
Algorithms and Data Stru
turesChapter 13
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/21

Chapter 13

Our earlier study of binary sear
h trees showed that this data stru
turesupports SEARCH, INSERT, DELETE, MINIMUM, MAXIMUM,SUCCESSOR, and PREDECESSOR in Θ(h) time, where h is theheight of the tree. Balan
ed binary sear
h trees impose an additional
ondition on the tree that
onstrains h to have h = Θ(lgn) growth.Two
ommon balan
ed binary sear
h trees are red-bla
k trees and AVLtrees. Red-bla
k trees use an additional bit, denoting red or bla
k, atea
h node to maintain balan
e. AVL trees store the height of the nodeat ea
h node, thus requiring more additional memory than red-bla
ktrees.The subje
t here is red-bla
k trees. The balan
e requirement will
ompli
ate insertion and deletion, but all the tree operations will have

Θ(lg n) worst-
ase performan
e.
1. Algorithms and Data Structures – 2/21

Red-Bla
k Tree Property

A red-bla
k tree is a binary sear
h tree with anadditional data member, color, at ea
h node. The colorvalue must be either red or black. We will
onsider the
NIL pointers to be the leaves. The tree must satisfythe following red-bla
k properties:

1. Every node is either red or bla
k.2. The root is bla
k.3. Every leaf (NIL) is bla
k.4. If a node is red, then both its
hildren are bla
k.5. Every simple path from a node to a des
endant leaf
ontains the same number of bla
k nodes.

1. Algorithms and Data Structures – 3/21

Sentinel

In fa
t, the NIL's will be represented as pointers to thesentinel T.nil, whi
h is bla
k. This is for
oding
onvenien
e.
1. Algorithms and Data Structures – 4/21

Bla
k Height

As a
onsequen
e of property 5 of red-bla
k trees, thebla
k height of a node x is well de�ned as the numberof bla
k nodes any path from x to a leaf,
ounting theleaf but not
ounting x.The bla
k height of a red-bla
k tree is the bla
k heightof the root.
1. Algorithms and Data Structures – 5/21

Balan
e

Lemma: A red-bla
k tree with n internal (non-leaf)nodes has height at most 2 lg (n+ 1).Proof: By indu
tion, the subtree rooted at any node x
ontains at least 2bh(x) − 1 internal nodes.Base
ase:This is true if bh(x) = 0. Then x is a leaf andthe subtree has 2bh(x) − 1 = 20 − 1 = 0 internal nodes.

1. Algorithms and Data Structures – 6/21

Indu
tive Step

Indu
tive step: If bh(x) > 0 then ea
h
hild of x hasbla
k height bh(x) or bh(x)− 1, depending on whetherthe
hild is red or bla
k, respe
tively. We
an apply theindu
tive hypothesis to
on
lude that ea
h subtree hasat least 2bh(x)−1 − 1 internal nodes. Thus the tree rootedat x has n ≥ 2
(

2bh(x)−1 − 1
)

+ 1 = 2bh(x) − 1 internalnodes (the +1
ounts x).
1. Algorithms and Data Structures – 7/21

Lemma,
ont.

To
on
lude, let h be the height of the tree. By property4, at least half the nodes on any path from the root to aleaf, not
ounting the root, must be bla
k. Thus
bh(T) ≥ h

2 . By the indu
tive argument above, thenumber n of internal nodes satis�es
n ≥ 2

h

2 − 1, so

n+ 1 ≥ 2
h

2 , and

lg (n+ 1) ≥ h

2 , showing
h ≤ 2 lg (n+ 1)

1. Algorithms and Data Structures – 8/21

Impa
t

As we will see, the red-bla
k property
an be maintainedthrough Θ(h) insertions and deletions. This leads to the
on
lusion that SEARCH, MINIMUM, MAXIMUM,PREDECESSOR and SUCCESSOR
an all beimplemented in Θ(2 lg (n+ 1)) = Θ (lg n) worst-
asetime.
1. Algorithms and Data Structures – 9/21

Insertion Issues

Insertion into a red-bla
k tree begins with the usualbinary sear
h tree insertion. The new tree node z is
olored red with two bla
k T.nil
hildren.If z was inserted into an empty tree, this leads to aviolation of property 2 asserting that the root is bla
k.The only other possible violation is that z.p is red. This
an be repaired using rotations and re
oloring.Bla
k heights is still well de�ned, and
are will be takento preserve this.
1. Algorithms and Data Structures – 10/21

Rotation

To maintain balan
e, a red-bla
k tree must sometimesrestru
ture the underlying tree. Rotations are the basi
tool for this.In a left rotation of the node x, the right
hild y of x ismoved up to be the
hild of x's parent, while x be
omes

y's left
hild. The left subtree of y be
omes the leftsubtree of x. All other links are preserved.A right rotation reverses a left rotation.Figure 13.2 in your text is a diagram of these rotations.

1. Algorithms and Data Structures – 11/21

Insertion Fixup

The insertion of z as a red node may preserve allred-bla
k properties. In this
ase, no further a
tion isneeded. If property 2 is violated, simply re
oloring theroot bla
k restores the red-bla
k properties.Otherwise, z's parent is red. There are several
ases to
onsider.Case 1: If z's aunt is also red, re
olor z's parent andaunt bla
k, and z's grandparent red, making this nodethe new z.This may solve the problem, or may move itup the tree, where it is either a red root, easily �xed, orone of
ase 1,2, 2', 3, or 3' applies.

1. Algorithms and Data Structures – 12/21

Cases 2, 3

Case 2: If z is the red right
hild of a red parent with abla
k aunt, and z's parent is the left
hild of z'sgrandparent, just left-rotate z's parent. Now the red
hild will be the left
hild of the red parent, whi
h is inturn the left
hild of its parent. This puts us in
ase 3.Case 3: If z is the red left
hild of a red parent that isthe red left
hild of z's grandparent, right-rotate thegrandparent. Color the root of the resulting subtreebla
k, and both
hildren red. This restores the red-bla
kproperties.
1. Algorithms and Data Structures – 13/21

Cases 2', 3'

Case 2': If z is the red left
hild of a red parent with abla
k aunt, and z's parent is the right
hild of z'sgrandparent, just right-rotate z's parent. Now the red
hild will be the right
hild of the red parent, whi
h is inturn the right
hild of its parent. This puts us in
ase 3'.Case 3': If z is the red right
hild of a red parent that isthe red right
hild of z's grandparent, left-rotate thegrandparent. Color the root of the resulting subtreebla
k, and both
hildren red. This restores the red-bla
kproperties.
1. Algorithms and Data Structures – 14/21

Θ−bounds

Ea
h rebalan
ing operation is Θ(1), and at most Θ(h)operations will need to be performed: the violation maybe moved up to the root then re
olored.

1. Algorithms and Data Structures – 15/21

Deletion

Deletion essentially begins with a binary sear
h treedeletion. Deletion is a
hieved by spli
ing out a node,having its parent point dire
tly to one of its
hildren. Ifthe node spli
ed out is bla
k, this will
ause property 2or property 5 to be violated, and possibly property 4.The basi

on
ept for �xing this is to put the missingbla
k on the
hild.If the
hild was red, then the red-bla
k properties arerestored.Otherwise, the extra bla
k may moved up the tree to thea red node, turning it bla
k, or to the root, where it
anbe removed. Alternatively, a re
oloring

1. Algorithms and Data Structures – 16/21

Moving Up

Denote the node with the double bla
k by x. Assume itis a left
hild.Case 1: x's sibling is red:
onvert to
ase 2, 3, or 4 byrotating and re
oloring to arrange for x's sibling to bebla
k.Case 2: x's sibling w is bla
k and w's
hildren are bla
k:re
olor the sibling red, and move the extra bla
k to w'sparent, now x.
1. Algorithms and Data Structures – 17/21

Moving up,
ont.

Case 3: x's sibling w is bla
k and w.left is red and
w.right is bla
k: right-rotate at w and re
olor to make
x's new sibling w bla
k, w.right red, and w.left bla
k.This produ
es Case 4.Case 4: x's sibling w is bla
k and w.right is red:left-rotate at x.p and re
olor to remove the extra bla
k.

1. Algorithms and Data Structures – 18/21

2', 3', and 4'

There are
ases 2', 3', and 4' obtained by reversing leftand right in the
ases above.

1. Algorithms and Data Structures – 19/21

Performan
e

The a
tion for ea
h
ase is Θ(1), and at most
Θ(h) = Θ (lg n) operations will need to be performed:at worst, the extra bla
k may be moved up to the rootthen removed.

1. Algorithms and Data Structures – 20/21

Con
lusion

A balan
ed binary tree, while intri
ate to implement,supports Θ(lg n) insertion, sear
h, and deletion,su

essor, and prede
essor fun
tions. Elements
an beinserted inde�nitely.
1. Algorithms and Data Structures – 21/21

	{Chapter 13}
	{Red-Black Tree Property}
	{Sentinel}
	{Black Height}
	{Balance}
	{Inductive Step}
	{Lemma, cont.}
	{Impact}
	{Insertion Issues}
	{Rotation}
	{Insertion Fixup}
	{Cases 2, 3}
	{Cases 2', 3'}
	{$Theta -$bounds}
	{Deletion}
	{Moving Up}
	{Moving up, cont.}
	{2', 3', and 4'}
	{Performance}
	{Conclusion}

