
Algorithms and Data StruturesChapter 13
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/21



Chapter 13

Our earlier study of binary searh trees showed that this data struturesupports SEARCH, INSERT, DELETE, MINIMUM, MAXIMUM,SUCCESSOR, and PREDECESSOR in Θ(h) time, where h is theheight of the tree. Balaned binary searh trees impose an additionalondition on the tree that onstrains h to have h = Θ(lgn) growth.Two ommon balaned binary searh trees are red-blak trees and AVLtrees. Red-blak trees use an additional bit, denoting red or blak, ateah node to maintain balane. AVL trees store the height of the nodeat eah node, thus requiring more additional memory than red-blaktrees.The subjet here is red-blak trees. The balane requirement willompliate insertion and deletion, but all the tree operations will have

Θ(lg n) worst-ase performane.
1. Algorithms and Data Structures – 2/21



Red-Blak Tree Property

A red-blak tree is a binary searh tree with anadditional data member, color, at eah node. The colorvalue must be either red or black. We will onsider the
NIL pointers to be the leaves. The tree must satisfythe following red-blak properties:

1. Every node is either red or blak.2. The root is blak.3. Every leaf (NIL) is blak.4. If a node is red, then both its hildren are blak.5. Every simple path from a node to a desendant leafontains the same number of blak nodes.

1. Algorithms and Data Structures – 3/21



Sentinel

In fat, the NIL's will be represented as pointers to thesentinel T.nil, whih is blak. This is for odingonveniene.
1. Algorithms and Data Structures – 4/21



Blak Height

As a onsequene of property 5 of red-blak trees, theblak height of a node x is well de�ned as the numberof blak nodes any path from x to a leaf, ounting theleaf but not ounting x.The blak height of a red-blak tree is the blak heightof the root.
1. Algorithms and Data Structures – 5/21



Balane

Lemma: A red-blak tree with n internal (non-leaf)nodes has height at most 2 lg (n+ 1).Proof: By indution, the subtree rooted at any node xontains at least 2bh(x) − 1 internal nodes.Base ase:This is true if bh(x) = 0. Then x is a leaf andthe subtree has 2bh(x) − 1 = 20 − 1 = 0 internal nodes.

1. Algorithms and Data Structures – 6/21



Indutive Step

Indutive step: If bh(x) > 0 then eah hild of x hasblak height bh(x) or bh(x)− 1, depending on whetherthe hild is red or blak, respetively. We an apply theindutive hypothesis to onlude that eah subtree hasat least 2bh(x)−1 − 1 internal nodes. Thus the tree rootedat x has n ≥ 2
(

2bh(x)−1 − 1
)

+ 1 = 2bh(x) − 1 internalnodes (the +1 ounts x).
1. Algorithms and Data Structures – 7/21



Lemma, ont.

To onlude, let h be the height of the tree. By property4, at least half the nodes on any path from the root to aleaf, not ounting the root, must be blak. Thus
bh(T ) ≥ h

2 . By the indutive argument above, thenumber n of internal nodes satis�es
n ≥ 2

h

2 − 1, so

n+ 1 ≥ 2
h

2 , and

lg (n+ 1) ≥ h

2 , showing
h ≤ 2 lg (n+ 1)

1. Algorithms and Data Structures – 8/21



Impat

As we will see, the red-blak property an be maintainedthrough Θ(h) insertions and deletions. This leads to theonlusion that SEARCH, MINIMUM, MAXIMUM,PREDECESSOR and SUCCESSOR an all beimplemented in Θ(2 lg (n+ 1)) = Θ (lg n) worst-asetime.
1. Algorithms and Data Structures – 9/21



Insertion Issues

Insertion into a red-blak tree begins with the usualbinary searh tree insertion. The new tree node z isolored red with two blak T.nil hildren.If z was inserted into an empty tree, this leads to aviolation of property 2 asserting that the root is blak.The only other possible violation is that z.p is red. Thisan be repaired using rotations and reoloring.Blak heights is still well de�ned, and are will be takento preserve this.
1. Algorithms and Data Structures – 10/21



Rotation

To maintain balane, a red-blak tree must sometimesrestruture the underlying tree. Rotations are the basitool for this.In a left rotation of the node x, the right hild y of x ismoved up to be the hild of x's parent, while x beomes

y's left hild. The left subtree of y beomes the leftsubtree of x. All other links are preserved.A right rotation reverses a left rotation.Figure 13.2 in your text is a diagram of these rotations.

1. Algorithms and Data Structures – 11/21



Insertion Fixup

The insertion of z as a red node may preserve allred-blak properties. In this ase, no further ation isneeded. If property 2 is violated, simply reoloring theroot blak restores the red-blak properties.Otherwise, z's parent is red. There are several ases toonsider.Case 1: If z's aunt is also red, reolor z's parent andaunt blak, and z's grandparent red, making this nodethe new z.This may solve the problem, or may move itup the tree, where it is either a red root, easily �xed, orone of ase 1,2, 2', 3, or 3' applies.

1. Algorithms and Data Structures – 12/21



Cases 2, 3

Case 2: If z is the red right hild of a red parent with ablak aunt, and z's parent is the left hild of z'sgrandparent, just left-rotate z's parent. Now the redhild will be the left hild of the red parent, whih is inturn the left hild of its parent. This puts us in ase 3.Case 3: If z is the red left hild of a red parent that isthe red left hild of z's grandparent, right-rotate thegrandparent. Color the root of the resulting subtreeblak, and both hildren red. This restores the red-blakproperties.
1. Algorithms and Data Structures – 13/21



Cases 2', 3'

Case 2': If z is the red left hild of a red parent with ablak aunt, and z's parent is the right hild of z'sgrandparent, just right-rotate z's parent. Now the redhild will be the right hild of the red parent, whih is inturn the right hild of its parent. This puts us in ase 3'.Case 3': If z is the red right hild of a red parent that isthe red right hild of z's grandparent, left-rotate thegrandparent. Color the root of the resulting subtreeblak, and both hildren red. This restores the red-blakproperties.
1. Algorithms and Data Structures – 14/21



Θ−bounds

Eah rebalaning operation is Θ(1), and at most Θ(h)operations will need to be performed: the violation maybe moved up to the root then reolored.

1. Algorithms and Data Structures – 15/21



Deletion

Deletion essentially begins with a binary searh treedeletion. Deletion is ahieved by spliing out a node,having its parent point diretly to one of its hildren. Ifthe node splied out is blak, this will ause property 2or property 5 to be violated, and possibly property 4.The basi onept for �xing this is to put the missingblak on the hild.If the hild was red, then the red-blak properties arerestored.Otherwise, the extra blak may moved up the tree to thea red node, turning it blak, or to the root, where it anbe removed. Alternatively, a reoloring

1. Algorithms and Data Structures – 16/21



Moving Up

Denote the node with the double blak by x. Assume itis a left hild.Case 1: x's sibling is red: onvert to ase 2, 3, or 4 byrotating and reoloring to arrange for x's sibling to beblak.Case 2: x's sibling w is blak and w's hildren are blak:reolor the sibling red, and move the extra blak to w'sparent, now x.
1. Algorithms and Data Structures – 17/21



Moving up, ont.

Case 3: x's sibling w is blak and w.left is red and
w.right is blak: right-rotate at w and reolor to make
x's new sibling w blak, w.right red, and w.left blak.This produes Case 4.Case 4: x's sibling w is blak and w.right is red:left-rotate at x.p and reolor to remove the extra blak.

1. Algorithms and Data Structures – 18/21



2', 3', and 4'

There are ases 2', 3', and 4' obtained by reversing leftand right in the ases above.

1. Algorithms and Data Structures – 19/21



Performane

The ation for eah ase is Θ(1), and at most
Θ(h) = Θ (lg n) operations will need to be performed:at worst, the extra blak may be moved up to the rootthen removed.

1. Algorithms and Data Structures – 20/21



Conlusion

A balaned binary tree, while intriate to implement,supports Θ(lg n) insertion, searh, and deletion,suessor, and predeessor funtions. Elements an beinserted inde�nitely.
1. Algorithms and Data Structures – 21/21


	{Chapter 13}
	{Red-Black Tree Property}
	{Sentinel}
	{Black Height}
	{Balance}
	{Inductive Step}
	{Lemma, cont.}
	{Impact}
	{Insertion Issues}
	{Rotation}
	{Insertion Fixup}
	{Cases 2, 3}
	{Cases 2', 3'}
	{$Theta -$bounds}
	{Deletion}
	{Moving Up}
	{Moving up, cont.}
	{2', 3', and 4'}
	{Performance}
	{Conclusion}

