
Algorithms and Data StruturesChapter 3
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/35

Chapter 3

Chapter 3 formalizes the meaning of the notations O (g (n)) and
Θ(g (n)) and introdues o (g (n)), Ω (g (n)) and ω (g (n)). Theseonepts provide ways to desribe how the running time of analgorithm inreases with size in the limit as the size of the inputinreases. Considering limiting behavior allows examination of thetime requirements of algorithms without implementing thealgorithm and without requiring detailed knowledge of system onwhih the algorithm is implemented.The hapter reviews the properties of funtions frequently used asreferene funtions in asymptoti analysis. Some asymptotirelations of these referene funtions are supplied.

1. Algorithms and Data Structures – 2/35

Funtions for Analysis

The funtions disussed in the ontext of O (g (n)), Θ(g (n)),
o (g (n)), Ω (g (n)) and ω (g (n)) are funtions whose domains are
N = {0, 1, 2, ...}. The de�nitions are most meaningful for funtionsthat take on negative values for at most a �nite set of arguments.Used preisely, O (g (n)), Θ(g (n)), o (g (n)), Ω (g (n)) and

ω (g (n)) denote subsets the set of suh funtions, though inonventional use one typially writes, for example, f = Θ(g (n))rather than f ∈ Θ(g (n)).
1. Algorithms and Data Structures – 3/35

Motivation

�=� f (n) = Θ (g (n)) ≈ �The asymptoti growth rate of fequals the asymptoti growth rate of g.��≤� f (n) = O (g (n)) ≈ �The asymptoti growth rate of f isless than or equal to the asymptoti growth rate of g.��<� f (n) = o (g (n)) ≈ �The asymptoti growth rate of f isless than the asymptoti growth rate of g.��≥� f (n) = Ω (g (n)) ≈ �The asymptoti growth rate of f isgreater than or equal to the asymptoti growth rate of

g.��>� f (n) = ω (g (n)) ≈ �The asymptoti growth rate of f isgreater than the asymptoti growth rate of g.�

1. Algorithms and Data Structures – 4/35

Θ− notation

For a given funtion g (n), Θ(g (n)) denotes the setde�ned by

Θ(g (n)) =
{f : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g (n) ≤ f (n) ≤ c2g (n) for all n > n0}Intuitively, f = Θ(g (n)) or f ∈ Θ(g (n)) if the valuesof f are sandwihed between the values of two multiplesof g for su�iently large arguments.

1. Algorithms and Data Structures – 5/35

Θ Example

If g (n) = n and f (n) = 100n + 1000, then f is in
Θ(g (n)). To show this, �nd positive onstants c1, c2,and n0 for whih 0 ≤ c1n ≤ 100n + 1000≤ c2n for all
n > n0.One possibility is c1 = 1, c2 = 110, and n0 = 100. Then

0 ≤ n ≤ 100n+ 1000 ≤ 100n + 10n = 110n for all

n > n0 beause 10n > 10 (100) = 1000 for suh n.There are many other possible triples for c1, c2, and n0.

1. Algorithms and Data Structures – 6/35

Θ and limits

If limn→∞
f(n)
g(n) = l > 0 then f = Θ(g (n)) , though theonverse is not true.The de�nition of the limit says that if

limn→∞
f(n)
g(n) = l > 0, then for any ε > 0, there exists Nsuh that n > N implies l − ε ≤ f(n)

g(n) ≤ l + ε. Take

ε = l
2 to get n > N implies l

2 ≤
f(n)
g(n) ≤

3l
2 and

l
2g (n) ≤ f (n) ≤ 3l

2 g (n). Thus the triple c1 = l
2 ,

c2 =
3l
2 , and n0 = N erti�es that f = Θ(g (n)) .Can you think of a ounterexample to the onverse?

1. Algorithms and Data Structures – 7/35

limit payo�

The limit method of verifying f = Θ(g (n)) simpli�esthe demonstration that if f (n) is any polynomial
∑d

i=0 ain
i with ad > 0 and g (n) = nd then

f = Θ(g (n)):

limn→∞
f(n)
g(n) = limn→∞

∑d
i=0 ain

i−d = ad > 0

1. Algorithms and Data Structures – 8/35

O- notation

The O-notation is useful in speifying the f grows nofaster than g:

O (g (n)) =
{f : there exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg (n) for all n > n0}

1. Algorithms and Data Structures – 9/35

O and limits

If limn→∞
f(n)
g(n) = l < ∞ then f = O (g (n)).If {f(n)

g(n) : n ∈ N

}is bounded, then f = O (g (n)).

1. Algorithms and Data Structures – 10/35

Appliations of O
• If f is a polynomial of degree less than or equal to dthen f = O

(

nd
).

• if f (n) = Θ (g (n)) then f (n) = O (g (n)).
• O−bounds an often be determined from the depthof nesting in an iterative algorithm.
• O− or Θ− bounds on the worst ase running time ofan algorithm are O−bounds for the running time onarbitrary inputs.

1. Algorithms and Data Structures – 11/35

Ω−notation

The notation f (n) = Ω (g (n)) says that g provides anasymptoti lower bound on f .

Ω (g (n)) =
{f : there exist positive constants c and n0

such that 0 ≤ cg (n) ≤ f (n) for all n > n0}

1. Algorithms and Data Structures – 12/35

O, Θ, Ω Theorem

Theorem 1 For any two funtions f (n) and g (n),
f (n) = Θ (g (n)) if and only if f (n) = O (g (n)) and
f (n) = Ω (g (n)).

1. Algorithms and Data Structures – 13/35

o- notation

The o- notation f (n) = o (g (n)) indiates that g (n)grows properly faster, asymptotially, than f (n) .

o (g (n)) =
{f : for any positive constant c > 0 there exists a constant and n0 > 0
such that 0 ≤ f (n) ≤ cg (n) for all n > n0}

1. Algorithms and Data Structures – 14/35

o- Example

f (n) = n and g (n) = n2 satisfy f (n) = o (g (n)): forany c > 0, pik n0 >
1
c .

f (n) = n2 and g (n) = n2 do not satisfy
f (n) = o (g (n)): if c = 1

2 , 0 ≤ f (n) ≤ cg (n) is trueonly for n = 0.
1. Algorithms and Data Structures – 15/35

o and limits

o (g (n)) =
{f (n) : f (n) is asymptotically nonnegative and

limn→∞
f(n)
g(n) = 0

}

1. Algorithms and Data Structures – 16/35

ω−notation

The ω- notation f (n) = ω (g (n)) indiates that f (n)grows properly faster, asymptotially, than g (n) .

ω (g (n)) =
{f : for any positive constant c > 0 there exists a constant n0 > 0
such that 0 ≤ cg (n) ≤ f (n) for all n > n0}

1. Algorithms and Data Structures – 17/35

ω- Example

f (n) = 4n and g (n) = 2n satisfy f (n) = ω (g (n)): forany c > 0, pik n0 > log2 (c) . Then, for n > n0,
4n = 2n2n > 2n02n > c2n.

1. Algorithms and Data Structures – 18/35

ω and limits

ω (g (n)) =
{f (n) : f (n) is asymptotically nonnegative and

limn→∞
g(n)
f(n) = 0

}

1. Algorithms and Data Structures – 19/35

Properties

The omparisons Θ, O, Ω, o, and ω for funtions areanalogous to =,≤, ≥, <, and > for real numbers. Thisanalogy provides an easy way to remember some of theproperties of Θ, O, Ω, o, and ω.Transitivity: If f (n) and g (n) are asymptotiallynonnegative, Θ, O, Ω, o, and ω are transitive, e.g.

f (n) = Θ (g (n)) and g (n) = Θ (h (n)) implies

f (n) = Θ (h (n)).How does a proof go?
1. Algorithms and Data Structures – 20/35

Properties, ont.

Re�exivity: Θ, O, and Ω are re�exive relations in that
f (n) = Θ (f (n))
f (n) = O (f (n))
f (n) = Ω (f (n))Symmetry: f (n) = Θ (g (n)) ⇐⇒ g (n) = Θ (f (n))

1. Algorithms and Data Structures – 21/35

Trihotomy

Unlike =,<, and > for real numbers, there are pairs ofasymptotially nonnegative funtions f (n) and g (n) forwhih f (n) /∈ Θ(g (n)), f (n) /∈ O (g (n)), and
f (n) /∈ Ω (g (n)).

Consider f (n) =

{

1 n mod 2 = 0

n2 n mod 2 = 1

and

g (n) = n.
1. Algorithms and Data Structures – 22/35

Notation Extension

A statement like T (n) = 2T
(

n
2

)

+ o (n) is interpretedto mean that there is a funtion f (n) ∈ o (n) for whih
T (n) = 2T

(

n
2

)

+ f (n).
1. Algorithms and Data Structures – 23/35

Funtion basis

A funtion f (n) is monotonially inreasing if
m ≤ n ⇒ f (m) ≤ f (n).A funtion f (n) is monotonially dereasing if
m ≤ n ⇒ f (m) ≥ f (n).A funtion f (n) is stritly inreasing if
m < n ⇒ f (m) < f (n).A funtion f (n) is stritly dereasing if
m < n ⇒ f (m) > f (n).

1. Algorithms and Data Structures – 24/35

�oor and eiling

For x ∈ R, ⌊x⌋ = max {z ∈ Z|z ≤ x} and
⌈x⌉ = min {z ∈ Z|z ≥ x}.

x− 1 ≤ ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ x+ 1

n ∈ Z ⇒ ⌊n/2⌋+ ⌈n/2⌉ = nFor any positive real number x, and any positive integers

a and b, ⌈⌈x/a⌉b ⌉ = ⌈⌈x⌉ab ⌉, and ⌊⌊x/a⌋b ⌋ = ⌊⌊x⌋ab ⌋.

1. Algorithms and Data Structures – 25/35

�oor proof

x
a = ⌊xa⌋+ y for some 0 ≤ y < 1

x
ab =

⌊x

a
⌋

b + y
b = ⌊

⌊x

a
⌋

b ⌋+ k
b +

y
b for some integer

0 ≤ k ≤ b− 1Note k
b +

y
b < 1 so ⌊ x

ab⌋ = ⌊⌊
⌊x

a
⌋

b ⌋+ k
b +

y
b⌋ = ⌊

⌊x

a
⌋

b ⌋.The orresponding proof for eiling is similar.

One onsequene is that

⌊

⌈ n

m
⌉

m

⌋

. . . /m

is between ⌊n/mk⌋ and

⌈n/mk⌉ for the appropriate power of m.

1. Algorithms and Data Structures – 26/35

Modular Arithmeti

For any integer a, and any integer n > 1, a
mod n = a− n⌊a/n⌋. If a mod n = b mod n, write
a ≡ b (mod n).Arithmeti operations an be done before or afterevaluation mod n: (a+ b) mod n ≡ a mod n+ b
mod n (mod n), (ab) mod n ≡ a mod n · b

mod n (mod n) and ak

mod n ≡ (a mod n)k (mod n)for any integer b, andany positive integer k.
1. Algorithms and Data Structures – 27/35

Polynomials

Given a nonnegative integer d and onstants
a0, a1, . . . ad with ad 6= 0, p (n) = ∑d

i=0 ain
i is apolynomial of degree d.If ad > 0, p (n) is asymptotially positive, and

p (n) = Θ
(

nd
).If f (n) = O
(

nk
) for some onstant k, then f (n) ispolynomially bounded.

1. Algorithms and Data Structures – 28/35

Exponentiation

For all real n, m, and a > 0,

a0 = 1
a1 = a
a−1 = 1/a
(am)n = amn

aman = am+n

1. Algorithms and Data Structures – 29/35

Exponentiation Limits

For all real onstants a > 1, and b,

limn→∞
nb

an = 0 (by L'H�pital's Rule), so nb = o (an).
ex =

∑∞
i=0

xi

i!

ex = limn→∞

(

1 + x
n

)n

e ≈ 2.71828

1. Algorithms and Data Structures – 30/35

Logarithms

Reall that for a and b positive, logb a is de�ned tosatisfy blogb a = a.Logarithms base 2 and base e are most ommonly usedin algorithm analysis, so the following notations areonvenient.

lg n = log2 n
lnn = loge n

lgk n = (lg n)k

lg lg n = lg (lg n)

1. Algorithms and Data Structures – 31/35

Log Identities

For all real a > 0, b > 0, c > 0, and n, with logarithmbases not equal to 1,

logc (ab) = logc a+ logc b
logb a

n = n logb a
logb

1
a = − logb a

logb a = log
c
a

logc b

logb a = 1
loga b

alogb c = clogb a

1. Algorithms and Data Structures – 32/35

Veri�ations

For logb a = logc a
logc b

, verify that logc b logb a = logc a byshowing clogc b logb a = clogc a:

clogc b logb a = blogb a = a = clogc a.

For alogb c = clogb a, note alogb c =
(

blogb a
)logb c =

blogb a logb c =
(

blogb c
)logb a = clogb a.

1. Algorithms and Data Structures – 33/35

lg Asymptotis

For any onstant a > 0, lgb n = o (na), i.e., all powers of
lg n grow more slowly that all positive powers of n.This an be derived from limn→∞

nb

an = 0 by replaing nby lg n and a by 2a:

0 = limn→∞
(lgn)

b

(2a)
lgn = limn→∞

lgb n
na .

1. Algorithms and Data Structures – 34/35

Fatorials

De�ne n! = {

1 n = 0

n (n− 1)! n > 0

.

One an show

n! = o (nn)
n! = ω (2n)
lg n! = Θ (n lg n)(You may use these results, unless spei�ally asked toprove them.)

1. Algorithms and Data Structures – 35/35

	{Chapter 3}
	{Functions for Analysis}
	{Motivation}
	{$Theta -notation$}
	{$Theta $ Example}
	{$Theta $ and limits}
	{limit payoff}
	{O- notation}
	{O and limits}
	{Applications of O}
	{$Omega -$notation}
	{O, $Theta $, $Omega $ Theorem}
	{o- notation}
	{o- Example}
	{o and limits}
	{$omega -$notation}
	{$omega $- Example}
	{$omega $ and limits}
	{Properties}
	{Properties, cont.}
	{Trichotomy}
	{Notation Extension}
	{Function basics}
	{floor and ceiling}
	{floor proof}
	{Modular Arithmetic}
	{Polynomials}
	{Exponentiation}
	{Exponentiation Limits}
	{Logarithms}
	{Log Identities}
	{Verifications}
	{$lg $ Asymptotics}
	{Factorials}

