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Chapter 5

Chapter 5 provides an oportunity to review some ommononepts from Probability, as well as introduing the tehnique ofusing indiator random variables to simplify omputation ofexpeted values. The motivation for studying these onepts hereomes from the need to do average ase analysis for algorithmswith widely di�ering performane on di�erent instanes ofproblems of the same size, and also for the need to design andanalyze randomized algorithms.
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Funtions for Analysis

Example problem:

HIRE −ASSISTANT (n)1 best = 02 for i in 1 to n3 interview andidate i4 if andidate i is better than andidate best5 best = i6 hire andidate iThe number of hires depends on the order in whih andidates areinterviewed. What is the best ase? What is the worst ase? If theranks of the andidates are equally likely to be in any order, whatis the expeted number of hires?
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Randomized Algorithm

An algorithm is randomized if its behavior is determinedby the input and by values produed by a randomnumber generator.If the distribution of performanes of a randomizedalgorithm on a problem of size n does not depend on theinstane, the expeted performane (running time, say)is the average over all sequenes of values returned bythe random number generator, weighted by theprobability of the sequene.
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Disrete Probability Spaes

For our purposes, a disrete probability spae (S , P r)onsists of a �nite or ountably in�nite set S ofoutomes and a funtion Pr : S → R with thefollowing properties:

• 0 ≤ Pr (s) ≤ 1 for all s ∈ S

•
∑

s∈S
Pr (s) = 1
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Events

In a disrete probability spae (S , P r) suh as desribedabove, an event A is simply a subset of S .The funtion Pr an be extended to the power set of Sby de�ning

Pr(A) =
∑

s∈A Pr(s).Now

• 0 ≤ Pr (A) ≤ 1 for all A ⊆ S

• Pr (S ) = 1
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Example

Many programming languages o�er (pseudo) randomnumber generators. In the pseudoode in the text, forintegers a and b with a ≤ b, a all to RANDOM(a, b)returns an integer in {a, a+ 1..b}, with eah valueequally likely.We an model this with a probability spae with

S = {a, a+ 1..b} and Pr(x) =

{

0 x /∈ S

1
b−a+1 x ∈ S

.

If a = 0 and b = 9 and A = {x|x is a power of 2}, then

Pr (A) = Pr ({1, 2, 4, 8}) = 4
(

1
9−0+1

)

= .4.
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Independene

Two events, A and B, are independent if
Pr (A ∩B) = Pr (A)Pr (B). Intuitively, the twoevents are independent if knowing s ∈ A does nothange the probability that s ∈ B.For example, suppose we model the result of rolling a dietwie and reording the resulting ordered pair of numbersas a probability spae with
S = {(a, b) |a ∈ {1, 2, 3, 4, 5, 6} ∧ b ∈ {1, 2, 3, 4, 5, 6}}and Pr(s) = 1

36 . Then the event A = {(a, b) |a = b}and B = {(a, b) |b = 6}are independent: Pr (A) = 6
36and Pr (B) = 6

36 , while Pr (A ∩B) = 1
36 =

6
36 ·

6
36 .
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More Independene

However, C = {(a, b) |a ≥ b} and B are notindependent: Pr (C) = 1
36

∑6
i=1 i =

1
36 ·

42
2 = 21

36 ,
Pr (B) = 6

36 , but Pr (C ∩ B) = 1
36 .Suesive values of RANDOM (a, b) are usually modeledas independent.
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Random Variables

Given a disrete probability spae (S , P r), a randomvariable on (S , P r) is a funtion T : S → R.If T is a random variable on a disrete probability spae

(S , P r), the expeted value of T , E [T ], is
∑

s∈S
T (s)Pr(s), a weighted average of

{T (s1) , T (s2) ...}.
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Example

Let S be a standard dek of 52 ards, with fae values
{1, 2..13} in eah of four suits. To model a randomdraw, de�ne Pr (s) = 1

52 . De�ne T (s) = face value of s.Then

E [T ] =
∑

s∈S
T (s)Pr (s)

=
∑

s∈S
T (s) 1

52

=
∑

s:T (s)=1 1 ·
1
52 +

∑

s:T (s)=2 2 ·
1
52 + ...

∑

s:T (s)=13 13 ·
1
52

= 4 · 1 · 1
52 + 4 · 2 · 1

52 + ...4 · 13 · 1
52

= 4
52

∑13
i=1 i

= 1
13

13(14)
2 = 7
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Linearity

A key feature of expeted values that the expeted valueof a sum of random variables on the same spae is justthe sum of the expeted values: if T1 : S → R and
T2 : S → R , a1, a2 ∈ R, and a1T1 + a2T2 : S → R isde�ned by a1T1 + a2T2 (s) = a1T1 (s) + a2T2 (s) , then

E [a1T1 + a2T2] = a1E [T1] + a2E [T2].As a onsequene, if X1, ..Xnare random variables on

(S , P r), then ∑n
i=1Xi is a random variable on

(S , P r), and E [
∑n

i=1Xi] =
∑n

i=1E [Xi].
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Linearity Example

Model a random draw from a dek of ards as above.Let the random variable T1 be the fae value, and let T2be de�ned by T2 (s) =

{

1 s is a heart

0 otherwise

.
E [T1 + T2] =

∑

s∈S
(T1 + T2) (s)Pr (s)

=
∑

s∈S
(T1 (s) + T2 (s))Pr (s)

=
∑

s∈S
(T1 (s)Pr (s) + T2 (s)Pr (s))

=
∑

s∈S
T1 (s)Pr (s) +

∑

s∈S
T2 (s)Pr (s)

= E [T1] + E [T2] = 7 + 1 · 13
52 + 0 · 39

52 = 7.25
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Indiator Random Variables

If A ⊆ S ,the indiator random variable XA : S → R is

de�ned by XA (s) =

{

0 s /∈ A

1 s ∈ A

.

In the example above, T2 is the indiator randomvariable for the set {s|s is a heart}.Note E [XA] = Pr (A):
E [XA] =

∑

s∈S
XA (s)Pr (s)

=
∑

s∈AXA (s)Pr (s) +
∑

s∈S−AXA (s)Pr (s)
=
∑

s∈A 1 · Pr (s) +
∑

s∈S−A 0 · Pr (s)
= Pr (A).
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Example

Let S be the set of permutations of {1, 2, 3, 4, 5}, eah equallylikely. Let T (σ) be the number of values in the permutation σ thatare exatly 1 greater then their predeessor in the permutation.For example T (45312) = 2. What is the expeted value of T ?Use indiator random variables. Let A2 be the event that theseond element is exatly 1 greater than the �rst.
Pr (A2) = 4 · 3! 1

5!
= 1

5

. De�ne A3, A4 and A5 similarly. Eahevent Ai has Pr (Ai) =
1
5

.The sum XA2
+XA3

+XA4
+XA5

= T . But

E [XAi
] = Pr (Ai) =

1
5

so
E [T ] = E [XA2

+XA3
+XA4

+XA5
] =

∑5
i=2E [XAi

] = 4
5

.
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Hiring Problem, ont.

We an just onsider the ranks of the andidates, with 1the lowest and n the highest. Then S is the set of allpermutations of {1, 2, ..n}. If eah permutation of ranksis equally likely, Pr (σ) = 1
n! .The expeted number of hires is the expeted number ofpositions i in a permutation σ = σ1σ2...σn satisfying

σi > σj for all j < i.
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Hiring Events

Set Ai to be the event that the ith andidate is hired,i.e. σi > σj for all j < i.

Pr (Ai) =

(

n

i

)

(i− 1)! (n− i)! 1
n! =

1
i

beause we

an have any hoie of i ranks in the �rst i positions,but the largest must be in the ith position.Set XAi

to be the indiator random variable for Ai.Then the number of hires in a permutation σ is

∑n
i=1XAi

(σ). Conlude that the expeted number ofhires is ∑n
i=1E [XAi

] =
∑n

i=1
1
i

.The appendix equation A.7 gives that

∑n
i=1

1
i
= ln (n) +O (1). 1. Algorithms and Data Structures – 17/27



Tehnial Aside

∑n
i=1

1
i
= ln (n) +O (1) omes from

∑n
i=2

1
i
≤
´ n

x=1
1
x
dx = lnn ≤

∑n−1
i=1

1
i

. (Draw the graph,and onsider the upper sum and the lower sum forretangles of width 1.) Thus ∑n
i=1

1
i
≤ lnn+ 1, fromthe left side of the inequality, and ∑n

i=1
1
i
≥ lnn+ 1

n

,from the right.Conlude lnn+ 1
n
≤
∑n

i=1
1
i
≤ lnn+ 1. This is muhfewer than the worst ase.
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Randomized Algorithm

The alulations above only apply if we an model allrank orders as equally likely. We an guarantee this bypermuting the input order in suh a way that allpermutations are equally likely.
RANDOMIZED −HIRE − ASSISTANT (n)1 randomly permute the list of andidates2 HIRE −ASSISTANT (n)One ommon appliation of randomization in algorithmsis to arrange that no partiular input gives worst-asebehavior. In that way, a regrettable relationship betweenthe distribution of the inputs and the behavior of thealgorithm an be avoided.
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Permutation

Permutation an be aomplished using a randomnumber generator.

RANDOMIZE − IN − PLACE(A)1 n = A.length2 for i = 1 to n3 swap A[i] with A[RANDOM(i, n)]What is the running time?Claim that this routine yields eah possible permutationof A with equal probability.
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Uniform Permutation

Loop invariant: Just prior to the ith iteration of thefor-loop, A[1..i− 1] ontains eah possible permutationof length i− 1 of the elements of A with probability
(n−i+1)!

n! .
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Initialization

Here i = 1, so the laim is that the empty array A[1..0]ontains all 0-permutations with probability n!
n! = 1. Thisis true.
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Maintenane

At stage i, the probability of seleting a partiular valuein A[i..n] to swap into A[i] is independent of theprobability that A[1..i− 1] is any partiular
i−permutation 〈x1, x2..xi−1〉 .Therefore the probability of produing a given
i−permutation 〈x1, x2..xi−1, xi〉at the ith pass throughthe loop is the probability of entering the loop with thepermutation 〈x1, x2..xi−1〉, (n−i+1)!

n! , times theprobability that the swap in line 3 plaes xi in the ithposition, 1
n−i+1 . This probability is (n−i)!

n! . When i isinremented, the loop invariant will remain orret.
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Termination

At termination, i = n+ 1, so the loop invariant impliesthat all n−permutations of the elements of A areprodued with probability 1
n! , as required.
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Combinatorial Argument

Alternatively, demonstrate that all permutations areequally likely to be generated by noting that there are n!possible sequenes of results of the alls to
RANDOM(i, n), < r1, r2..rn > beause there are
n− i+ 1 possible outomes for ri. Eah sequeneours with probability n! beause all is independentand eah value of ri is equally likely.Finally, eah sequene produes a distint permutation,beause the permutations generated by sequenes

< r1, r2..rn > and < s1, s2..sn > will di�er in the �rstposition i in whih ri 6= si. Thus n! distintpermutations are generated, eah with probability 1
n! , asrequired.
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RANDOM(a,b)

If you have just a random number generator that returnsvalues between 0 and some max− int, how would yougenerate a uniform pik from {a, a+ 1..b}?
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Motivating Example

Suppose max− int = 7, so the all to rand(), say, returns a value in
{0, 1, 2, 3, 4, 5, 6, 7}. You want a value in {17, 18, 19}, {a..b} with
a = 17, b = 19. A value in {0, 1, 2} = {0..b− a} would do: just add ato the result.We need to assoiate an the desired return values 0, 1, and 2 withdisjoint events in {0, 1, 2, 3, 4, 5, 6, 7} having equal probability, heneequal numbers of elements, sine rand() returns eah value in

{0, 1, 2, 3, 4, 5, 6, 7} with equal probability. In trying to produe 3 or

b− a+ 1 events of equal size, the most we an have in eah event is

⌊83⌋ = 2. If we return ⌊ rand()2

⌋ if it is in {0, 1, 2} and otherwise disardthe result and repeat, we return 0 when rand() ∈ {0.1}, 1 when

rand() ∈ {2.3}, and 2 when rand() ∈ {4.5}, and otherwise try again.What does this suggest for max− int and b− a?
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