
Algorithms and Data StruturesChapter 12
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/15



Chapter 12

Balaned binary searh trees support SEARCH, INSERT, DELETE,MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in
Θ(lg n) time. In addition, and in ontrast to hash tables, valuesmay be added inde�nitely while retaining this performane.Thestrutures are elaborations of the binary searh tree, the topi here.

1. Algorithms and Data Structures – 2/15



Binary Searh Tree Property

A binary searh tree is a binary tree. Eah node x hasdata members x.key , x.left, x.right, and x.p, the keyfor the data at the node, and the pointers to the lefthild, right hild, and parent, respetively. The keys havean order operation.The binary-searh-tree property asserts that if x isa node in a binary searh tree, and y is a node in the leftsubtree of x then y.key ≤ x.key. If y is a node in theright subtree of x then y.key ≥ x.key.

1. Algorithms and Data Structures – 3/15



In-order Tree Walk
INORDER-TREE-WALK(x)1. if x 6= NIL2. INORDER-TREE-WALK (x.left)3. print (x.key)4. INORDER-TREE-WALK (x.right)Try an example. What an you say about the order inwhih the keys are printed? Can you prove this laimindutively on the number on items in the tree?

1. Algorithms and Data Structures – 4/15



Searh

TREE-SEARCH(x, k)1. if x = NIL or k = x.key2. return x3. if k < x.key4. return TREE-SEARCH (x.left, k)5. else6. return TREE-SEARCH (x.right, k)

1. Algorithms and Data Structures – 5/15



Iterative SEARCH
ITERATIVE-TREE-SEARCH(x, k)1. while x 6= NIL and k 6= x.key2. if k < x.key3. x = x.left4. else5. x = x.right6. return xThis will typially be faster than the reursiveimplementation. Can you give a Θ−bound on therunning time?

1. Algorithms and Data Structures – 6/15



Minimum

TREE-MINIMUM(x)1. while x.left 6= NIL2. x = x.left3. return xAny guesses on how to �nd the maximum key in thesubtree rooted at x?
1. Algorithms and Data Structures – 7/15



PREDECESSOR
TREE-PREDECESSOR(x)1. if x.left 6= NIL2. return TREE-MAXIMUM(x.left)1. y = x.p1. while y 6= NIL and x = y.left5. x = y5. y = x.p6. return yIf x has a non-empty left subtree, the predeessor of x isthe maximum value in x's left subtree. If x has an emptyleft subtree, then x is the minimum value in the rightsubtree of the lowest anestor of x

1. Algorithms and Data Structures – 8/15



Why?

If x has a non-empty left subtree, the predeessor of x isthe maximum value in x's left subtree.If x has an empty left subtree, then x is the minimumvalue in the right subtree of the lowest anestor of x tohave x in its right subtree. This is the y found byfollowing parent pointers upward to the �rst parent tohave the previous node as a right hild.The orretness of this is seen by onsidering thein-order tree walk near x.How do you suppose you would �nd the suessor?

1. Algorithms and Data Structures – 9/15



Insertion

The basi idea for insertion of a node z is to searh for
z.key. The searh will fail when the searh algorithmmoves to a NIL node. This is where to put z.The text gives pseudoode for an iterative algorithm forinsertion, assuming that the node to be inserted has

NIL hildren. Under the same assumption, we anwrite a two-part reursive insertion.

1. Algorithms and Data Structures – 10/15



Reursive SUBTREE-INSERT
SUBTREE-INSERT(x, z) /called on non-NIL x1. if z.key < x.key2. if x.left = NIL3. x.left = z4. else SUBTREE-INSERT(x.left, z)5. else6. if x.right = NIL7. x.right = z8. else SUBTREE-INSERT(x.right, z)

1. Algorithms and Data Structures – 11/15



TREE-INSERT

TREE-INSERT(T, z)1. if T.root = NIL2. T.root = z3. else SUBTREE-INSERT(T.root, z)

1. Algorithms and Data Structures – 12/15



Deletion

Deletion handles three ases separately.
• If the node z to be deleted has no hildren, simplymodify z.p to replae the hild z with NIL.
• If z has a single non-NIL hild, splie out z bylinking z.p diretly to z's hild.
• If z has two non-NIL hildren, then z's suessor,

y, is in z's right subtree and y has no left hild.Copy y's data over z's then splie out y. Under theseirumstanes, the binary searh property ispreserved by replaing the data in z with the data inthe suessor. (The pseudoode handles the ases

y = z.p and y 6= p separately, but the e�et is asabove.) 1. Algorithms and Data Structures – 13/15



Performane

Eah of these operations has the worst-ase time bound
Θ(n) where n is the number of items in T . (ForSUCCESSOR, the worst ase ours if the suessor is atthe end of a degenerate branh with length proportionalto n. Can you onstrut suh a tree?)These worst-ase behaviors are generated by trees thatare unbalaned, in the sense of most items in subtreesthat are nearly linked lists.

1. Algorithms and Data Structures – 14/15



Importane of Height

A tree node is alled a leaf if it has only NIL hildren.De�ne the height of a tree node to be the number ofedges on the longest simple downward path from thenode to a leaf. More instrutively, we an bound thetime required for eah of the tree operations by Θ(h),where h is the height of the tree. This indiates that ifwe ould ontrol the height to grow as lg n, theseoperations would be Θ(lg n).

1. Algorithms and Data Structures – 15/15


	{Chapter 12}
	{Binary Search Tree Property}
	{In-order Tree Walk}
	{Search}
	{Iterative SEARCH}
	{Minimum}
	{PREDECESSOR}
	{Why?}
	{Insertion}
	{Recursive SUBTREE-INSERT}
	{TREE-INSERT}
	{Deletion}
	{Performance}
	{Importance of Height}

