Algorithms and Data Structures
Chapter 13

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/21

Chapter 13

Our earlier study of binary search trees showed that this data structure
supports SEARCH, INSERT, DELETE, MINIMUM, MAXIMUM,
SUCCESSOR, and PREDECESSOR in © (h) time, where h is the
height of the tree. Balanced binary search trees impose an additional
condition on the tree that constrains h to have h = © (Ign) growth.

Two common balanced binary search trees are red-black trees and AVL
trees. Red-black trees use an additional bit, denoting red or black, at
each node to maintain balance. AVL trees store the height of the node
at each node, thus requiring more additional memory than red-black

trees.

The subject here is red-black trees. The balance requirement will
complicate insertion and deletion, but all the tree operations will have

O (lgn) worst-case performance.

1. Algorithms and Data Structures — 2/21

Red-Black Tree Property

A red-black tree is a binary search tree with an
additional data member, color, at each node. The color
value must be either red or black. We will consider the
NIL pointers to be the leaves. The tree must satisty
the following red-black properties:

Every node is either red or black.

The root is black.

Every leaf (IVIL) is black.

If 2 node is red, then both its children are black.

oo -

Every simple path from a node to a descendant leaf
contains the same number of black nodes.

1. Algorithms and Data Structures

-3/21

Sentinel

In fact, the NIL's will be represented as pointers to the
sentinel T'.nel, which is black. This is for coding
convenience.

1. Algorithms and Data Structures — 4/21

Black Height

As a consequence of property 5 of red-black trees, the
black height ot a node z is well defined as the number
of black nodes any path from x to a leaf, counting the
leaf but not counting x.

The black height of a red-black tree is the black height
of the root.

1. Algorithms and Data Structures — 5/21

Balance

Lemma: A red-black tree with n internal (non-leaf)
nodes has height at most 21g (n + 1).

Proof: By induction, the subtree rooted at any node x

contains at least 2°%(*) — 1 internal nodes.
Base case: This is true if bh(x) = 0. Then x is a leaf and

the subtree has 2°M#) — 1 =20 _ 1 = (O internal nodes.

1. Algorithms and Data Structures — 6/21

Inductive Step

Inductive step: If bh(xz) > 0 then each child of x has
black height bh(x) or bh(x) — 1, depending on whether
the child is red or black, respectively. We can apply the
inductive hypothesis to conclude that each subtree has
at least 2°(*)=1 — 1 internal nodes. Thus the tree rooted
at £ has n > 2 (Qbh(@_l — 1) + 1 = 2%(®) — 1 internal
nodes (the +1 counts x).

1. Algorithms and Data Structures — 7/21

Lemma, cont.

To conclude, let h be the height of the tree. By property
4. at least half the nodes on any path from the root to a
leaf, not counting the root, must be black. Thus

bh(T) > . By the inductive argument above, the
numbehr n of internal nodes satisfies

n>22 —1, so

n+1> 2%, and

lg(n+1) > %, showing

h<2lg(n+1)

1. Algorithms and Data Structures — 8/21

Impact

As we will see, the red-black property can be maintained
through © (h) insertions and deletions. This leads to the
conclusion that SEARCH, MINIMUM, MAXIMUM,
PREDECESSOR and SUCCESSOR can all be
implemented in © (21g(n + 1)) = O (Ign) worst-case
time.

Insertion Issues

Insertion into a red-black tree begins with the usual
binary search tree insertion. The new tree node z is
colored red with two black T'.nzl children.

It 2 was inserted into an empty tree, this leads to a
violation of property 2 asserting that the root is black.

The only other possible violation is that z.p is red. This
can be repaired using rotations and recoloring.

Black heights is still well detined, and care will be taken
to preserve this.

1. Algorithms and Data Structures — 10/21

Rotation

To maintain balance, a red-black tree must sometimes

restructure the underlying tree. Rotations are the basic
tool for this.

In a left rotation of the node x, the right child y of x is
moved up to be the child of x's parent, while x becomes
y's left child. The left subtree of y becomes the left
subtree of x. All other links are preserved.

A right rotation reverses a left rotation.

Figure 13.2 in your text is a diagram of these rotations.

1. Algorithms and Data Structures — 11/21

Insertion Fixup

The insertion of z as a red node may preserve all
red-black properties. In this case, no further action is
needed. If property 2 is violated, simply recoloring the
root black restores the red-black properties.

Otherwise, z's parent is red. There are several cases to
consider.

Case 1: If z's aunt is also red, recolor z's parent and
aunt black, and z's grandparent red, making this node
the new z.This may solve the problem, or may move it
up the tree, where it is either a red root, easily fixed, or
one of case 1,2, 2', 3, or 3" applies.

1. Algorithms and Data Structures — 12/21

Cases 2, 3

Case 2: It z is the red right child of a red parent with a
black aunt, and z's parent is the left child of z's
grandparent, just left-rotate z's parent. Now the red
child will be the left child of the red parent, which is in
turn the left child of its parent. This puts us in case 3.

Case 3: If z is the red left child of a red parent that is
the red left child of z's grandparent, right-rotate the
grandparent. Color the root of the resulting subtree
black, and both children red. This restores the red-black

properties.

1. Algorithms and Data Structures — 13/21

Cases 2', 3

Case 2': It z is the red left child of a red parent with a
black aunt, and z's parent is the right child of z's
grandparent, just right-rotate z's parent. Now the red
child will be the right child of the red parent, which is in
turn the right child of its parent. This puts us in case 3.

Case 3': It z is the red right child of a red parent that is
the red right child of z's grandparent, left-rotate the
grandparent. Color the root of the resulting subtree
black, and both children red. This restores the red-black

properties.

1. Algorithms and Data Structures — 14/21

©—bounds

Each rebalancing operation is © (1), and at most © (h)
operations will need to be performed: the violation may
be moved up to the root then recolored.

1. Algorithms and Data Structures — 15/21

Deletion

Deletion essentially begins with a binary search tree
deletion. Deletion is achieved by splicing out a node,
having its parent point directly to one of its children. It
the node spliced out is black, this will cause property 2
or property 5 to be violated, and possibly property 4.
The basic concept for fixing this is to put the missing

black on the child.

It the child was red, then the red-black properties are
restored.

Otherwise, the extra black may moved up the tree to the
a red node, turning it black, or to the root, where it can
be removed. Alternatively, a recoloring

1. Algorithms and Data Structures — 16/21

Moving Up

Denote the node with the double black by . Assume it
is a left child.

Case 1: x's sibling is red: convert to case 2, 3, or 4 by
rotating and recoloring to arrange for x's sibling to be

black.

Case 2: x's sibling w is black and w's children are black:
recolor the sibling red, and move the extra black to w's
parent, now .

1. Algorithms and Data Structures — 17/21

Moving up, cont.

Case 3: x's sibling w is black and w.left is red and
w.right is black: right-rotate at w and recolor to make
x's new sibling w black, w.right red, and w.left black.
This produces Case 4.

Case 4: x's sibling w is black and w.right is red:
left-rotate at x.p and recolor to remove the extra black.

1. Algorithms and Data Structures — 18/21

2" 3" and 4’

There are cases 2', 3', and 4 obtained by reversing left
and right in the cases above.

1. Algorithms and Data Structures — 19/21

Performance

The action for each case is © (1), and at most

© (h) = © (Ign) operations will need to be performed:
at worst, the extra black may be moved up to the root
then removed.

1. Algorithms and Data Structures — 20/21

Conclusion

A balanced binary tree, while intricate to implement,
supports © (Ign) insertion, search, and deletion,
successor, and predecessor functions. Elements can be
inserted indefinitely.

1. Algorithms and Data Structures — 21/21

	{Chapter 13}
	{Red-Black Tree Property}
	{Sentinel}
	{Black Height}
	{Balance}
	{Inductive Step}
	{Lemma, cont.}
	{Impact}
	{Insertion Issues}
	{Rotation}
	{Insertion Fixup}
	{Cases 2, 3}
	{Cases 2', 3'}
	{$Theta -$bounds}
	{Deletion}
	{Moving Up}
	{Moving up, cont.}
	{2', 3', and 4'}
	{Performance}
	{Conclusion}

