Algorithms and Data Structures
Chapter 3

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/35

Chapter 3

Chapter 3 formalizes the meaning of the notations O (g (n)) and
© (g (n)) and introduces o (g (n)), 2(g(n)) and w(g(n)). These
concepts provide ways to describe how the running time of an
algorithm increases with size in the limit as the size of the input
increases. Considering limiting behavior allows examination of the
time requirements of algorithms without implementing the
algorithm and without requiring detailed knowledge of system on

which the algorithm is implemented.

The chapter reviews the properties of functions frequently used as
reference functions in asymptotic analysis. Some asymptotic

relations of these reference functions are supplied.

1. Algorithms and Data Structures — 2/35

Functions for Analysis

The functions discussed in the context of O (g (n)), © (g (n)),
0(g(n)), (g (n)) and w(g(n)) are functions whose domains are
N = {0,1,2,...}. The definitions are most meaningful for functions

that take on negative values for at most a finite set of arguments.

Used precisely, O (g (n)), © (g(n)), 0(g(n)), (g (n)) and
w (g (n)) denote subsets the set of such functions, though in

conventional use one typically writes, for example, f =0 (g (n))

rather than f € © (g (n)).

1. Algorithms and Data Structures — 3/35

Motivation

f(n) =0(g(n)) ~ “The asymptotic growth rate of f

equals the asymptotic growth rate of ¢."

f(n) =0(g(n)) ~ “The asymptotic growth rate of f is
less than or equal to the asymptotic growth rate of ¢."
f(n) =0(g(n)) ~ “The asymptotic growth rate of f is
less than the asymptotic growth rate of g."
f(n)=0Q(g(n)) ~ “The asymptotic growth rate of f is

greater than or equal to the asymptotic growth rate of
g.11
f(n) =w(g(n)) ~ “The asymptotic growth rate of f is

greater than the asymptotic growth rate of ¢."

1. Algorithms and Data Structures — 4/35

O — notation

For a given function g (n), © (g (n)) denotes the set
defined by

O (g(n)) =

{ f : there exist positive constants ¢y, ¢, and 1
suchthat 0 < c19 (n) < f(n) < cog(n)foraln > ny}

Intuitively, f =©(g(n)) or f € ©(g(n)) if the values
of f are sandwiched between the values of two multiples
of g for suthiciently large arguments.

1. Algorithms and Data Structures — 5/35

© Example

If g(n) =n and f(n) = 100n + 1000, then f is in
© (g (n)). To show this, find positive constants ¢, ¢z,
and ng for which 0 < ¢yn < 100n + 1000< ¢on for all

n > nNy.

One possibility is c; = 1, ¢o = 110, and ng = 100. Then
0 <n < 100n 4+ 1000 < 100n + 10n = 110n for all
n > ng because 10n > 10 (100) = 1000 for such n.

There are many other possible triples for ¢y, ¢3, and ny.

© and limits

KH

If Zimn_mgg 3 =[>0then f =01(g(n)) , though the

converse Is not true.

The definition of the limit says that if

limn%mg(—z)) = [> 0, then for any € > 0, there exists NV

such that n > N implies [— ¢ < f(ng < [+ e. Take
3

<f(n [

e=stogetn >N |mp||es (ng < 2 and

l
2
%g() < f(n) <5 3 g (n). Thus the triple ¢; =

cy =2, and ng = N certifies that f = O (g (n)) .

[\.’)IN

Can you think of a counterexample to the converse?

1. Algorithms and Data Structures — 7/35

limit payoff

The limit method of verifying f = © (g (n)) simplifies
the demonstration that if f (n) is any polynomial
S a;int with ag > 0 and g (n) = n? then
f=0I(g(n))

. . d a
lzmn%m% i 00 D ig QT

d

—ag >0

O- notation

The O-notation is useful in specifying the f grows no
faster than g:

O(g(n)) =
{ f : there exist positive constants ¢ and ny
suchthat 0 < f (n) < cg(n)foralln > ngy}

1. Algorithms and Data Structures — 9/35

O and limits

flzmTH % =] < oothen f=0(g(n)).
{ }IS bounded, then f =0 (g(n)).

Applications of O

It f is a polynomial of degree less than or equal to d

then f = O (nd).

it f(n) =©(g(n)) then f(n) =0 (g(n)).

O —bounds can often be determined from the depth
of nesting in an iterative algorithm.

O— or ©— bounds on the worst case running time of
an algorithm are O—bounds for the running time on
arbitrary inputs.

1. Algorithms and Data Structures — 11/35

()—notation

The notation f (n) = (g (n)) says that g provides an
asymptotic lower bound on f.

(g (n)) =
{ f : there exist positive constants ¢ and 7
suchthat 0 < cg (n) < f(n)foralln > ny}

1. Algorithms and Data Structures — 12/35

O, O, Q2 Theorem

Theorem 1 For any two functions f (n) an
f(n)=0©(g(n)) ifand only if f(n) =0 (g
f(n)=Q(g(n))

d g (n),
(n)) and

O- notation

The o- notation f(n) =o0(g(n)) indicates that g (n)
grows properly faster, asymptotically, than f (n).

0(g(n)) =
{ f : for any positive constant ¢ > 0 there exists a constant and 19 > (
suchthat 0 < f (n) < cg(n)foralln > ngy}

1. Algorithms and Data Structures — 14/35

o- Example

f(n) =nand g(n) = n? satisfy f(n) =o0(g(n)): for
any ¢ > 0, pickno>%.

f(n) =n*and g (n) = n* do not satisfy

fn)=o0(g(n)):ifc=1% 0< f(n) <cg(n)is true
only for n = 0.

o and limits

o(g(n)) =
{f(n): f(n) is asymptotically nonnegative and
limn—mo% — O}

1. Algorithms and Data Structures — 16/35

w—notation

The w- notation f(n) = w (g (n)) indicates that f (n)
grows properly faster, asymptotically, than g (n) .

w(g(n)) =

{ f - for any positive constant ¢ > 0 there exists a constant g > 0
suchthat 0 < cg (n) < f(n)foralln > ngy}

1. Algorithms and Data Structures — 17/35

w- Example

f(n)=4" and g(n) = 2" satisfy f (n) =w (g (n)): for
any ¢ > 0, pick ng > log, (¢) . Then, for n > ny,
A" = 2121 > 210" > 2"

1. Algorithms and Data Structures — 18/35

w and limits

w(g(n)) =

{f(n): f(n) is asymptotically nonnegative and
n

limn—mo% — O}

1. Algorithms and Data Structures — 19/35

Properties

The comparisons ©, O, €2, o, and w for functions are
analogous to =, <, >, <, and > for real numbers. This

analogy provides an easy way to remember some of the
properties of O, O, €2, o, and w.

Transitivity: If f(n) and g (n) are asymptotically
nonnegative, O, O, {1, o, and w are transitive, e.g.
f(n)=0©(g(n)) and g(n) =06 (h(n)) implies
f(n)=0(h(n)).

How does a proof go?

1. Algorithms and Data Structures — 20/35

Properties, cont.

Reflexwlty O, and (2 are reflexive relations in that

e,
f(n)=0(f(n)
fn)=0(f(n))
fn)=Q(f(n))
- f(n)=06(g(n) < g(n)=06(f(n))

n

Trichotomy

Unlike =,<, and > for real numbers, there are pairs of
asymptotically nonnegative functions f (n) and g (n) for
which f (n) & © (g (n)), f(n) ¢ O(g(n)), and
fn) &Q(g(n)).

1 n mod2=0

Consid =
onsider f (n) <\ o 4o

/

and

g(n)=n.

Notation Extension

A statement like T (n) = 2T (%) + o (n) is interpreted
to mean that there is a function f (n) € o(n) for which

T (n)=2T (%) + f(n).

Function basics

A function f (n) is monotonlca//y increasing if
m<n=f(m)<[f(n)

A function f (n) is monoton/ca//y decreasing if
m<n=f(m)=f(n).

A function f (n) is strlct/y increasing if
m<n= f(m)<f(n).

A function f (n) is strlct/y decreasing if
m <n=f(m)>f(n)

floor and ceiling

Forx € R, |z| = max{z € Z|z < x} and
x| =min{z € Z|z > x}.

r—1<|z|]<z<|z]|<x+1
ne€Z= |n/2]+[n/2] =n

For any positive real number x, and any positive integers

aand b, [T = [, and (52 = |15)

floor prooft

§:L§j+yforsome0§y<1

X

axb_LaJ %_ J % %for some Integer
0<k<b-1
Note %4—% < 1so L%J — HLgJJ | % | %J ~ “g”'

The corresponding proof for ceiling is similar.

MJ
One consequence is that { . is between |n/m*| and
 m

"n/m*] for the appropriate power of m.

1. Algorithms and Data Structures — 26/35

Modular Arithmetic

For any integer a, and any integer n > 1, a
mod n =a —nla/n|. If a mod n =0 mod n, write
a=0b(mod n).

Arithmetic operations can be done before or after
evaluation mod n: (a+b) modn=a modn+ b
mod n (mod n), (ab) mod n=a mod n-b

mod n (mod n) and a*

mod n = (¢ mod n)" (mod n)for any integer b, and
any positive integer k.

1. Algorithms and Data Structures — 27/35

Polynomials

Given a nonnegative integer d and constants

ag, a1, ... aq with ag # 0, p(n) = Z?:o a;n’ is a
polynomial of degree d.

If ag > 0, p(n) is asymptotically positive, and

p(n) =0 (n%).

If f(n) = O (n¥) for some constant k, then f (n) is
polynomially bounded.

1. Algorithms and Data Structures — 28/35

Exponentiation

For all real n. m, and a > 0

CLO —

CLl = a
al=1/a
am)n — q'mn
aman — am—‘,—n

1. Algorithms and Data Structures — 29/35

Exponentiation Limits

For all real constants a > 1, and b,

limn%oog’—z = 0 (by L'Hépital's Rule), so n® = o (a™).

r __ o0 ZCi
€ —Zizoﬁ

e’ = lim, 00 (14 £)"
e ~ 2.71828

1. Algorithms and Data Structures — 30/35

Logarithms

Recall that for a and b positive, log; a is defined to
satisfy b8 ¢ = q,

Logarithms base 2 and base e are most commonly used
in algorithm analysis, so the following notations are
convenient.

lgn =logyn

Inn =log, n

lg"n = (1gn)"
lglgn =lg (lgn)

1. Algorithms and Data Structures

—31/35

Log Identities

For all real a >0, b > 0, ¢ > 0, and n, with logarithm
hases not equal to 1,

log. (ab) = log.a + log.b

log, a" = nlog, a

ﬁ_ogb% = —log, a

1o __log.a
108y @& = 155 3

- 1
108y & = Tog. b

alogb c _ Clogb a

1. Algorithms and Data Structures — 32/35

Verifications

For log, a = llgicz, verify that log, blog, a = log.a by

blog,a Clogc a.

showing ¢
Clogcblogba _ blogba — q = Clogca.

log; c
For qlo% ¢ — Clogba, note @198 ¢ — (blogba) &€ __

plog, alog,c (blogb c) log, a — clogya

1. Algorithms and Data Structures — 33/35

lo Asymptotics

For any constant a > 0, lgbn = o0(n%), i.e., all powers of
lg n grow more slowly that all positive powers of n.

This can be derived from limn%mg—z = 0 by replacing n

by lgn and a by 2%

(Ign)
(20)8"

lgb n

1. Algorithms and Data Structures

—34/35

Factorials
rl n =10

Define n! = « .
sne nin—1~> n>0

\
One can show

n!=o(n")
n! = w(2")
lgn! =0 (nlgn)

(You may use these results, unless specifically asked to
prove them.)

1. Algorithms and Data Structures — 35/35

	{Chapter 3}
	{Functions for Analysis}
	{Motivation}
	{$Theta -notation$}
	{$Theta $ Example}
	{$Theta $ and limits}
	{limit payoff}
	{O- notation}
	{O and limits}
	{Applications of O}
	{$Omega -$notation}
	{O, $Theta $, $Omega $ Theorem}
	{o- notation}
	{o- Example}
	{o and limits}
	{$omega -$notation}
	{$omega $- Example}
	{$omega $ and limits}
	{Properties}
	{Properties, cont.}
	{Trichotomy}
	{Notation Extension}
	{Function basics}
	{floor and ceiling}
	{floor proof}
	{Modular Arithmetic}
	{Polynomials}
	{Exponentiation}
	{Exponentiation Limits}
	{Logarithms}
	{Log Identities}
	{Verifications}
	{$lg $ Asymptotics}
	{Factorials}

