Algorithms and Data Structures
Chapter 18

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/12



Chapter 18

Our model to this point in course has essentially
assumed that all constant time operations are equivalent.
This is a reasonable model for computation with data in
RAM. When a program requires disk reads, we should
model that fact that these operations can be much
slower than accessing data in main memory, by a factor
of more than 10°. B-trees are designed to take
advantage of the fact that a single disk read accesses a
page of data (211 — 214 bytes).

B-trees typically have a large branching factor at each
node, allowing location of the data after few disk reads
of nodes.

1. Algorithms and Data Structures — 2/12



B-tree Node Properties

A B-tree is as rooted tree in which every node has the
following:

1. x.n: the number of keys in the nodes

2. x.n keys, x.keyl < x.key2 < ...x.keyn

Every internal node has x.n 4+ 1 child pointers, x.cq,
X.Co,..X.Cpi1.

In this implementation, pointers to satellite data are
stored with the keys.

Alternatively, the tree may store satellite data only in the
leaves, with the keys repeated in the internal nodes for
navigation.

1. Algorithms and Data Structures — 3/12



Search Property

The keys bound the contents of the subtrees rooted at
the children. If k; is any key stored in the subtree rooted
at the child z.c;, then

k1 < x.keyl < ky < z.key2 < .. .k, < x.keyn < k1.

1. Algorithms and Data Structures — 4/12



Balance Conditions

Every leaft has the same depth, the tree's height A.

There is a fixed integer ¢, the minimum degree of the
B-tree. Every node other than the root must have at
least ¢ — 1 keys. Thus internal nodes have at least ¢
children.

Every node contains at most 2t — 1 keys. Thus internal
nodes have at most 2¢ children. A node is full it it has
2t — 1 keys.

1. Algorithms and Data Structures — 5/12



Height

It N > 1 then any N —key B-tree of height h and
minimum degree t > 2 satisfies h < log, (”TH)

First, note lower bounds on the numbers of keys at each
level: the root has at least one key, hence two children.
The next level has at least two nodes with at least t — 1
keys each. The next level has at least 2¢ nodes with at

east with at least t — 1 keys each. In general, the k"
evel has at least 2t* 71 (t — 1) keys.

1. Algorithms and Data Structures — 6/12



Proof, cont.

N>1+2(t—1)30_ !
=1+2(t-1) (45

=2t" — 1
SO
g

and h < log, (%) as required.

1. Algorithms and Data Structures — 7/12



Impact

Typically, t is large, so h grows very slowly.

Ex. t = 500, N = 500,000 — 1
Bl — 250,000 = 2, so h < loggg, 250, 000 = 2



Search

Search generalizes the binary search algorithm. If the
query key k is not found at an internal node, descend to
the child that could contain the node according to the
rule

k1 < x.keyl < ky < z.key2 < .. .k, < x.keyn < k1.

1. Algorithms and Data Structures — 9/12



Balance Operations

Inserting into the tree may require splitting a full node
that is a child of a non-full node into two nodes.

Deletion may require moditying a node with exactly t — 1
keys. To add a key to a node with ¢ — 1 keys, the node
may be assigned a sibling's key if a sibling has a spare
key. Sibling nodes with ¢ — 1 keys may be merged with a
key from the parent to make a node with 2t — 1 keys

1. Algorithms and Data Structures — 10/12



Insertion

Insertion into B-tree descends the B-tree search path,
splitting nodes as necessary to avoid descending to a full
node. The data is inserted in the appropriate leaf.

1. Algorithms and Data Structures — 11/12



Deletion

Deletion occurs only from leaves.

Deletion of a value z from a B-tree descends the search
nath for the key z.k, using adoption and merging to
orevent descending to a node with t — 1 keys. If the 2.k
is found in an internal node, it is replaced by its
successor k' from its child, and k' is recursively deleted

from the child.

1. Algorithms and Data Structures — 12/12



	{Chapter 18}
	{B-tree Node Properties}
	{Search Property}
	{Balance Conditions}
	{Height}
	{Proof, cont.}
	{Impact}
	{Search}
	{Balance Operations}
	{Insertion}
	{Deletion}

