Algorithms and Data Structures
Chapter 4

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/38

Chapter 4

Chapter 4 examines methods for obtaining asymptotic bounds on
functions for which a recurrence is known. These methods apply
to bounding the running times of Divide and Conquer algorithms.
The first section provides two more examples of Divide and
Conquer algorithms. Three approaches to obtaining asymptotic

bounds are presented and applied.

® substition method: exact, requires potentially challenging

guess and check steps

® recurrence tree method: flexible, increases intuition,

potentially time-consuming

® master method: quick, limited

1. Algorithms and Data Structures — 2/38

Maximum-Subarray

Motivation: A manufacturing process is intended to
produce items with approximately a given mass, say. You
are concerned that the process may drift, producing runs
of items that tend to be too heavy. To monitor the
process, you have collected the difference between the
actual and the target mass for a chronological sequence
of items.

You will find the largest sum of these for a subset of
consecutive items, and compare it to the largest sums
produced by taking the values in randomized orders. It
the actual maximum sum is larger that most of the
maxima from randomized sequences, you have evidence
that the process drifted.

1. Algorithms and Data Structures — 3/38

Set up

The values are in an array A =< aq, as..a,, >. The goal
is to find 7 < k with the property that, for all r < s,

Zf:j a; > > . a;, where j. k,;r s € {1,2.n}.

1. Algorithms and Data Structures — 4/38

Exhaustive Solution

A solution to an optimization problem that simply
examines all possibilities and identifies the best is called
an exhaustive solution (or a brute force solution). What
is the exhaustive solution to the maximum subarray sum
problem? What is its asymptotic running time?

1. Algorithms and Data Structures — 5/38

Divide and Conquer

The basic idea is to recursively find the maximum sum in
the first half of the arrray and the maximum sum in the

upper half of the array, and also the maximum sum that
includes both the last value in the lower halt and the first
value in the upper half. Choosing the maximum of these
three solves the problem.

1. Algorithms and Data Structures — 6/38

Crossing Sum

The task of finding the maximum sum of a subarray of
consecutive values that crosses halves is straightforward.
Consider all possible sums in the lower half that include
the last element and save the largest. Examine all
possible sums in the top half that include the first
element, and save the largest. The sum of these is the
maximum sum that crosses halves.

1. Algorithms and Data Structures — 7/38

Find Max Crossing Subarray

FIND-MAX-CROSSING _SUM(A, low, mid, high)
le ftsum = —o0
sum = (
for © = mad downto [low

sum = sum + A [i]

if sum > leftsum

leftsum = sum

rightsum = —oo

sum =0

© 00 N O C1 &~ W DN =

for 7 = mid + 1 downto high

—t
o

sum = sum + A [J]

f—t
—t

if sum > rightsum

—t
No

rightsum = sum
13 return le ftsum + rightsum

(The routine in the book also returns an optimal start and stop index.)

1. Algorithms and Data Structures — 8/38

Recursive Routine

FIND-MAX-SUBSUM(A, low, high)
if low == high
if A|low] >0
return A [low]
else
return 0
else mid = | (low + high) /2|
le ftsum = FIND-MAX-SUBSUM (A, low, mid)
rightsum = FIND-MAX-SUBSUM (A, mid + 1, high)
crosssum = FIND-MAX-CROSSING-SUM (A, low, mid, high)

10 return max (le ftsum, rightsum, crosssum,)

© 00 N O C1 &~ W DN =

1. Algorithms and Data Structures — 9/38

T(n) for Find-Max-Subsum

The recurrence relation for T (n) for the
FIND-MAX-SUBSUM function is

0 (1) n=1
2T (n/2)+©(n) n>1

We know T' (n) = © (nlgn). Why? Is this better than
brute force?

T(n)=:-«

Polynomial Representation

Store the polynomial p(x) = > a;z" in an array

P = |ay, ay..a,] and store the polynomial
q(x)=>",bx" in an array Q = [by, b1..by]. Then the
product p (z) g (z)can be calculated with a nested loop.
(For this example, let's start the indexing of arrays at 0.)

1. Algorithms and Data Structures — 11/38

Polynomial Multiplication

POLYNOMIAL-PRODUCT1(A, B)
1 n = A.length — 1

2 m = B.length — 1

3 (' = new array of 0's length n +m + 1

4 fors =0ton

5 for) = 0tom

6 Cli+j]=Cli+j|+Ali]*Blj]

It n = m, what is the running time?

1. Algorithms and Data Structures — 12/38

Divide

If the polynomials p and ¢ are of the same degree n we
can create polynomials pjow, Dhigh, Giow, and grign with

corresponding arrays Py, = [ag..a@},
Prigh = {@Lgﬁl--an}' Qlow = [bo“bL%J}' and
Qhigh = {bL%jJrl--bn]

1. Algorithms and Data Structures — 13/38

Conquer?

I+ I+

Then P = DPlow T xL% 1phz’gh and qd = Glow T+ xL% 1th’gh-

S0 P4 = DlowQiow T+ xL%JJrlplothigh =+ $L%J+1

xﬂ%”?h@h@h@h
Doing this recursively gives T' (n) = 4T (n/2) + © (n).

PhighQlow T

1. Algorithms and Data Structures — 14/38

Rats!

It & = lgn, the recurrence relation implies
T(n)>4"T 1)+ 2n=0 (n*). We have
gained nothing!

1. Algorithms and Data Structures — 15/38

Conquer

2

But fL%Jszowqhigh + +1phighqu =
((Prow + Prig) (Qow + Qhigh) — Plowliow — PhighGhigh) T 2.

Now T (n) = 3T (n/2) + O (n).

1. Algorithms and Data Structures — 16/38

O

Matrix Notation

A matrix is a rectangular array of numbers, like

—1 0.
A= > 0 -5 . The value in the i*" row and

1 2 0 -3
3t column is referred to using the row and column
subscripts. For example, here a14 = 0.5. The size of a
matrix is specified by (number of rows)x (number of
columns). Here, A is 2 x 4.

An n X n matrix is said to be square.

One major application of matrices is in solving systems
of linear equations.

1. Algorithms and Data Structures — 18/38

Matrix Multiplication

It Aisn xm and B ism X k, the product C = AB is
n x k. The value of the entry in C' i row and ;"
column, ¢;; is defined to be > ;" a;by;.

_ 5 0 -1 0.5
For example, with A = and
1 2 0 -3
0 0 -1
1 2 3 _
B = , C'is 2 x 3. The entry
0 —1 .5
|2 0 1 |

I 1 -9
—4 4 2

1. Algorithms and Data Structures — 19/38

Basic Algorithm

SQUARE-MATRIX-MULTIPLY (A, B)

Cij = Cij =+ Gy * by

1 n = A.rows

? let C' be a new n. X m matrix
3 fortr =1ton

4 for) =1ton

5 Cij — 0

0 fork=1ton

;

8

return C

1. Algorithms and Data Structures — 20/38

T(n)

What is the running time of this basic multiplication
routine for n X n matrices as a function of n? Give a

O-bound.

1. Algorithms and Data Structures — 21/38

Strassen’'s Method

By using a fiendishly clever arrangement of sums and
differences of recursive products of sums and differences
of 5 X 5 subarrays, Strassen's Method achieves a

runnlng tlme with the bounds
0 (1) n=1

T'n) = <\7T (n/2)+0© (n*) n>1

1. Algorithms and Data Structures — 22/38

Recurrence

< T () +en (14 1+ (D). (D)

1. Algorithms and Data Structures — 23/38

O- bound

Setting k = lgn, get
T <7 +er? (14 5+ () 4 ()

k
— 7lgn + cn (Z) —1

=0 () +0 (n? (1)
=0 (n#7) + O (n?n=(1))

— QO (nlg 7) 1+ 0 (ning(7)nlg(_4))
=0 (nlg 7)

()- bound

Using T'(n) > 7T (n/2) 4+ cn?, get T (n) = Q (n'87).
This allows us to conclude T'(n) = © (n'¢7).
This is better than the asymptotic behavior of the naive

algorithm.

1. Algorithms and Data Structures — 25/38

More Recurrences

y

© (1) n=1

What asymptotic behavior does T (n) = <
8T (n/2)+0 (n) n>1

give?

Using a recursion-tree, or repeated applications of
T (n) < 8T (n/2) 4+ cn, conclude

T(n) <8T(1)4+cn(14+4+42+...451
=0 (nlg8) + cn%ifl

=0 (n?’)

Using T' (n) > 4T (n/2) + cn gets us same 2-bound, and so
T (n) = © (n?)

1. Algorithms and Data Structures — 26/38

O-bound

y

© (1) n =

What asymptotic behavior does T (n) = <
2T (n/2) +0© (n*) n>1

give?

Using a recursion-tree, or repeated applications of
T (n) < 2T (n/2) + cn?, conclude

T (n) < 28T (1) + en? (1+ 2+ %2+...%k_1>
<O (n)+en’ Y% |

= O (n) + cn? (—) = O (n?)

1
11

1. Algorithms and Data Structures — 27/38

() and O-bounds

Using a recursion-tree, or repeated applications of

T (n) > 2T (n/2) + cn?, conclude

T (n) > 2T (1) + cn? (1+ 2+ %2+...%k_1)

> O (n) + cn?

= O (n?)

Since T'(n) = O (n®)and T (n) = Q (n?), T (n) = O (n?)

1. Algorithms and Data Structures — 28/38

Substitution Method

In this method, applied when a recurrence relation for

T (n)is known, you guess a bound for T'(n) then verify it
oy induction. By veritying an upper bound, a big-O
bound can be proved. By verifying an lower bound, an €2
bound can be proved. If both bounds can be shown by
substitution for the same bounding function, then a
©-bound has been proved.

1. Algorithms and Data Structures — 29/38

Substitution Example

Consider T'(n) = 4T (%) + n.
To get a big-Q bound, guess that T'(n) > cn? for some

¢ small enough that the inequality is true for n = 1.
This is the basis step.

Next, show that if the bound holds for m < n then it
holds for n.

T (n) = 4T (%) —I—nZKLc(%)Z—Fn
= cn? +n > cn?, as required.

Conclude T' (n) = Q (n?).

big-O by Substitution

The calculation above shows that an inductive argument
for the bound T'(n) < en? will not work.

Try T (n) < cn* — dn. Figure out ¢ and d as you go.
The limitation is that it must be possible to make
cn® — dn arbitrarily large for n = 1 for the basis step.

T(n)=4T (3) +n<4(c(3)’=d(3)) +n

=cn®—2dn+n <cn?—dn
it we choose anyd > 1, sayd = 1.

1. Algorithms and Data Structures — 31/38

big-O, cont.

So a proper inductive proof would run like this: Set
d = 1, and choose ¢ such that T'(n) < cn* — n for

n=1. Claim T (n) < cn* — n for all n.

The base case (or cases) are true by choice of ¢ and d.
Induction step:

T(n) =47 (3) +n<4(c(3)’ —%) +n

=cn?—2n+n<cn’>—n.

1. Algorithms and Data Structures — 32/38

©-bound

Thus T' (n) = O (en® — n). Conclude T'(n) = O (cn?).
Now we have proved T'(n) = §2 (n?) and
T (n) = (n?), so T (n) = O (n?).

Master Theorem Context

The Master Theorem identifies three types of recurrence
relations and gives solutions for those types. The
theorem applies to recurrence relations of the form

T (n)=aT (%) + f(n)

where this notation is interpreted to include

T(n) = aT (%)) + a7 ([3]) + f (n)

for aj,a0 €N, a € Z7,and a1 + as = a.

1. Algorithms and Data Structures — 34/38

Case 1

If f(n) =0 (n'®%¢) for some € > 0 then
T (n) = © (n'°&*). (Base case costs dominate.)

Example: T (n) =4T (%) +n
a=4 b=2 noge —plegdt —9 n —n2-1 55 case 1

applies.
T (n) = O (n*)

1. Algorithms and Data Structures — 35/38

Case 2

If f(n) =0 (n'%) then T (n) = O (n'*%%1gn).
(Base case and recombination costs balance.)
Example: T'(n) = 3T (%) +n

a=3 b=23 nlosae —=npled —1 n=nl 5o case 2

applies.
T(n)=06(nlgn)

1. Algorithms and Data Structures — 36/38

Case 3

If f(n) =Q (n'°&*"<) for some e > 0, and if
af (%) < cf (n) for some constant ¢ < 1 and all
sufficiently large n, then T'(n) = O (f (n)).
(Recombination costs dominate.)
Example: T'(n) = 97 (%) + n*
a=09b=3 n®=nlsd =2 p3=n2tt
n n 3 n3
and af (%) =9((%))" =9% = sn’ = 3 f (n), so case

3 applies.
T (n) = © (n?)

What if?

Take T'(n) = 9T (5) + f (n), with
f(n) = 93logen > p3,

Does case 3 apply?

Not quite.

For n. = 3%, f(3) = f(n), s0 9f (3)

	{Chapter 4}
	{Maximum-Subarray}
	{Set up}
	{Exhaustive Solution}
	{Divide and Conquer}
	{Crossing Sum}
	{Find Max Crossing Subarray}
	{Recursive Routine}
	{T(n) for
Find-Max-Subsum}
	{Polynomial Representation}
	{Polynomial Multiplication}
	{Divide}
	{Conquer?}
	{Rats!}
	{Conquer}
	{Conquer!}
	{Matrix Notation}
	{Matrix Multiplication}
	{Basic Algorithm}
	{T(n)}
	{Strassen's Method}
	{Recurrence}
	{O- bound}
	{$Omega $- bound}
	{More Recurrences}
	{O-bound}
	{$Omega $ and $Theta $-bounds}
	{Substitution Method}
	{Substitution Example}
	{big-O by Substitution}
	{big-O, cont.}
	{$Theta $-bound}
	{Master Theorem Context}
	{Case 1}
	{Case 2}
	{Case 3}
	{What if?}

