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Chapter 3

Chapter 3 formalizes the meaning of the notations O (g (n)) and
Θ(g (n)) and introdu
es o (g (n)), Ω (g (n)) and ω (g (n)). These
on
epts provide ways to des
ribe how the running time of analgorithm in
reases with size in the limit as the size of the inputin
reases. Considering limiting behavior allows examination of thetime requirements of algorithms without implementing thealgorithm and without requiring detailed knowledge of system onwhi
h the algorithm is implemented.The 
hapter reviews the properties of fun
tions frequently used asreferen
e fun
tions in asymptoti
 analysis. Some asymptoti
relations of these referen
e fun
tions are supplied.
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Fun
tions for Analysis

The fun
tions dis
ussed in the 
ontext of O (g (n)), Θ(g (n)),
o (g (n)), Ω (g (n)) and ω (g (n)) are fun
tions whose domains are
N = {0, 1, 2, ...}. The de�nitions are most meaningful for fun
tionsthat take on negative values for at most a �nite set of arguments.Used pre
isely, O (g (n)), Θ(g (n)), o (g (n)), Ω (g (n)) and

ω (g (n)) denote subsets the set of su
h fun
tions, though in
onventional use one typi
ally writes, for example, f = Θ(g (n))rather than f ∈ Θ(g (n)).
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Motivation

�=� f (n) = Θ (g (n)) ≈ �The asymptoti
 growth rate of fequals the asymptoti
 growth rate of g.��≤� f (n) = O (g (n)) ≈ �The asymptoti
 growth rate of f isless than or equal to the asymptoti
 growth rate of g.��<� f (n) = o (g (n)) ≈ �The asymptoti
 growth rate of f isless than the asymptoti
 growth rate of g.��≥� f (n) = Ω (g (n)) ≈ �The asymptoti
 growth rate of f isgreater than or equal to the asymptoti
 growth rate of

g.��>� f (n) = ω (g (n)) ≈ �The asymptoti
 growth rate of f isgreater than the asymptoti
 growth rate of g.�
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Θ− notation

For a given fun
tion g (n), Θ(g (n)) denotes the setde�ned by

Θ(g (n)) =
{f : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g (n) ≤ f (n) ≤ c2g (n) for all n > n0}Intuitively, f = Θ(g (n)) or f ∈ Θ(g (n)) if the valuesof f are sandwi
hed between the values of two multiplesof g for su�
iently large arguments.
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Θ Example

If g (n) = n and f (n) = 100n + 1000, then f is in
Θ(g (n)). To show this, �nd positive 
onstants c1, c2,and n0 for whi
h 0 ≤ c1n ≤ 100n + 1000≤ c2n for all
n > n0.One possibility is c1 = 1, c2 = 110, and n0 = 100. Then

0 ≤ n ≤ 100n+ 1000 ≤ 100n + 10n = 110n for all

n > n0 be
ause 10n > 10 (100) = 1000 for su
h n.There are many other possible triples for c1, c2, and n0.
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Θ and limits

If limn→∞
f(n)
g(n) = l > 0 then f = Θ(g (n)) , though the
onverse is not true.The de�nition of the limit says that if

limn→∞
f(n)
g(n) = l > 0, then for any ε > 0, there exists Nsu
h that n > N implies l − ε ≤ f(n)

g(n) ≤ l + ε. Take

ε = l
2 to get n > N implies l

2 ≤
f(n)
g(n) ≤

3l
2 and

l
2g (n) ≤ f (n) ≤ 3l

2 g (n). Thus the triple c1 = l
2 ,

c2 =
3l
2 , and n0 = N 
erti�es that f = Θ(g (n)) .Can you think of a 
ounterexample to the 
onverse?
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limit payo�

The limit method of verifying f = Θ(g (n)) simpli�esthe demonstration that if f (n) is any polynomial
∑d

i=0 ain
i with ad > 0 and g (n) = nd then

f = Θ(g (n)):

limn→∞
f(n)
g(n) = limn→∞

∑d
i=0 ain

i−d = ad > 0
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O- notation

The O-notation is useful in spe
ifying the f grows nofaster than g:

O (g (n)) =
{f : there exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg (n) for all n > n0}
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O and limits

If limn→∞
f(n)
g(n) = l < ∞ then f = O (g (n)).If {f(n)

g(n) : n ∈ N

}is bounded, then f = O (g (n)).
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Appli
ations of O
• If f is a polynomial of degree less than or equal to dthen f = O

(

nd
).

• if f (n) = Θ (g (n)) then f (n) = O (g (n)).
• O−bounds 
an often be determined from the depthof nesting in an iterative algorithm.
• O− or Θ− bounds on the worst 
ase running time ofan algorithm are O−bounds for the running time onarbitrary inputs.
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Ω−notation

The notation f (n) = Ω (g (n)) says that g provides anasymptoti
 lower bound on f .

Ω (g (n)) =
{f : there exist positive constants c and n0

such that 0 ≤ cg (n) ≤ f (n) for all n > n0}
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O, Θ, Ω Theorem

Theorem 1 For any two fun
tions f (n) and g (n),
f (n) = Θ (g (n)) if and only if f (n) = O (g (n)) and
f (n) = Ω (g (n)).
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o- notation

The o- notation f (n) = o (g (n)) indi
ates that g (n)grows properly faster, asymptoti
ally, than f (n) .

o (g (n)) =
{f : for any positive constant c > 0 there exists a constant and n0 > 0
such that 0 ≤ f (n) ≤ cg (n) for all n > n0}

1. Algorithms and Data Structures – 14/35



o- Example

f (n) = n and g (n) = n2 satisfy f (n) = o (g (n)): forany c > 0, pi
k n0 >
1
c .

f (n) = n2 and g (n) = n2 do not satisfy
f (n) = o (g (n)): if c = 1

2 , 0 ≤ f (n) ≤ cg (n) is trueonly for n = 0.
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o and limits

o (g (n)) =
{f (n) : f (n) is asymptotically nonnegative and

limn→∞
f(n)
g(n) = 0

}
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ω−notation

The ω- notation f (n) = ω (g (n)) indi
ates that f (n)grows properly faster, asymptoti
ally, than g (n) .

ω (g (n)) =
{f : for any positive constant c > 0 there exists a constant n0 > 0
such that 0 ≤ cg (n) ≤ f (n) for all n > n0}
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ω- Example

f (n) = 4n and g (n) = 2n satisfy f (n) = ω (g (n)): forany c > 0, pi
k n0 > log2 (c) . Then, for n > n0,
4n = 2n2n > 2n02n > c2n.
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ω and limits

ω (g (n)) =
{f (n) : f (n) is asymptotically nonnegative and

limn→∞
g(n)
f(n) = 0

}

1. Algorithms and Data Structures – 19/35



Properties

The 
omparisons Θ, O, Ω, o, and ω for fun
tions areanalogous to =,≤, ≥, <, and > for real numbers. Thisanalogy provides an easy way to remember some of theproperties of Θ, O, Ω, o, and ω.Transitivity: If f (n) and g (n) are asymptoti
allynonnegative, Θ, O, Ω, o, and ω are transitive, e.g.

f (n) = Θ (g (n)) and g (n) = Θ (h (n)) implies

f (n) = Θ (h (n)).How does a proof go?
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Properties, 
ont.

Re�exivity: Θ, O, and Ω are re�exive relations in that
f (n) = Θ (f (n))
f (n) = O (f (n))
f (n) = Ω (f (n))Symmetry: f (n) = Θ (g (n)) ⇐⇒ g (n) = Θ (f (n))
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Tri
hotomy

Unlike =,<, and > for real numbers, there are pairs ofasymptoti
ally nonnegative fun
tions f (n) and g (n) forwhi
h f (n) /∈ Θ(g (n)), f (n) /∈ O (g (n)), and
f (n) /∈ Ω (g (n)).

Consider f (n) =

{

1 n mod 2 = 0

n2 n mod 2 = 1

and

g (n) = n.
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Notation Extension

A statement like T (n) = 2T
(

n
2

)

+ o (n) is interpretedto mean that there is a fun
tion f (n) ∈ o (n) for whi
h
T (n) = 2T

(

n
2

)

+ f (n).
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Fun
tion basi
s

A fun
tion f (n) is monotoni
ally in
reasing if
m ≤ n ⇒ f (m) ≤ f (n).A fun
tion f (n) is monotoni
ally de
reasing if
m ≤ n ⇒ f (m) ≥ f (n).A fun
tion f (n) is stri
tly in
reasing if
m < n ⇒ f (m) < f (n).A fun
tion f (n) is stri
tly de
reasing if
m < n ⇒ f (m) > f (n).
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�oor and 
eiling

For x ∈ R, ⌊x⌋ = max {z ∈ Z|z ≤ x} and
⌈x⌉ = min {z ∈ Z|z ≥ x}.

x− 1 ≤ ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ x+ 1

n ∈ Z ⇒ ⌊n/2⌋+ ⌈n/2⌉ = nFor any positive real number x, and any positive integers

a and b, ⌈⌈x/a⌉b ⌉ = ⌈⌈x⌉ab ⌉, and ⌊⌊x/a⌋b ⌋ = ⌊⌊x⌋ab ⌋.
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�oor proof

x
a = ⌊xa⌋+ y for some 0 ≤ y < 1

x
ab =

⌊x

a
⌋

b + y
b = ⌊

⌊x

a
⌋

b ⌋+ k
b +

y
b for some integer

0 ≤ k ≤ b− 1Note k
b +

y
b < 1 so ⌊ x

ab⌋ = ⌊⌊
⌊x

a
⌋

b ⌋+ k
b +

y
b⌋ = ⌊

⌊x

a
⌋

b ⌋.The 
orresponding proof for 
eiling is similar.

One 
onsequen
e is that 


⌊

⌈ n

m
⌉

m

⌋

. . . /m










is between ⌊n/mk⌋ and

⌈n/mk⌉ for the appropriate power of m.
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Modular Arithmeti


For any integer a, and any integer n > 1, a
mod n = a− n⌊a/n⌋. If a mod n = b mod n, write
a ≡ b ( mod n).Arithmeti
 operations 
an be done before or afterevaluation mod n: (a+ b) mod n ≡ a mod n+ b
mod n ( mod n), (ab) mod n ≡ a mod n · b

mod n ( mod n) and ak

mod n ≡ (a mod n)k ( mod n)for any integer b, andany positive integer k.
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Polynomials

Given a nonnegative integer d and 
onstants
a0, a1, . . . ad with ad 6= 0, p (n) = ∑d

i=0 ain
i is apolynomial of degree d.If ad > 0, p (n) is asymptoti
ally positive, and

p (n) = Θ
(

nd
).If f (n) = O
(

nk
) for some 
onstant k, then f (n) ispolynomially bounded.
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Exponentiation

For all real n, m, and a > 0,

a0 = 1
a1 = a
a−1 = 1/a
(am)n = amn

aman = am+n
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Exponentiation Limits

For all real 
onstants a > 1, and b,

limn→∞
nb

an = 0 ( by L'H�pital's Rule), so nb = o (an).
ex =

∑∞
i=0

xi

i!

ex = limn→∞

(

1 + x
n

)n

e ≈ 2.71828
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Logarithms

Re
all that for a and b positive, logb a is de�ned tosatisfy blogb a = a.Logarithms base 2 and base e are most 
ommonly usedin algorithm analysis, so the following notations are
onvenient.

lg n = log2 n
lnn = loge n

lgk n = (lg n)k

lg lg n = lg (lg n)
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Log Identities

For all real a > 0, b > 0, c > 0, and n, with logarithmbases not equal to 1,

logc (ab) = logc a+ logc b
logb a

n = n logb a
logb

1
a = − logb a

logb a = log
c
a

logc b

logb a = 1
loga b

alogb c = clogb a
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Veri�
ations

For logb a = logc a
logc b

, verify that logc b logb a = logc a byshowing clogc b logb a = clogc a:

clogc b logb a = blogb a = a = clogc a.

For alogb c = clogb a, note alogb c =
(

blogb a
)logb c =

blogb a logb c =
(

blogb c
)logb a = clogb a.
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lg Asymptoti
s

For any 
onstant a > 0, lgb n = o (na), i.e., all powers of
lg n grow more slowly that all positive powers of n.This 
an be derived from limn→∞

nb

an = 0 by repla
ing nby lg n and a by 2a:

0 = limn→∞
(lgn)

b

(2a)
lgn = limn→∞

lgb n
na .
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Fa
torials

De�ne n! = {

1 n = 0

n (n− 1)! n > 0

.

One 
an show

n! = o (nn)
n! = ω (2n)
lg n! = Θ (n lg n)( You may use these results, unless spe
i�
ally asked toprove them.)
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