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Chapter 13

Our earlier study of binary sear
h trees showed that this data stru
turesupports SEARCH, INSERT, DELETE, MINIMUM, MAXIMUM,SUCCESSOR, and PREDECESSOR in Θ(h) time, where h is theheight of the tree. Balan
ed binary sear
h trees impose an additional
ondition on the tree that 
onstrains h to have h = Θ(lgn) growth.Two 
ommon balan
ed binary sear
h trees are red-bla
k trees and AVLtrees. Red-bla
k trees use an additional bit, denoting red or bla
k, atea
h node to maintain balan
e. AVL trees store the height of the nodeat ea
h node, thus requiring more additional memory than red-bla
ktrees.The subje
t here is red-bla
k trees. The balan
e requirement will
ompli
ate insertion and deletion, but all the tree operations will have

Θ(lg n) worst-
ase performan
e.
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Red-Bla
k Tree Property

A red-bla
k tree is a binary sear
h tree with anadditional data member, color, at ea
h node. The colorvalue must be either red or black. We will 
onsider the
NIL pointers to be the leaves. The tree must satisfythe following red-bla
k properties:

1. Every node is either red or bla
k.2. The root is bla
k.3. Every leaf (NIL) is bla
k.4. If a node is red, then both its 
hildren are bla
k.5. Every simple path from a node to a des
endant leaf
ontains the same number of bla
k nodes.
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Sentinel

In fa
t, the NIL's will be represented as pointers to thesentinel T.nil, whi
h is bla
k. This is for 
oding
onvenien
e.
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Bla
k Height

As a 
onsequen
e of property 5 of red-bla
k trees, thebla
k height of a node x is well de�ned as the numberof bla
k nodes any path from x to a leaf, 
ounting theleaf but not 
ounting x.The bla
k height of a red-bla
k tree is the bla
k heightof the root.
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Balan
e

Lemma: A red-bla
k tree with n internal (non-leaf)nodes has height at most 2 lg (n+ 1).Proof: By indu
tion, the subtree rooted at any node x
ontains at least 2bh(x) − 1 internal nodes.Base 
ase:This is true if bh(x) = 0. Then x is a leaf andthe subtree has 2bh(x) − 1 = 20 − 1 = 0 internal nodes.
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Indu
tive Step

Indu
tive step: If bh(x) > 0 then ea
h 
hild of x hasbla
k height bh(x) or bh(x)− 1, depending on whetherthe 
hild is red or bla
k, respe
tively. We 
an apply theindu
tive hypothesis to 
on
lude that ea
h subtree hasat least 2bh(x)−1 − 1 internal nodes. Thus the tree rootedat x has n ≥ 2
(

2bh(x)−1 − 1
)

+ 1 = 2bh(x) − 1 internalnodes (the +1 
ounts x).
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Lemma, 
ont.

To 
on
lude, let h be the height of the tree. By property4, at least half the nodes on any path from the root to aleaf, not 
ounting the root, must be bla
k. Thus
bh(T ) ≥ h

2 . By the indu
tive argument above, thenumber n of internal nodes satis�es
n ≥ 2

h

2 − 1, so

n+ 1 ≥ 2
h

2 , and

lg (n+ 1) ≥ h

2 , showing
h ≤ 2 lg (n+ 1)
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Impa
t

As we will see, the red-bla
k property 
an be maintainedthrough Θ(h) insertions and deletions. This leads to the
on
lusion that SEARCH, MINIMUM, MAXIMUM,PREDECESSOR and SUCCESSOR 
an all beimplemented in Θ(2 lg (n+ 1)) = Θ (lg n) worst-
asetime.
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Insertion Issues

Insertion into a red-bla
k tree begins with the usualbinary sear
h tree insertion. The new tree node z is
olored red with two bla
k T.nil 
hildren.If z was inserted into an empty tree, this leads to aviolation of property 2 asserting that the root is bla
k.The only other possible violation is that z.p is red. This
an be repaired using rotations and re
oloring.Bla
k heights is still well de�ned, and 
are will be takento preserve this.
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Rotation

To maintain balan
e, a red-bla
k tree must sometimesrestru
ture the underlying tree. Rotations are the basi
tool for this.In a left rotation of the node x, the right 
hild y of x ismoved up to be the 
hild of x's parent, while x be
omes

y's left 
hild. The left subtree of y be
omes the leftsubtree of x. All other links are preserved.A right rotation reverses a left rotation.Figure 13.2 in your text is a diagram of these rotations.
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Insertion Fixup

The insertion of z as a red node may preserve allred-bla
k properties. In this 
ase, no further a
tion isneeded. If property 2 is violated, simply re
oloring theroot bla
k restores the red-bla
k properties.Otherwise, z's parent is red. There are several 
ases to
onsider.Case 1: If z's aunt is also red, re
olor z's parent andaunt bla
k, and z's grandparent red, making this nodethe new z.This may solve the problem, or may move itup the tree, where it is either a red root, easily �xed, orone of 
ase 1,2, 2', 3, or 3' applies.
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Cases 2, 3

Case 2: If z is the red right 
hild of a red parent with abla
k aunt, and z's parent is the left 
hild of z'sgrandparent, just left-rotate z's parent. Now the red
hild will be the left 
hild of the red parent, whi
h is inturn the left 
hild of its parent. This puts us in 
ase 3.Case 3: If z is the red left 
hild of a red parent that isthe red left 
hild of z's grandparent, right-rotate thegrandparent. Color the root of the resulting subtreebla
k, and both 
hildren red. This restores the red-bla
kproperties.
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Cases 2', 3'

Case 2': If z is the red left 
hild of a red parent with abla
k aunt, and z's parent is the right 
hild of z'sgrandparent, just right-rotate z's parent. Now the red
hild will be the right 
hild of the red parent, whi
h is inturn the right 
hild of its parent. This puts us in 
ase 3'.Case 3': If z is the red right 
hild of a red parent that isthe red right 
hild of z's grandparent, left-rotate thegrandparent. Color the root of the resulting subtreebla
k, and both 
hildren red. This restores the red-bla
kproperties.
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Θ−bounds

Ea
h rebalan
ing operation is Θ(1), and at most Θ(h)operations will need to be performed: the violation maybe moved up to the root then re
olored.
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Deletion

Deletion essentially begins with a binary sear
h treedeletion. Deletion is a
hieved by spli
ing out a node,having its parent point dire
tly to one of its 
hildren. Ifthe node spli
ed out is bla
k, this will 
ause property 2or property 5 to be violated, and possibly property 4.The basi
 
on
ept for �xing this is to put the missingbla
k on the 
hild.If the 
hild was red, then the red-bla
k properties arerestored.Otherwise, the extra bla
k may moved up the tree to thea red node, turning it bla
k, or to the root, where it 
anbe removed. Alternatively, a re
oloring
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Moving Up

Denote the node with the double bla
k by x. Assume itis a left 
hild.Case 1: x's sibling is red: 
onvert to 
ase 2, 3, or 4 byrotating and re
oloring to arrange for x's sibling to bebla
k.Case 2: x's sibling w is bla
k and w's 
hildren are bla
k:re
olor the sibling red, and move the extra bla
k to w'sparent, now x.
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Moving up, 
ont.

Case 3: x's sibling w is bla
k and w.left is red and
w.right is bla
k: right-rotate at w and re
olor to make
x's new sibling w bla
k, w.right red, and w.left bla
k.This produ
es Case 4.Case 4: x's sibling w is bla
k and w.right is red:left-rotate at x.p and re
olor to remove the extra bla
k.
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2', 3', and 4'

There are 
ases 2', 3', and 4' obtained by reversing leftand right in the 
ases above.
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Performan
e

The a
tion for ea
h 
ase is Θ(1), and at most
Θ(h) = Θ (lg n) operations will need to be performed:at worst, the extra bla
k may be moved up to the rootthen removed.
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Con
lusion

A balan
ed binary tree, while intri
ate to implement,supports Θ(lg n) insertion, sear
h, and deletion,su

essor, and prede
essor fun
tions. Elements 
an beinserted inde�nitely.
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