hashing: h(k, i) = (h1(k) + ih2(k))
mod m to take full advantage of the table, h (k, i)for
i ∈ {0, 1, 2..m − 1} must be m distin
t positions. If
h2(k) and m are relatively prime, this will be true. This
an be a

omplished by setting m = 2p and arrangingfor h2(k) to be odd for all k.Alternatively, one
an take m to be prime, h1(k) = k

mod m, and h2(k) = 1 + k mod (m− 1).

1. Algorithms and Data Structures – 27/28

Analysis

The assumption of uniform hashing states that the probe sequen
eof k is equally likely to be any of the m! possible probe sequen
es.Under this assumption, with a load fa
tor α < 1, the expe
tednumber of probes for an unsu

essful sear
h is at most 1

1−α

.Hen
e this is also the expe
ted number of probes to insert k.The expe
ted number of probes in a su

essful sear
h is at most

1

α
ln
(

1

1−α

), assuming uniform hashing, and that ea
h key in thetable is equally likely to be sear
hed for.Note that none of our methods satisfy the assumptions.Empiri
ally, the performan
e of double hashing tends to be
loseto these bounds.
1. Algorithms and Data Structures – 28/28

	{Chapter 11}
	{Warning}
	{Direct Address Table}
	{Direct Address Operations}
	{Large U}
	{Division Method}
	{Example}
	{Collisions}
	{Chaining}
	{Performance of Chaining}
	{Performance Bounds}
	{Expected Chain Length}
	{Unsuccessful Search}
	{Successful Search Setup}
	{Successful Search Expectation}
	{some algebra}
	{Implications for Hash Tables}
	{Assumption Violation}
	{Hash Functions}
	{Open Address Hashing}
	{Probe Sequence Calculation}
	{Search}
	{Deletion}
	{Probe Sequence Issues}
	{Quadratic Probe Example}
	{Double Hashing Example}
	{Analysis}

