
Algorithms and Data Stru
turesChapter 3
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/35

Chapter 3

Chapter 3 formalizes the meaning of the notations O (g (n)) and
Θ(g (n)) and introdu
es o (g (n)), Ω (g (n)) and ω (g (n)). These
on
epts provide ways to des
ribe how the running time of analgorithm in
reases with size in the limit as the size of the inputin
reases. Considering limiting behavior allows examination of thetime requirements of algorithms without implementing thealgorithm and without requiring detailed knowledge of system onwhi
h the algorithm is implemented.The
hapter reviews the properties of fun
tions frequently used asreferen
e fun
tions in asymptoti
 analysis. Some asymptoti
relations of these referen
e fun
tions are supplied.

1. Algorithms and Data Structures – 2/35

Fun
tions for Analysis

The fun
tions dis
ussed in the
ontext of O (g (n)), Θ(g (n)),
o (g (n)), Ω (g (n)) and ω (g (n)) are fun
tions whose domains are
N = {0, 1, 2, ...}. The de�nitions are most meaningful for fun
tionsthat take on negative values for at most a �nite set of arguments.Used pre
isely, O (g (n)), Θ(g (n)), o (g (n)), Ω (g (n)) and

ω (g (n)) denote subsets the set of su
h fun
tions, though in
onventional use one typi
ally writes, for example, f = Θ(g (n))rather than f ∈ Θ(g (n)).
1. Algorithms and Data Structures – 3/35

Motivation

�=� f (n) = Θ (g (n)) ≈ �The asymptoti
 growth rate of fequals the asymptoti
 growth rate of g.��≤� f (n) = O (g (n)) ≈ �The asymptoti
 growth rate of f isless than or equal to the asymptoti
 growth rate of g.��<� f (n) = o (g (n)) ≈ �The asymptoti
 growth rate of f isless than the asymptoti
 growth rate of g.��≥� f (n) = Ω (g (n)) ≈ �The asymptoti
 growth rate of f isgreater than or equal to the asymptoti
 growth rate of

g.��>� f (n) = ω (g (n)) ≈ �The asymptoti
 growth rate of f isgreater than the asymptoti
 growth rate of g.�

1. Algorithms and Data Structures – 4/35

Θ− notation

For a given fun
tion g (n), Θ(g (n)) denotes the setde�ned by

Θ(g (n)) =
{f : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g (n) ≤ f (n) ≤ c2g (n) for all n > n0}Intuitively, f = Θ(g (n)) or f ∈ Θ(g (n)) if the valuesof f are sandwi
hed between the values of two multiplesof g for su�
iently large arguments.

1. Algorithms and Data Structures – 5/35

Θ Example

If g (n) = n and f (n) = 100n + 1000, then f is in
Θ(g (n)). To show this, �nd positive
onstants c1, c2,and n0 for whi
h 0 ≤ c1n ≤ 100n + 1000≤ c2n for all
n > n0.One possibility is c1 = 1, c2 = 110, and n0 = 100. Then

0 ≤ n ≤ 100n+ 1000 ≤ 100n + 10n = 110n for all

n > n0 be
ause 10n > 10 (100) = 1000 for su
h n.There are many other possible triples for c1, c2, and n0.

1. Algorithms and Data Structures – 6/35

Θ and limits

If limn→∞
f(n)
g(n) = l > 0 then f = Θ(g (n)) , though the
onverse is not true.The de�nition of the limit says that if

limn→∞
f(n)
g(n) = l > 0, then for any ε > 0, there exists Nsu
h that n > N implies l − ε ≤ f(n)

g(n) ≤ l + ε. Take

ε = l
2 to get n > N implies l

2 ≤
f(n)
g(n) ≤

3l
2 and

l
2g (n) ≤ f (n) ≤ 3l

2 g (n). Thus the triple c1 = l
2 ,

c2 =
3l
2 , and n0 = N
erti�es that f = Θ(g (n)) .Can you think of a
ounterexample to the
onverse?

1. Algorithms and Data Structures – 7/35

limit payo�

The limit method of verifying f = Θ(g (n)) simpli�esthe demonstration that if f (n) is any polynomial
∑d

i=0 ain
i with ad > 0 and g (n) = nd then

f = Θ(g (n)):

limn→∞
f(n)
g(n) = limn→∞

∑d
i=0 ain

i−d = ad > 0

1. Algorithms and Data Structures – 8/35

O- notation

The O-notation is useful in spe
ifying the f grows nofaster than g:

O (g (n)) =
{f : there exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg (n) for all n > n0}

1. Algorithms and Data Structures – 9/35

O and limits

If limn→∞
f(n)
g(n) = l < ∞ then f = O (g (n)).If {f(n)

g(n) : n ∈ N

}is bounded, then f = O (g (n)).

1. Algorithms and Data Structures – 10/35

Appli
ations of O
• If f is a polynomial of degree less than or equal to dthen f = O

(

nd
).

• if f (n) = Θ (g (n)) then f (n) = O (g (n)).
• O−bounds
an often be determined from the depthof nesting in an iterative algorithm.
• O− or Θ− bounds on the worst
ase running time ofan algorithm are O−bounds for the running time onarbitrary inputs.

1. Algorithms and Data Structures – 11/35

Ω−notation

The notation f (n) = Ω (g (n)) says that g provides anasymptoti
 lower bound on f .

Ω (g (n)) =
{f : there exist positive constants c and n0

such that 0 ≤ cg (n) ≤ f (n) for all n > n0}

1. Algorithms and Data Structures – 12/35

O, Θ, Ω Theorem

Theorem 1 For any two fun
tions f (n) and g (n),
f (n) = Θ (g (n)) if and only if f (n) = O (g (n)) and
f (n) = Ω (g (n)).

1. Algorithms and Data Structures – 13/35

o- notation

The o- notation f (n) = o (g (n)) indi
ates that g (n)grows properly faster, asymptoti
ally, than f (n) .

o (g (n)) =
{f : for any positive constant c > 0 there exists a constant and n0 > 0
such that 0 ≤ f (n) ≤ cg (n) for all n > n0}

1. Algorithms and Data Structures – 14/35

o- Example

f (n) = n and g (n) = n2 satisfy f (n) = o (g (n)): forany c > 0, pi
k n0 >
1
c .

f (n) = n2 and g (n) = n2 do not satisfy
f (n) = o (g (n)): if c = 1

2 , 0 ≤ f (n) ≤ cg (n) is trueonly for n = 0.
1. Algorithms and Data Structures – 15/35

o and limits

o (g (n)) =
{f (n) : f (n) is asymptotically nonnegative and

limn→∞
f(n)
g(n) = 0

}

1. Algorithms and Data Structures – 16/35

ω−notation

The ω- notation f (n) = ω (g (n)) indi
ates that f (n)grows properly faster, asymptoti
ally, than g (n) .

ω (g (n)) =
{f : for any positive constant c > 0 there exists a constant n0 > 0
such that 0 ≤ cg (n) ≤ f (n) for all n > n0}

1. Algorithms and Data Structures – 17/35

ω- Example

f (n) = 4n and g (n) = 2n satisfy f (n) = ω (g (n)): forany c > 0, pi
k n0 > log2 (c) . Then, for n > n0,
4n = 2n2n > 2n02n > c2n.

1. Algorithms and Data Structures – 18/35

ω and limits

ω (g (n)) =
{f (n) : f (n) is asymptotically nonnegative and

limn→∞
g(n)
f(n) = 0

}

1. Algorithms and Data Structures – 19/35

Properties

The
omparisons Θ, O, Ω, o, and ω for fun
tions areanalogous to =,≤, ≥, <, and > for real numbers. Thisanalogy provides an easy way to remember some of theproperties of Θ, O, Ω, o, and ω.Transitivity: If f (n) and g (n) are asymptoti
allynonnegative, Θ, O, Ω, o, and ω are transitive, e.g.

f (n) = Θ (g (n)) and g (n) = Θ (h (n)) implies

f (n) = Θ (h (n)).How does a proof go?
1. Algorithms and Data Structures – 20/35

Properties,
ont.

Re�exivity: Θ, O, and Ω are re�exive relations in that
f (n) = Θ (f (n))
f (n) = O (f (n))
f (n) = Ω (f (n))Symmetry: f (n) = Θ (g (n)) ⇐⇒ g (n) = Θ (f (n))

1. Algorithms and Data Structures – 21/35

Tri
hotomy

Unlike =,<, and > for real numbers, there are pairs ofasymptoti
ally nonnegative fun
tions f (n) and g (n) forwhi
h f (n) /∈ Θ(g (n)), f (n) /∈ O (g (n)), and
f (n) /∈ Ω (g (n)).

Consider f (n) =

{

1 n mod 2 = 0

n2 n mod 2 = 1

and

g (n) = n.
1. Algorithms and Data Structures – 22/35

Notation Extension

A statement like T (n) = 2T
(

n
2

)

+ o (n) is interpretedto mean that there is a fun
tion f (n) ∈ o (n) for whi
h
T (n) = 2T

(

n
2

)

+ f (n).
1. Algorithms and Data Structures – 23/35

Fun
tion basi
s

A fun
tion f (n) is monotoni
ally in
reasing if
m ≤ n ⇒ f (m) ≤ f (n).A fun
tion f (n) is monotoni
ally de
reasing if
m ≤ n ⇒ f (m) ≥ f (n).A fun
tion f (n) is stri
tly in
reasing if
m < n ⇒ f (m) < f (n).A fun
tion f (n) is stri
tly de
reasing if
m < n ⇒ f (m) > f (n).

1. Algorithms and Data Structures – 24/35

�oor and
eiling

For x ∈ R, ⌊x⌋ = max {z ∈ Z|z ≤ x} and
⌈x⌉ = min {z ∈ Z|z ≥ x}.

x− 1 ≤ ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ x+ 1

n ∈ Z ⇒ ⌊n/2⌋+ ⌈n/2⌉ = nFor any positive real number x, and any positive integers

a and b, ⌈⌈x/a⌉b ⌉ = ⌈⌈x⌉ab ⌉, and ⌊⌊x/a⌋b ⌋ = ⌊⌊x⌋ab ⌋.

1. Algorithms and Data Structures – 25/35

�oor proof

x
a = ⌊xa⌋+ y for some 0 ≤ y < 1

x
ab =

⌊x

a
⌋

b + y
b = ⌊

⌊x

a
⌋

b ⌋+ k
b +

y
b for some integer

0 ≤ k ≤ b− 1Note k
b +

y
b < 1 so ⌊ x

ab⌋ = ⌊⌊
⌊x

a
⌋

b ⌋+ k
b +

y
b⌋ = ⌊

⌊x

a
⌋

b ⌋.The
orresponding proof for
eiling is similar.

One
onsequen
e is that 


⌊

⌈ n

m
⌉

m

⌋

. . . /m










is between ⌊n/mk⌋ and

⌈n/mk⌉ for the appropriate power of m.

1. Algorithms and Data Structures – 26/35

Modular Arithmeti

For any integer a, and any integer n > 1, a
mod n = a− n⌊a/n⌋. If a mod n = b mod n, write
a ≡ b (mod n).Arithmeti
 operations
an be done before or afterevaluation mod n: (a+ b) mod n ≡ a mod n+ b
mod n (mod n), (ab) mod n ≡ a mod n · b

mod n (mod n) and ak

mod n ≡ (a mod n)k (mod n)for any integer b, andany positive integer k.
1. Algorithms and Data Structures – 27/35

Polynomials

Given a nonnegative integer d and
onstants
a0, a1, . . . ad with ad 6= 0, p (n) = ∑d

i=0 ain
i is apolynomial of degree d.If ad > 0, p (n) is asymptoti
ally positive, and

p (n) = Θ
(

nd
).If f (n) = O
(

nk
) for some
onstant k, then f (n) ispolynomially bounded.

1. Algorithms and Data Structures – 28/35

Exponentiation

For all real n, m, and a > 0,

a0 = 1
a1 = a
a−1 = 1/a
(am)n = amn

aman = am+n

1. Algorithms and Data Structures – 29/35

Exponentiation Limits

For all real
onstants a > 1, and b,

limn→∞
nb

an = 0 (by L'H�pital's Rule), so nb = o (an).
ex =

∑∞
i=0

xi

i!

ex = limn→∞

(

1 + x
n

)n

e ≈ 2.71828

1. Algorithms and Data Structures – 30/35

Logarithms

Re
all that for a and b positive, logb a is de�ned tosatisfy blogb a = a.Logarithms base 2 and base e are most
ommonly usedin algorithm analysis, so the following notations are
onvenient.

lg n = log2 n
lnn = loge n

lgk n = (lg n)k

lg lg n = lg (lg n)

1. Algorithms and Data Structures – 31/35

Log Identities

For all real a > 0, b > 0, c > 0, and n, with logarithmbases not equal to 1,

logc (ab) = logc a+ logc b
logb a

n = n logb a
logb

1
a = − logb a

logb a = log
c
a

logc b

logb a = 1
loga b

alogb c = clogb a

1. Algorithms and Data Structures – 32/35

Veri�
ations

For logb a = logc a
logc b

, verify that logc b logb a = logc a byshowing clogc b logb a = clogc a:

clogc b logb a = blogb a = a = clogc a.

For alogb c = clogb a, note alogb c =
(

blogb a
)logb c =

blogb a logb c =
(

blogb c
)logb a = clogb a.

1. Algorithms and Data Structures – 33/35

lg Asymptoti
s

For any
onstant a > 0, lgb n = o (na), i.e., all powers of
lg n grow more slowly that all positive powers of n.This
an be derived from limn→∞

nb

an = 0 by repla
ing nby lg n and a by 2a:

0 = limn→∞
(lgn)

b

(2a)
lgn = limn→∞

lgb n
na .

1. Algorithms and Data Structures – 34/35

Fa
torials

De�ne n! = {

1 n = 0

n (n− 1)! n > 0

.

One
an show

n! = o (nn)
n! = ω (2n)
lg n! = Θ (n lg n)(You may use these results, unless spe
i�
ally asked toprove them.)

1. Algorithms and Data Structures – 35/35

	{Chapter 3}
	{Functions for Analysis}
	{Motivation}
	{$Theta -notation$}
	{$Theta $ Example}
	{$Theta $ and limits}
	{limit payoff}
	{O- notation}
	{O and limits}
	{Applications of O}
	{$Omega -$notation}
	{O, $Theta $, $Omega $ Theorem}
	{o- notation}
	{o- Example}
	{o and limits}
	{$omega -$notation}
	{$omega $- Example}
	{$omega $ and limits}
	{Properties}
	{Properties, cont.}
	{Trichotomy}
	{Notation Extension}
	{Function basics}
	{floor and ceiling}
	{floor proof}
	{Modular Arithmetic}
	{Polynomials}
	{Exponentiation}
	{Exponentiation Limits}
	{Logarithms}
	{Log Identities}
	{Verifications}
	{$lg $ Asymptotics}
	{Factorials}

