Algorithms and Data Structures
Chapter 12

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/15

Chapter 12

Balanced binary search trees support SEARCH, INSERT, DELETE,
MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in

© (Ign) time. In addition, and in contrast to hash tables, values
may be added indefinitely while retaining this performance.The
structures are elaborations of the binary search tree, the topic here.

1. Algorithms and Data Structures — 2/15

Binary Search Tree Property

A binary search tree is a binary tree. Each node x has
data members x.key , x.left, x.right, and x.p, the key
for the data at the node, and the pointers to the left
child, right child, and parent, respectively. The keys have
an order operation.

The binary-search-tree property asserts that if is
a node in a binary search tree, and vy is a node in the left
subtree of x then y.key < x.key. If y is a node in the
right subtree of x then y.key > x.key.

1. Algorithms and Data Structures — 3/15

In-order Tree Walk

INORDER-TREE-WALK(x)
1. ifx # NI1L

2. INORDER-TREE-WALK (z.le ft)
3. print (z.key)
4 INORDER-TREE-WALK (z.right)

Try an example. What can you say about the order in
which the keys are printed? Can you prove this claim
inductively on the number on items in the tree?

1. Algorithms and Data Structures — 4/15

Search

TREE-SEARCH(x, k)
fxr = NILork = x.key
return x
if k < x.key
return TREE-SEARCH (z.left, k)
else

SO s W=

return TREE-SEARCH (z.1ight, k)

1. Algorithms and Data Structures — 5/15

lterative SEARCH

ITERATIVE-TREE-SEARCH(x, k)

1. while x = NIL and k # z.key
2. if k < x.key

3. x = x.left

4. else

b. x = x.right

0. return

This will typically be faster than the recursive
implementation. Can you give a ©—bound on the
running time?

1. Algorithms and Data Structures

—6/15

Minimum

TREE-MINIMUM()
1. while z.left # NIL

2. r = x.left
3. return o

Any guesses on how to find the maximum key in the
subtree rooted at

1. Algorithms and Data Structures — 7/15

PREDECESSOR

TREE-PREDECESSOR()
if x.le ft # NIL
return TREE-MAXIMUM(x.le f1)
Yy =T.p
whiley #= NIL and x = y.left
r =1y
y=x.p
return y

O O1 o=

If has a non-empty left subtree, the predecessor of x is
the maximum value in x's left subtree. If £ has an empty
left subtree, then x is the minimum value in the right
subtree of the lowest ancestor of x

1. Algorithms and Data Structures — 8/15

Why?

If has a non-empty left subtree, the predecessor of x is
the maximum value in x's left subtree.

It © has an empty left subtree, then = is the minimum
value in the right subtree of the lowest ancestor of x to
have x in its right subtree. This is the y found by

following parent pointers upward to the first parent to
have the previous node as a right child.

The correctness of this is seen by considering the
in-order tree walk near z.

How do you suppose you would find the successor?

1. Algorithms and Data Structures — 9/15

Insertion

The basic idea for insertion of a node z is to search for
z.key. The search will fail when the search algorithm
moves to a NIL node. This is where to put z.

The text gives pseudocode for an iterative algorithm for
insertion, assuming that the node to be inserted has
NIL children. Under the same assumption, we can
write a two-part recursive insertion.

1. Algorithms and Data Structures — 10/15

Recursive SUBTREE-INSERT

SUBTREE-INSERT(x, z) /called on non-N I L x
if z.key < x.key
ifx.left = NIL
x.left =z
else SUBTREE-INSERT(x.left, z)
else
if v.right = NIL
x.right = z
else SUBTREE-INSERT(x.right, z)

NSO W=

1. Algorithms and Data Structures — 11/15

TREE-INSERT

TREE-INSERT(T’, 2)

1. if 1.root = NIL

2. I'.root = z

3. else SUBTREE-INSERT(1".ro0t, z)

1. Algorithms and Data Structures — 12/15

Deletion

Deletion handles three cases separately.

e |f the node z to be deleted has no children, simply
modify z.p to replace the child z with NITL.

e |f z has a single non-NIL child, splice out z by
inking z.p directly to z's child.

e |f z has two non-NIL children, then z's successor,
Yy, is in z's right subtree and y has no left child.
Copy y's data over z's then splice out y. Under these
circumstances, the binary search property is
preserved by replacing the data in z with the data in
the successor. (The pseudocode handles the cases
y = z.p and y # p separately, but the effect is a

1. Algorithms and Data Structures — 13/15

above.)

Performance

Each of these operations has the worst-case time bound
©(n) where n is the number of items in T". (For
SUCCESSOR, the worst case occurs if the successor is at
the end of a degenerate branch with length proportional
to n. Can you construct such a tree?)

These worst-case behaviors are generated by trees that
are unbalanced, in the sense of most items in subtrees
that are nearly linked lists.

1. Algorithms and Data Structures — 14/15

Importance of Height

A tree node is called a leaf if it has only NIL children.
Define the height of a tree node to be the number of
edges on the longest simple downward path from the
node to a leaf. More instructively, we can bound the
time required for each of the tree operations by GO(h),
where h is the height of the tree. This indicates that if
we could control the height to grow as lgn, these
operations would be © (Ign).

1. Algorithms and Data Structures — 15/15

	{Chapter 12}
	{Binary Search Tree Property}
	{In-order Tree Walk}
	{Search}
	{Iterative SEARCH}
	{Minimum}
	{PREDECESSOR}
	{Why?}
	{Insertion}
	{Recursive SUBTREE-INSERT}
	{TREE-INSERT}
	{Deletion}
	{Performance}
	{Importance of Height}

