
Algorithms and Data StruturesChapter 4
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/38

Chapter 4

Chapter 4 examines methods for obtaining asymptoti bounds onfuntions for whih a reurrene is known. These methods applyto bounding the running times of Divide and Conquer algorithms.The �rst setion provides two more examples of Divide andConquer algorithms. Three approahes to obtaining asymptotibounds are presented and applied.
• substition method: exat, requires potentially hallengingguess and hek steps
• reurrene tree method: �exible, inreases intuition,potentially time-onsuming
• master method: quik, limited

1. Algorithms and Data Structures – 2/38

Maximum-Subarray

Motivation: A manufaturing proess is intended toprodue items with approximately a given mass, say. Youare onerned that the proess may drift, produing runsof items that tend to be too heavy. To monitor theproess, you have olleted the di�erene between theatual and the target mass for a hronologial sequeneof items.You will �nd the largest sum of these for a subset ofonseutive items, and ompare it to the largest sumsprodued by taking the values in randomized orders. Ifthe atual maximum sum is larger that most of themaxima from randomized sequenes, you have evidenethat the proess drifted.
1. Algorithms and Data Structures – 3/38

Set up

The values are in an array A =< a1, a2..an >. The goalis to �nd j ≤ k with the property that, for all r ≤ s,
∑k

i=j ai ≥
∑s

i=r ai, where j, k, r, s ∈ {1, 2..n}.

1. Algorithms and Data Structures – 4/38

Exhaustive Solution

A solution to an optimization problem that simplyexamines all possibilities and identi�es the best is alledan exhaustive solution (or a brute fore solution). Whatis the exhaustive solution to the maximum subarray sumproblem? What is its asymptoti running time?

1. Algorithms and Data Structures – 5/38

Divide and Conquer

The basi idea is to reursively �nd the maximum sum inthe �rst half of the arrray and the maximum sum in theupper half of the array, and also the maximum sum thatinludes both the last value in the lower half and the �rstvalue in the upper half. Choosing the maximum of thesethree solves the problem.
1. Algorithms and Data Structures – 6/38

Crossing Sum

The task of �nding the maximum sum of a subarray ofonseutive values that rosses halves is straightforward.Consider all possible sums in the lower half that inludethe last element and save the largest. Examine allpossible sums in the top half that inlude the �rstelement, and save the largest. The sum of these is themaximum sum that rosses halves.

1. Algorithms and Data Structures – 7/38

Find Max Crossing Subarray

Find-Max-Crossing_Sum(A, low,mid, high)1 leftsum = −∞2 sum = 03 for i = mid downto low4 sum = sum+A [i]5 if sum > leftsum6 leftsum = sum7 rightsum = −∞8 sum = 09 for j = mid+ 1 downto high10 sum = sum+A [j]11 if sum > rightsum12 rightsum = sum13 return leftsum+ rightsum(The routine in the book also returns an optimal start and stop index.)

1. Algorithms and Data Structures – 8/38

Reursive Routine

Find-Max-Subsum(A, low, high)1 if low == high2 if A [low] > 03 return A [low]4 else5 return 06 else mid = ⌊(low + high) /2⌋7 leftsum = FIND-MAX-SUBSUM (A, low,mid)8 rightsum = FIND-MAX-SUBSUM (A,mid+ 1, high)9 crosssum = FIND-MAX-CROSSING-SUM (A, low,mid, high)10 return max (leftsum, rightsum, crosssum)

1. Algorithms and Data Structures – 9/38

T(n) for Find-Max-Subsum

The reurrene relation for T (n) for theFind-Max-Subsum funtion is
T (n) =

{

Θ(1) n = 1

2T (n/2) + Θ (n) n > 1We know T (n) = Θ (n lg n). Why? Is this better thanbrute fore?
1. Algorithms and Data Structures – 10/38

Polynomial Representation

Store the polynomial p (x) = ∑n
i=0 aix

i in an array
P = [a0, a1..an] and store the polynomial
q (x) =

∑m
i=0 bix

i in an array Q = [b0, b1..bm]. Then theprodut p (x) q (x)an be alulated with a nested loop.(For this example, let's start the indexing of arrays at 0.)

1. Algorithms and Data Structures – 11/38

Polynomial Multipliation
POLYNOMIAL-PRODUCT1(A,B)1 n = A.length− 12 m = B.length− 13 C = new array of 0’s length n+m+ 14 for i = 0 to n5 for j = 0 to m6 C [i+ j] = C [i+ j] + A [i] ∗B [j]If n = m, what is the running time?

1. Algorithms and Data Structures – 12/38

Divide

If the polynomials p and q are of the same degree n wean reate polynomials plow, phigh, qlow, and qhigh withorresponding arrays Plow =
[

a0..a⌊n

2
⌋

],
Phigh =

[

a⌊n

2
⌋+1..an

], Qlow =
[

b0..b⌊n

2
⌋

], and
Qhigh =

[

b⌊n

2
⌋+1..bn

].
1. Algorithms and Data Structures – 13/38

Conquer?

Then p = plow + x⌊
n

2
⌋+1phigh and q = qlow + x⌊

n

2
⌋+1qhigh.So pq = plowqlow + x⌊

n

2
⌋+1plowqhigh + x⌊

n

2
⌋+1phighqlow +

x2⌊
n

2
⌋+2phighqhighDoing this reursively gives T (n) = 4T (n/2) + Θ (n).

1. Algorithms and Data Structures – 14/38

Rats!

If k = lg n, the reurrene relation implies
T (n) ≥ 4kT (1) + c

∑k−1
i=0 2

in = O
(

n2
). We havegained nothing!

1. Algorithms and Data Structures – 15/38

Conquer

But x⌊n

2
⌋+1plowqhigh + x⌊

n

2
⌋+1phighqlow =

((plow + phigh) (qlow + qhigh)− plowqlow − phighqhigh)x
⌊n

2
⌋+1.Now T (n) = 3T (n/2) + Θ (n).

1. Algorithms and Data Structures – 16/38

Conquer!

We an show

T (n) ≤ 3kT (1) + c
∑k−1

i=0

(

3
2

)i
n = O

(

3lgn + n
(

3
2

)lgn
)

= O
(

nlg 3 + n
(

nlg 3

2

))

= O
(

nlg 3 + n
(

nlg 3−lg 2
))

= O
(

nlg 3
)

1. Algorithms and Data Structures – 17/38

Matrix Notation

A matrix is a retangular array of numbers, like
A =

[

5 0 −1 0.5

1 2 0 −3

]. The value in the ith row and
jth olumn is referred to using the row and olumnsubsripts. For example, here a14 = 0.5. The size of amatrix is spei�ed by (number of rows)×(number ofolumns). Here, A is 2× 4.An n× n matrix is said to be square.One major appliation of matries is in solving systemsof linear equations.

1. Algorithms and Data Structures – 18/38

Matrix Multipliation

If A is n×m and B is m× k, the produt C = AB is
n× k. The value of the entry in C ith row and jtholumn, cij is de�ned to be ∑m

l=1 ailblj.

For example, with A =

5 0 −1 0.5

1 2 0 −3

 and
B =

0 0 −1

1 2 3

0 −1 .5

2 0 1

, C is 2× 3. The entry

c23 = 1(−1) + 2(3) + 0(.5) + (−3)(1) = 2. C =

1 1 −5

−4 4 2

.

1. Algorithms and Data Structures – 19/38

Basi Algorithm

SQUARE-MATRIX-MULTIPLY(A,B)1 n = A.rows2 let C be a new n× n matrix3 for i = 1 to n4 for j = 1 to n5 cij = 06 for k = 1 to n7 cij = cij + a
ik
∗ bkj8 return C

1. Algorithms and Data Structures – 20/38

T(n)

What is the running time of this basi multipliationroutine for n× n matries as a funtion of n? Give a
Θ-bound.

1. Algorithms and Data Structures – 21/38

Strassen's Method

By using a �endishly lever arrangement of sums anddi�erenes of reursive produts of sums and di�erenesof n
2 ×

n
2 subarrays, Strassen's Method ahieves arunning time with the bounds

T (n) =

{

Θ(1) n = 1

7T (n/2) + Θ
(

n2
)

n > 1
.

1. Algorithms and Data Structures – 22/38

Reurrene

T (n) ≤ 7T (n/2) + cn2

≤ 7
(

7T (n/4) + c (n/2)2
)

+ cn2

= 72T
(

n

22

)

+ c
(

n2 + 7
(

n

2

)2
)

≤ 72
(

7T
(

n

23

)

+ c
(

n

22

)2
)

+ c
(

n2 + 7
(

n

2

)2
)

= 73T
(

n

23

)

+ c
(

n2 + 7
(

n

2

)2
+ 72

(

n

22

)2
)

= 73T
(

n

23

)

+ c
(

n2 + 7
4
n2 +

(

7
4

)2
n2

)...

≤ 7kT
(

n

2k

)

+ cn2
(

1 + 7
4
+
(

7
4

)2
+ . . .

(

7
4

)k−1
)

1. Algorithms and Data Structures – 23/38

O- bound

Setting k = lg n, get

T (n) ≤ 7kT (1) + cn2
(

1 + 7
4 +

(

7
4

)2
+ . . .

(

7
4

)k−1
)

= 7lg n + cn2 (
7

4)
k

−1

(7

4)−1

= O
(

nlg 7
)

+O
(

n2
(

7
4

)lg n
)

= O
(

nlg 7
)

+O
(

n2nlg(7

4)
)

= O
(

nlg 7
)

+O
(

n2nlg(7)nlg(−4)
)

= O
(

nlg 7
)

1. Algorithms and Data Structures – 24/38

Ω- bound

Using T (n) ≥ 7T (n/2) + cn2, get T (n) = Ω
(

nlg 7
).This allows us to onlude T (n) = Θ

(

nlg 7
).This is better than the asymptoti behavior of the naivealgorithm.

1. Algorithms and Data Structures – 25/38

More Reurrenes

What asymptoti behavior does T (n) =

Θ(1) n = 1

8T (n/2) + Θ (n) n > 1give?Using a reursion-tree, or repeated appliations of
T (n) ≤ 8T (n/2) + cn, onlude
T (n) ≤ 8kT (1) + cn

(

1 + 4 + 42 + . . . 4k−1
)

= O
(

nlg 8
)

+ cn4lgn
−1

4−1

= O
(

n3
)

Using T (n) ≥ 4T (n/2) + cn gets us same Ω-bound, and so

T (n) = Θ
(

n3
)

1. Algorithms and Data Structures – 26/38

O-bound

What asymptoti behavior does T (n) =

Θ(1) n = 1

2T (n/2) + Θ
(

n2
)

n > 1give?Using a reursion-tree, or repeated appliations of
T (n) ≤ 2T (n/2) + cn2, onlude
T (n) ≤ 2kT (1) + cn2

(

1 + 1
2
+ 1

2

2
+ . . . 1

2

k−1
)

≤ O (n) + cn2
∑

∞

i=0
1
2

= O (n) + cn2
(

−1
1
2
−1

)

= O
(

n2
)

1. Algorithms and Data Structures – 27/38

Ω and Θ-bounds

Using a reursion-tree, or repeated appliations of
T (n) ≥ 2T (n/2) + cn2, onlude

T (n) ≥ 2kT (1) + cn2
(

1 + 1
2
+ 1

2

2
+ . . . 1

2

k−1
)

≥ O (n) + cn2

= O
(

n2
)Sine T (n) = O

(

n2
)and T (n) = Ω

(

n2
), T (n) = Θ

(

n2
)

1. Algorithms and Data Structures – 28/38

Substitution Method

In this method, applied when a reurrene relation for
T (n)is known, you guess a bound for T (n) then verify itby indution. By verifying an upper bound, a big-Obound an be proved. By verifying an lower bound, an Ωbound an be proved. If both bounds an be shown bysubstitution for the same bounding funtion, then a

Θ-bound has been proved.
1. Algorithms and Data Structures – 29/38

Substitution Example

Consider T (n) = 4T
(

n
2

)

+ n.To get a big-Ω bound, guess that T (n) ≥ cn2 for some
c small enough that the inequality is true for n = 1.This is the basis step.Next, show that if the bound holds for m < n then itholds for n.

T (n) = 4T
(

n
2

)

+ n ≥ 4c
(

n
2

)2
+ n

= cn2 + n ≥ cn2, as required.Conlude T (n) = Ω
(

n2
).

1. Algorithms and Data Structures – 30/38

big-O by Substitution

The alulation above shows that an indutive argumentfor the bound T (n) ≤ cn2 will not work.Try T (n) ≤ cn2 − dn. Figure out c and d as you go.The limitation is that it must be possible to make
cn2 − dn arbitrarily large for n = 1 for the basis step.

T (n) = 4T
(

n
2

)

+ n ≤ 4
(

c
(

n
2

)2
− d

(

n
2

)

)

+ n

= cn2 − 2dn+ n ≤ cn2 − dnif we hoose any d ≥ 1, say d = 1.

1. Algorithms and Data Structures – 31/38

big-O, ont.

So a proper indutive proof would run like this: Set
d = 1, and hoose c suh that T (n) ≤ cn2 − n for
n = 1 . Claim T (n) ≤ cn2 − n for all n.The base ase (or ases) are true by hoie of c and d.Indution step:

T (n) = 4T
(

n
2

)

+ n ≤ 4
(

c
(

n
2

)2
− n

2

)

+ n

= cn2 − 2n+ n ≤ cn2 − n.

1. Algorithms and Data Structures – 32/38

Θ-bound

Thus T (n) = O
(

cn2 − n
). Conlude T (n) = O

(

cn2
).Now we have proved T (n) = Ω

(

n2
) and

T (n) = Ω
(

n2
), so T (n) = Θ

(

n2
).

1. Algorithms and Data Structures – 33/38

Master Theorem Context

The Master Theorem identi�es three types of reurrenerelations and gives solutions for those types. Thetheorem applies to reurrene relations of the form
T (n) = aT

(

n
b

)

+ f (n)where this notation is interpreted to inlude
T (n) = a1T

(

⌊nb ⌋
)

+ a2T
(

⌈nb ⌉
)

+ f (n)for a1, a2 ∈ N, a ∈ Z
+, and a1 + a2 = a.

1. Algorithms and Data Structures – 34/38

Case 1

If f (n) = O
(

nlogb a−ε
) for some ε > 0 then

T (n) = Θ
(

nlogb a
). (Base ase osts dominate.)Example: T (n) = 4T

(

n
2

)

+ n

a = 4, b = 2, nlogb a = nlog
2
4 = 2. n = n2−1, so ase 1applies.

T (n) = Θ
(

n2
)

1. Algorithms and Data Structures – 35/38

Case 2

If f (n) = Θ
(

nlogb a
) then T (n) = Θ

(

nlogb a lg n
).(Base ase and reombination osts balane.)Example: T (n) = 3T

(

n
3

)

+ n

a = 3, b = 3, nlogb a = nlog
3
3 = 1. n = n1, so ase 2applies.

T (n) = Θ (n lg n)

1. Algorithms and Data Structures – 36/38

Case 3

If f (n) = Ω
(

nlogb a+ε
) for some ε > 0, and if

af
(

n
b

)

≤ cf (n) for some onstant c < 1 and allsu�iently large n, then T (n) = Θ (f (n)).(Reombination osts dominate.)Example: T (n) = 9T
(

n
3

)

+ n3

a = 9, b = 3, nlogb a = nlog
3
9 = 2. n3 = n2+1,and af

(

n
b

)

= 9
((

n
3

))3
= 9n3

27 = 1
3n

3 = 1
3f (n), so ase3 applies.

T (n) = Θ
(

n3
)

1. Algorithms and Data Structures – 37/38

What if?

Take T (n) = 9T
(

n
3

)

+ f (n), with

f (n) = 93⌈log9 n⌉ ≥ n3.Does ase 3 apply?Not quite.For n = 32k, f (

n
3

)

= f (n), so 9f
(

n
3

)

= 9f (n).

1. Algorithms and Data Structures – 38/38

	{Chapter 4}
	{Maximum-Subarray}
	{Set up}
	{Exhaustive Solution}
	{Divide and Conquer}
	{Crossing Sum}
	{Find Max Crossing Subarray}
	{Recursive Routine}
	{T(n) for
Find-Max-Subsum}
	{Polynomial Representation}
	{Polynomial Multiplication}
	{Divide}
	{Conquer?}
	{Rats!}
	{Conquer}
	{Conquer!}
	{Matrix Notation}
	{Matrix Multiplication}
	{Basic Algorithm}
	{T(n)}
	{Strassen's Method}
	{Recurrence}
	{O- bound}
	{$Omega $- bound}
	{More Recurrences}
	{O-bound}
	{$Omega $ and $Theta $-bounds}
	{Substitution Method}
	{Substitution Example}
	{big-O by Substitution}
	{big-O, cont.}
	{$Theta $-bound}
	{Master Theorem Context}
	{Case 1}
	{Case 2}
	{Case 3}
	{What if?}

