
Algorithms and Data Stru
turesChapter 4
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/38

Chapter 4

Chapter 4 examines methods for obtaining asymptoti
 bounds onfun
tions for whi
h a re
urren
e is known. These methods applyto bounding the running times of Divide and Conquer algorithms.The �rst se
tion provides two more examples of Divide andConquer algorithms. Three approa
hes to obtaining asymptoti
bounds are presented and applied.
• substition method: exa
t, requires potentially
hallengingguess and
he
k steps
• re
urren
e tree method: �exible, in
reases intuition,potentially time-
onsuming
• master method: qui
k, limited

1. Algorithms and Data Structures – 2/38

Maximum-Subarray

Motivation: A manufa
turing pro
ess is intended toprodu
e items with approximately a given mass, say. Youare
on
erned that the pro
ess may drift, produ
ing runsof items that tend to be too heavy. To monitor thepro
ess, you have
olle
ted the di�eren
e between thea
tual and the target mass for a
hronologi
al sequen
eof items.You will �nd the largest sum of these for a subset of
onse
utive items, and
ompare it to the largest sumsprodu
ed by taking the values in randomized orders. Ifthe a
tual maximum sum is larger that most of themaxima from randomized sequen
es, you have eviden
ethat the pro
ess drifted.
1. Algorithms and Data Structures – 3/38

Set up

The values are in an array A =< a1, a2..an >. The goalis to �nd j ≤ k with the property that, for all r ≤ s,
∑k

i=j ai ≥
∑s

i=r ai, where j, k, r, s ∈ {1, 2..n}.

1. Algorithms and Data Structures – 4/38

Exhaustive Solution

A solution to an optimization problem that simplyexamines all possibilities and identi�es the best is
alledan exhaustive solution (or a brute for
e solution). Whatis the exhaustive solution to the maximum subarray sumproblem? What is its asymptoti
 running time?

1. Algorithms and Data Structures – 5/38

Divide and Conquer

The basi
 idea is to re
ursively �nd the maximum sum inthe �rst half of the arrray and the maximum sum in theupper half of the array, and also the maximum sum thatin
ludes both the last value in the lower half and the �rstvalue in the upper half. Choosing the maximum of thesethree solves the problem.
1. Algorithms and Data Structures – 6/38

Crossing Sum

The task of �nding the maximum sum of a subarray of
onse
utive values that
rosses halves is straightforward.Consider all possible sums in the lower half that in
ludethe last element and save the largest. Examine allpossible sums in the top half that in
lude the �rstelement, and save the largest. The sum of these is themaximum sum that
rosses halves.

1. Algorithms and Data Structures – 7/38

Find Max Crossing Subarray

Find-Max-Crossing_Sum(A, low,mid, high)1 leftsum = −∞2 sum = 03 for i = mid downto low4 sum = sum+A [i]5 if sum > leftsum6 leftsum = sum7 rightsum = −∞8 sum = 09 for j = mid+ 1 downto high10 sum = sum+A [j]11 if sum > rightsum12 rightsum = sum13 return leftsum+ rightsum(The routine in the book also returns an optimal start and stop index.)

1. Algorithms and Data Structures – 8/38

Re
ursive Routine

Find-Max-Subsum(A, low, high)1 if low == high2 if A [low] > 03 return A [low]4 else5 return 06 else mid = ⌊(low + high) /2⌋7 leftsum = FIND-MAX-SUBSUM (A, low,mid)8 rightsum = FIND-MAX-SUBSUM (A,mid+ 1, high)9 crosssum = FIND-MAX-CROSSING-SUM (A, low,mid, high)10 return max (leftsum, rightsum, crosssum)

1. Algorithms and Data Structures – 9/38

T(n) for Find-Max-Subsum

The re
urren
e relation for T (n) for theFind-Max-Subsum fun
tion is
T (n) =

{

Θ(1) n = 1

2T (n/2) + Θ (n) n > 1We know T (n) = Θ (n lg n). Why? Is this better thanbrute for
e?
1. Algorithms and Data Structures – 10/38

Polynomial Representation

Store the polynomial p (x) = ∑n
i=0 aix

i in an array
P = [a0, a1..an] and store the polynomial
q (x) =

∑m
i=0 bix

i in an array Q = [b0, b1..bm]. Then theprodu
t p (x) q (x)
an be
al
ulated with a nested loop.(For this example, let's start the indexing of arrays at 0.)

1. Algorithms and Data Structures – 11/38

Polynomial Multipli
ation
POLYNOMIAL-PRODUCT1(A,B)1 n = A.length− 12 m = B.length− 13 C = new array of 0’s length n+m+ 14 for i = 0 to n5 for j = 0 to m6 C [i+ j] = C [i+ j] + A [i] ∗B [j]If n = m, what is the running time?

1. Algorithms and Data Structures – 12/38

Divide

If the polynomials p and q are of the same degree n we
an
reate polynomials plow, phigh, qlow, and qhigh with
orresponding arrays Plow =
[

a0..a⌊n

2
⌋

],
Phigh =

[

a⌊n

2
⌋+1..an

], Qlow =
[

b0..b⌊n

2
⌋

], and
Qhigh =

[

b⌊n

2
⌋+1..bn

].
1. Algorithms and Data Structures – 13/38

Conquer?

Then p = plow + x⌊
n

2
⌋+1phigh and q = qlow + x⌊

n

2
⌋+1qhigh.So pq = plowqlow + x⌊

n

2
⌋+1plowqhigh + x⌊

n

2
⌋+1phighqlow +

x2⌊
n

2
⌋+2phighqhighDoing this re
ursively gives T (n) = 4T (n/2) + Θ (n).

1. Algorithms and Data Structures – 14/38

Rats!

If k = lg n, the re
urren
e relation implies
T (n) ≥ 4kT (1) + c

∑k−1
i=0 2

in = O
(

n2
). We havegained nothing!

1. Algorithms and Data Structures – 15/38

Conquer

But x⌊n

2
⌋+1plowqhigh + x⌊

n

2
⌋+1phighqlow =

((plow + phigh) (qlow + qhigh)− plowqlow − phighqhigh)x
⌊n

2
⌋+1.Now T (n) = 3T (n/2) + Θ (n).

1. Algorithms and Data Structures – 16/38

Conquer!

We
an show

T (n) ≤ 3kT (1) + c
∑k−1

i=0

(

3
2

)i
n = O

(

3lgn + n
(

3
2

)lgn
)

= O
(

nlg 3 + n
(

nlg 3

2

))

= O
(

nlg 3 + n
(

nlg 3−lg 2
))

= O
(

nlg 3
)

1. Algorithms and Data Structures – 17/38

Matrix Notation

A matrix is a re
tangular array of numbers, like
A =

[

5 0 −1 0.5

1 2 0 −3

]. The value in the ith row and
jth
olumn is referred to using the row and
olumnsubs
ripts. For example, here a14 = 0.5. The size of amatrix is spe
i�ed by (number of rows)×(number of
olumns). Here, A is 2× 4.An n× n matrix is said to be square.One major appli
ation of matri
es is in solving systemsof linear equations.

1. Algorithms and Data Structures – 18/38

Matrix Multipli
ation

If A is n×m and B is m× k, the produ
t C = AB is
n× k. The value of the entry in C ith row and jth
olumn, cij is de�ned to be ∑m

l=1 ailblj.

For example, with A =





5 0 −1 0.5

1 2 0 −3



 and
B =















0 0 −1

1 2 3

0 −1 .5

2 0 1















, C is 2× 3. The entry

c23 = 1(−1) + 2(3) + 0(.5) + (−3)(1) = 2. C =





1 1 −5

−4 4 2



.

1. Algorithms and Data Structures – 19/38

Basi
 Algorithm

SQUARE-MATRIX-MULTIPLY(A,B)1 n = A.rows2 let C be a new n× n matrix3 for i = 1 to n4 for j = 1 to n5 cij = 06 for k = 1 to n7 cij = cij + a
ik
∗ bkj8 return C

1. Algorithms and Data Structures – 20/38

T(n)

What is the running time of this basi
 multipli
ationroutine for n× n matri
es as a fun
tion of n? Give a
Θ-bound.

1. Algorithms and Data Structures – 21/38

Strassen's Method

By using a �endishly
lever arrangement of sums anddi�eren
es of re
ursive produ
ts of sums and di�eren
esof n
2 ×

n
2 subarrays, Strassen's Method a
hieves arunning time with the bounds

T (n) =

{

Θ(1) n = 1

7T (n/2) + Θ
(

n2
)

n > 1
.

1. Algorithms and Data Structures – 22/38

Re
urren
e

T (n) ≤ 7T (n/2) + cn2

≤ 7
(

7T (n/4) + c (n/2)2
)

+ cn2

= 72T
(

n

22

)

+ c
(

n2 + 7
(

n

2

)2
)

≤ 72
(

7T
(

n

23

)

+ c
(

n

22

)2
)

+ c
(

n2 + 7
(

n

2

)2
)

= 73T
(

n

23

)

+ c
(

n2 + 7
(

n

2

)2
+ 72

(

n

22

)2
)

= 73T
(

n

23

)

+ c
(

n2 + 7
4
n2 +

(

7
4

)2
n2

)...

≤ 7kT
(

n

2k

)

+ cn2
(

1 + 7
4
+
(

7
4

)2
+ . . .

(

7
4

)k−1
)

1. Algorithms and Data Structures – 23/38

O- bound

Setting k = lg n, get

T (n) ≤ 7kT (1) + cn2
(

1 + 7
4 +

(

7
4

)2
+ . . .

(

7
4

)k−1
)

= 7lg n + cn2 (
7

4)
k

−1

(7

4)−1

= O
(

nlg 7
)

+O
(

n2
(

7
4

)lg n
)

= O
(

nlg 7
)

+O
(

n2nlg(7

4)
)

= O
(

nlg 7
)

+O
(

n2nlg(7)nlg(−4)
)

= O
(

nlg 7
)

1. Algorithms and Data Structures – 24/38

Ω- bound

Using T (n) ≥ 7T (n/2) + cn2, get T (n) = Ω
(

nlg 7
).This allows us to
on
lude T (n) = Θ

(

nlg 7
).This is better than the asymptoti
 behavior of the naivealgorithm.

1. Algorithms and Data Structures – 25/38

More Re
urren
es

What asymptoti
 behavior does T (n) =







Θ(1) n = 1

8T (n/2) + Θ (n) n > 1give?Using a re
ursion-tree, or repeated appli
ations of
T (n) ≤ 8T (n/2) + cn,
on
lude
T (n) ≤ 8kT (1) + cn

(

1 + 4 + 42 + . . . 4k−1
)

= O
(

nlg 8
)

+ cn4lgn
−1

4−1

= O
(

n3
)

Using T (n) ≥ 4T (n/2) + cn gets us same Ω-bound, and so

T (n) = Θ
(

n3
)

1. Algorithms and Data Structures – 26/38

O-bound

What asymptoti
 behavior does T (n) =







Θ(1) n = 1

2T (n/2) + Θ
(

n2
)

n > 1give?Using a re
ursion-tree, or repeated appli
ations of
T (n) ≤ 2T (n/2) + cn2,
on
lude
T (n) ≤ 2kT (1) + cn2

(

1 + 1
2
+ 1

2

2
+ . . . 1

2

k−1
)

≤ O (n) + cn2
∑

∞

i=0
1
2

= O (n) + cn2
(

−1
1
2
−1

)

= O
(

n2
)

1. Algorithms and Data Structures – 27/38

Ω and Θ-bounds

Using a re
ursion-tree, or repeated appli
ations of
T (n) ≥ 2T (n/2) + cn2,
on
lude

T (n) ≥ 2kT (1) + cn2
(

1 + 1
2
+ 1

2

2
+ . . . 1

2

k−1
)

≥ O (n) + cn2

= O
(

n2
)Sin
e T (n) = O

(

n2
)and T (n) = Ω

(

n2
), T (n) = Θ

(

n2
)

1. Algorithms and Data Structures – 28/38

Substitution Method

In this method, applied when a re
urren
e relation for
T (n)is known, you guess a bound for T (n) then verify itby indu
tion. By verifying an upper bound, a big-Obound
an be proved. By verifying an lower bound, an Ωbound
an be proved. If both bounds
an be shown bysubstitution for the same bounding fun
tion, then a

Θ-bound has been proved.
1. Algorithms and Data Structures – 29/38

Substitution Example

Consider T (n) = 4T
(

n
2

)

+ n.To get a big-Ω bound, guess that T (n) ≥ cn2 for some
c small enough that the inequality is true for n = 1.This is the basis step.Next, show that if the bound holds for m < n then itholds for n.

T (n) = 4T
(

n
2

)

+ n ≥ 4c
(

n
2

)2
+ n

= cn2 + n ≥ cn2, as required.Con
lude T (n) = Ω
(

n2
).

1. Algorithms and Data Structures – 30/38

big-O by Substitution

The
al
ulation above shows that an indu
tive argumentfor the bound T (n) ≤ cn2 will not work.Try T (n) ≤ cn2 − dn. Figure out c and d as you go.The limitation is that it must be possible to make
cn2 − dn arbitrarily large for n = 1 for the basis step.

T (n) = 4T
(

n
2

)

+ n ≤ 4
(

c
(

n
2

)2
− d

(

n
2

)

)

+ n

= cn2 − 2dn+ n ≤ cn2 − dnif we
hoose any d ≥ 1, say d = 1.

1. Algorithms and Data Structures – 31/38

big-O,
ont.

So a proper indu
tive proof would run like this: Set
d = 1, and
hoose c su
h that T (n) ≤ cn2 − n for
n = 1 . Claim T (n) ≤ cn2 − n for all n.The base
ase (or
ases) are true by
hoi
e of c and d.Indu
tion step:

T (n) = 4T
(

n
2

)

+ n ≤ 4
(

c
(

n
2

)2
− n

2

)

+ n

= cn2 − 2n+ n ≤ cn2 − n.

1. Algorithms and Data Structures – 32/38

Θ-bound

Thus T (n) = O
(

cn2 − n
). Con
lude T (n) = O

(

cn2
).Now we have proved T (n) = Ω

(

n2
) and

T (n) = Ω
(

n2
), so T (n) = Θ

(

n2
).

1. Algorithms and Data Structures – 33/38

Master Theorem Context

The Master Theorem identi�es three types of re
urren
erelations and gives solutions for those types. Thetheorem applies to re
urren
e relations of the form
T (n) = aT

(

n
b

)

+ f (n)where this notation is interpreted to in
lude
T (n) = a1T

(

⌊nb ⌋
)

+ a2T
(

⌈nb ⌉
)

+ f (n)for a1, a2 ∈ N, a ∈ Z
+, and a1 + a2 = a.

1. Algorithms and Data Structures – 34/38

Case 1

If f (n) = O
(

nlogb a−ε
) for some ε > 0 then

T (n) = Θ
(

nlogb a
). (Base
ase
osts dominate.)Example: T (n) = 4T

(

n
2

)

+ n

a = 4, b = 2, nlogb a = nlog
2
4 = 2. n = n2−1, so
ase 1applies.

T (n) = Θ
(

n2
)

1. Algorithms and Data Structures – 35/38

Case 2

If f (n) = Θ
(

nlogb a
) then T (n) = Θ

(

nlogb a lg n
).(Base
ase and re
ombination
osts balan
e.)Example: T (n) = 3T

(

n
3

)

+ n

a = 3, b = 3, nlogb a = nlog
3
3 = 1. n = n1, so
ase 2applies.

T (n) = Θ (n lg n)

1. Algorithms and Data Structures – 36/38

Case 3

If f (n) = Ω
(

nlogb a+ε
) for some ε > 0, and if

af
(

n
b

)

≤ cf (n) for some
onstant c < 1 and allsu�
iently large n, then T (n) = Θ (f (n)).(Re
ombination
osts dominate.)Example: T (n) = 9T
(

n
3

)

+ n3

a = 9, b = 3, nlogb a = nlog
3
9 = 2. n3 = n2+1,and af

(

n
b

)

= 9
((

n
3

))3
= 9n3

27 = 1
3n

3 = 1
3f (n), so
ase3 applies.

T (n) = Θ
(

n3
)

1. Algorithms and Data Structures – 37/38

What if?

Take T (n) = 9T
(

n
3

)

+ f (n), with

f (n) = 93⌈log9 n⌉ ≥ n3.Does
ase 3 apply?Not quite.For n = 32k, f (

n
3

)

= f (n), so 9f
(

n
3

)

= 9f (n).

1. Algorithms and Data Structures – 38/38

	{Chapter 4}
	{Maximum-Subarray}
	{Set up}
	{Exhaustive Solution}
	{Divide and Conquer}
	{Crossing Sum}
	{Find Max Crossing Subarray}
	{Recursive Routine}
	{T(n) for
Find-Max-Subsum}
	{Polynomial Representation}
	{Polynomial Multiplication}
	{Divide}
	{Conquer?}
	{Rats!}
	{Conquer}
	{Conquer!}
	{Matrix Notation}
	{Matrix Multiplication}
	{Basic Algorithm}
	{T(n)}
	{Strassen's Method}
	{Recurrence}
	{O- bound}
	{$Omega $- bound}
	{More Recurrences}
	{O-bound}
	{$Omega $ and $Theta $-bounds}
	{Substitution Method}
	{Substitution Example}
	{big-O by Substitution}
	{big-O, cont.}
	{$Theta $-bound}
	{Master Theorem Context}
	{Case 1}
	{Case 2}
	{Case 3}
	{What if?}

