
Algorithms and Data Stru
turesChapter 12
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/15



Chapter 12

Balan
ed binary sear
h trees support SEARCH, INSERT, DELETE,MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in
Θ(lg n) time. In addition, and in 
ontrast to hash tables, valuesmay be added inde�nitely while retaining this performan
e.Thestru
tures are elaborations of the binary sear
h tree, the topi
 here.

1. Algorithms and Data Structures – 2/15



Binary Sear
h Tree Property

A binary sear
h tree is a binary tree. Ea
h node x hasdata members x.key , x.left, x.right, and x.p, the keyfor the data at the node, and the pointers to the left
hild, right 
hild, and parent, respe
tively. The keys havean order operation.The binary-sear
h-tree property asserts that if x isa node in a binary sear
h tree, and y is a node in the leftsubtree of x then y.key ≤ x.key. If y is a node in theright subtree of x then y.key ≥ x.key.

1. Algorithms and Data Structures – 3/15



In-order Tree Walk
INORDER-TREE-WALK(x)1. if x 6= NIL2. INORDER-TREE-WALK (x.left)3. print (x.key)4. INORDER-TREE-WALK (x.right)Try an example. What 
an you say about the order inwhi
h the keys are printed? Can you prove this 
laimindu
tively on the number on items in the tree?

1. Algorithms and Data Structures – 4/15



Sear
h

TREE-SEARCH(x, k)1. if x = NIL or k = x.key2. return x3. if k < x.key4. return TREE-SEARCH (x.left, k)5. else6. return TREE-SEARCH (x.right, k)

1. Algorithms and Data Structures – 5/15



Iterative SEARCH
ITERATIVE-TREE-SEARCH(x, k)1. while x 6= NIL and k 6= x.key2. if k < x.key3. x = x.left4. else5. x = x.right6. return xThis will typi
ally be faster than the re
ursiveimplementation. Can you give a Θ−bound on therunning time?

1. Algorithms and Data Structures – 6/15



Minimum

TREE-MINIMUM(x)1. while x.left 6= NIL2. x = x.left3. return xAny guesses on how to �nd the maximum key in thesubtree rooted at x?
1. Algorithms and Data Structures – 7/15



PREDECESSOR
TREE-PREDECESSOR(x)1. if x.left 6= NIL2. return TREE-MAXIMUM(x.left)1. y = x.p1. while y 6= NIL and x = y.left5. x = y5. y = x.p6. return yIf x has a non-empty left subtree, the prede
essor of x isthe maximum value in x's left subtree. If x has an emptyleft subtree, then x is the minimum value in the rightsubtree of the lowest an
estor of x

1. Algorithms and Data Structures – 8/15



Why?

If x has a non-empty left subtree, the prede
essor of x isthe maximum value in x's left subtree.If x has an empty left subtree, then x is the minimumvalue in the right subtree of the lowest an
estor of x tohave x in its right subtree. This is the y found byfollowing parent pointers upward to the �rst parent tohave the previous node as a right 
hild.The 
orre
tness of this is seen by 
onsidering thein-order tree walk near x.How do you suppose you would �nd the su

essor?

1. Algorithms and Data Structures – 9/15



Insertion

The basi
 idea for insertion of a node z is to sear
h for
z.key. The sear
h will fail when the sear
h algorithmmoves to a NIL node. This is where to put z.The text gives pseudo
ode for an iterative algorithm forinsertion, assuming that the node to be inserted has

NIL 
hildren. Under the same assumption, we 
anwrite a two-part re
ursive insertion.

1. Algorithms and Data Structures – 10/15



Re
ursive SUBTREE-INSERT
SUBTREE-INSERT(x, z) /called on non-NIL x1. if z.key < x.key2. if x.left = NIL3. x.left = z4. else SUBTREE-INSERT(x.left, z)5. else6. if x.right = NIL7. x.right = z8. else SUBTREE-INSERT(x.right, z)

1. Algorithms and Data Structures – 11/15



TREE-INSERT

TREE-INSERT(T, z)1. if T.root = NIL2. T.root = z3. else SUBTREE-INSERT(T.root, z)

1. Algorithms and Data Structures – 12/15



Deletion

Deletion handles three 
ases separately.
• If the node z to be deleted has no 
hildren, simplymodify z.p to repla
e the 
hild z with NIL.
• If z has a single non-NIL 
hild, spli
e out z bylinking z.p dire
tly to z's 
hild.
• If z has two non-NIL 
hildren, then z's su

essor,

y, is in z's right subtree and y has no left 
hild.Copy y's data over z's then spli
e out y. Under these
ir
umstan
es, the binary sear
h property ispreserved by repla
ing the data in z with the data inthe su

essor. (The pseudo
ode handles the 
ases

y = z.p and y 6= p separately, but the e�e
t is asabove.) 1. Algorithms and Data Structures – 13/15



Performan
e

Ea
h of these operations has the worst-
ase time bound
Θ(n) where n is the number of items in T . (ForSUCCESSOR, the worst 
ase o

urs if the su

essor is atthe end of a degenerate bran
h with length proportionalto n. Can you 
onstru
t su
h a tree?)These worst-
ase behaviors are generated by trees thatare unbalan
ed, in the sense of most items in subtreesthat are nearly linked lists.

1. Algorithms and Data Structures – 14/15



Importan
e of Height

A tree node is 
alled a leaf if it has only NIL 
hildren.De�ne the height of a tree node to be the number ofedges on the longest simple downward path from thenode to a leaf. More instru
tively, we 
an bound thetime required for ea
h of the tree operations by Θ(h),where h is the height of the tree. This indi
ates that ifwe 
ould 
ontrol the height to grow as lg n, theseoperations would be Θ(lg n).

1. Algorithms and Data Structures – 15/15


	{Chapter 12}
	{Binary Search Tree Property}
	{In-order Tree Walk}
	{Search}
	{Iterative SEARCH}
	{Minimum}
	{PREDECESSOR}
	{Why?}
	{Insertion}
	{Recursive SUBTREE-INSERT}
	{TREE-INSERT}
	{Deletion}
	{Performance}
	{Importance of Height}

