Algorithms and Data Structures
Chapter 5

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/27

Chapter 5

Chapter 5 provides an oportunity to review some common
concepts from Probability, as well as introducing the technique of
using indicator random variables to simplify computation of
expected values. The motivation for studying these concepts here
comes from the need to do average case analysis for algorithms
with widely differing performance on different instances of
problems of the same size, and also for the need to design and

analyze randomized algorithms.

1. Algorithms and Data Structures — 2/27

Functions for Analysis

Example problem:

HIRE — ASSISTANT (n)

1 best =0

2 foriinlton

3 interview candidate ¢

4 if candidate ¢ is better than candidate best
5 best =1

6 hire candidate ¢

The number of hires depends on the order in which candidates are
interviewed. What is the best case? What is the worst case? If the
ranks of the candidates are equally likely to be in any order, what
Is the expected number of hires?

1. Algorithms and Data Structures — 3/27

Randomized Algorithm

An algorithm is randomized if its behavior is determined

by the input and by values produced by a random
number generator.

It the distribution of performances of a randomized
algorithm on a problem of size n does not depend on the
instance, the expected performance (running time, say)
is the average over all sequences of values returned by
the random number generator, weighted by the
probability of the sequence.

1. Algorithms and Data Structures — 4/27

Discrete Probability Spaces

For our purposes, a discrete probability space (&, Pr)
consists of a finite or countably infinite set . of
outcomes and a function Pr : . — R with the

following properties:

e 0 < Pr(s)<l1forall se.”
.ZseyPT(S):l

1. Algorithms and Data Structures — 5/27

Events

In a discrete probability space (., Pr) such as described
above, an event A is simply a subset of .%.
The function Pr can be extended to the power set of .¥

by defining
Pr(A) = 5,4 Pr(s)
Now

e 0<Pr(A)<1forall AC.¥
o Pr(¥)=1

Example

Many programming languages offer (pseudo) random
number generators. In the pseudocode in the text, for

integers a and b with a < b, a call to RANDOM(a, b)
returns an integer in {a,a + 1..b}, with each value
equally likely.

We can model this with a probability space with

0 r ¢ .S
< ={a,a+ 1..b} and Pr(x) = <\ I

If a =0and b =19 and A = {x|z is a power of 2}, then
Pr(A) = Pr({1,2,4,8}) = 4 (9_(1)+1) — 4

1. Algorithms and Data Structures — 7/27

Independence

Two events, A and B, are independent if
Pr(ANB) = Pr(A) Pr(B). Intuitively, the two
events are independent if knowing s € A does not
change the probability that s € B.

For example, suppose we model the result of rolling a die
twice and recording the resulting ordered pair of numbers
as a probability space with

5”:{mmﬂae{Lz&4ﬁanbe{Lz&4ﬁxﬁ}
anc Pr() = ==. Then the event A = {(a,b) |a = b}
and B = {(a, b) b = 6}are mdependent Pr(A) =%

— 36
and Pr(B) = o, while Pr (ANB) =+ = o - .

More Independence

However, C' = {(a,b) |a > > b} and B are not
independent' Pr(C) = 5 LS9 1@ =2 =2
Pr(B) = 5, but Pr(C'NB) = .

Succesive values of RANDOM (a, b) are usually modeled
as independent.

1. Algorithms and Data Structures — 9/27

Random Variables

Given a discrete probability space (., Pr), a random
variable on (., Pr) is a function T': .%¥ — R.

It T" is a random variable on a discrete probability space
(-7, Pr), the expected value of T', E'|T, is
> e LT'(s) Pr(s), a weighted average of

{T (81) ,T (82) }

1. Algorithms and Data Structures — 10/27

Example

Let . be a standard deck of 52 cards, with face values
{1,2..13} in each of four suits. To model a random

draw, define Pr (s) = =. Define T (s) = face value of s.
Then

ElT] =3y T (s) Pr(s)

=2 ser I'(8) 5L2

= D s T(s)=1 1" =+ D s T(s)=2 2" 5t D sT(s)=13 13- %
:i.1.135i2+4.2.5i2+...4.13-5i2

— 52 Zizl 2

1 13(14)
13 2 =7

1. Algorithms and Data Structures — 11/27

Linearity

A key feature of expected values that the expected value
of a sum of random variables on the same space is just
the sum of the expected values: if 77 : .¥ — R and

1T . — R, ai,as € R, and a1 17 + a5 : . — Ris
defined by a177 + a5 (s) = a1T7 (s) + a1 (s) , then
E [CllTl + CLQTQ] — CL1E [Tl] + CLQE [TQ]

As a consequence, it Xy, ..X,,are random variables on
(<, Pr), then > ", X is a random variable on

(#,Pr),and B[S0, X, = S0 E[X)]

1. Algorithms and Data Structures — 12/27

Linearity Example

Model a random draw from a deck of cards as above.

L et the random variable T be the face value, and let 75
4

1 sisaheart

be defined by T (s) =

0 otherwise

ET + T =3 e (T +12) (s) Pr(s)

= 2ser (11 (s) + 12 (s)) Pr(s)

= 2_ser (11 (s) Pr(s) + 15 (s) Pr(s))
:ZséyTl(S)Pr() _ZseyTQ()PT()
=FN|+E[L]=7+1-£40-2 =725

Indicator Random Variables

It A C . the indicator random variable X 4 : . — R is
0 s ¢ A

defined beA(s):<1 ce A

\

In the example above, T5 is the indicator random
variable for the set {s|sis aheart}.

Note F | X 4| = Pr (A):

E[X4] = e Xa (s) Pr (s

=D sea XA (8) Pr(s) + 2 e aXal(s)Pr(s)
=D sea L Pr(s)+2 o 40 Pr(s)

= Pr(A).

Example

Let . be the set of permutations of {1,2,3,4,5}, each equally
likely. Let T' (o) be the number of values in the permutation o that

are exactly 1 greater then their predecessor in the permutation.
For example T"(45312) = 2. What is the expected value of T7

Use indicator random variables. Let A, be the event that the
second element is exactly 1 greater than the first.
Pr(Ay) =4-3l% = 2. Define A3, Ay and As similarly. Each

event A; has Pr(4;) = <.

The sum XA2 —|—XA3 —|—XA4 —|—XA5 = T'. But
E[X4,] = Pr(A4;) =+ so
k [T] = F [XA2 T XA3 T XA4 T XAS] — 2712) [XAZ] — %

1. Algorithms and Data Structures — 15/27

Hiring Problem, cont.

We can just consider the ranks of the candidates, with 1
the lowest and n the highest. Then . is the set of all

permutations of {1,2,..n}. If each permutation of ranks
is equally likely, Pr (o) = =

1
n!-

The expected number of hires is the expected number of
positions ¢ in a permutation ¢ = 0103...0,, satisfying
o; > o tor all 7 <.

1. Algorithms and Data Structures — 16/27

Hiring Events

Set A; to be the event that the i'” candidate is hired.
l.e. 0; > o forall j <.

Pr(A;) = (") (i — 1) (n —14)!5 = 1 because we
; |

can have any choice of 7 ranks in the first ¢ positions,

but the largest must be in the i position.
Set X 4. to be the indicator random variable for A;.

Then the number of hires in a permutation o is
Y o 1 X4, (0). Conclude that the expected number of

hires is Y | E'[Xa,] = >0y 5.
The appendix equation A.7 gives that

Z?:l % — ln (n) —I_ O (1) . 1. Algorithms and Data Structures — 17

127

Technical Aside

2?21% In(n)+ O (1) comes from
>t < Jom 1d$—1ﬂn< > o Z.. (Draw the graph,

and consider the upper sum and the lower sum for
rectangles of width 1.) Thus > ", % <Inn+ 1, from

the left side of the inequality, and 7" ;3 > Inn + =,
from the right.

Conclude Inn + + < 3" 2 <Inn+ 1. This is much
fewer than the worst case.

1. Algorithms and Data Structures — 18/27

Randomized Algorithm

The calculations above only apply if we can model all
rank orders as equally likely. We can guarantee this by
permuting the input order in such a way that all
permutations are equally likely.

RANDOMIZED — HIRE — ASSISTANT (n)
1 randomly permute the list of candidates
> HIRE — ASSISTANT(n)

One common application of randomization in algorithms
s to arrange that no particular input gives worst-case
behavior. In that way, a regrettable relationship between
the distribution of the inputs and the behavior of the
algorithm can be avoided.

1. Algorithms and Data Structures — 19/27

Permutation

Permutation can be accomplished using a random
number generator.

RANDOMIZE —IN — PLACE(A)
1 n = A.length
2 forr =1ton

3 swap A|z] with AIRANDOM (i,n)]

What is the running time?
Claim that this routine yields each possible permutation

of A with equal probability.

Uniform Permutation

Loop invariant: Just prior to the th iteration of the
for-loop, A[1..i — 1| contains each possible permutation

of length 7 — 1 of the elements of A with probability
(n—i+1)!
n! '

1. Algorithms and Data Structures

—21/27

Initialization

Here ¢+ = 1, so the claim is that the empty array A[1..0]

contains all O-permutations with probability %; = 1. This
IS true.

1. Algorithms and Data Structures — 22/27

Maintenance

At stage 7, the probability of selecting a particular value
in Ali..n| to swap into Ali] is independent of the
probability that A[1..2 — 1] is any particular
i—permutation (z1, Xo..2;_1) .

Therefore the probability of producing a given

i—permutation (x1, xs..x;_1, x;)at the ith pass through

the loop is the probability of entering the loop with the
: (n—i+1)! .

permutation (z1, T2..7—1), —1—, times the

orobability that the swap in line 3 places x; in the th

— +1 This probability is =2) . When 17 is
incremented, the loop invariant will remain correct.

bosition,

1. Algorithms and Data Structure

s — 23/27

Termination

At termination, ¢ = n + 1, so the loop invariant implies
that all n—permutations of the elements of A are
produced with probability % as required.

1. Algorithms and Data Structures — 24/27

Combinatorial Argument

Alternatively, demonstrate that all permutations are
equally likely to be generated by noting that there are n!
possible sequences of results of the calls to
RANDOM(%,n), < r1,T9..7, > because there are

n — 1+ 1 possible outcomes for r;. Each sequence
occurs with probability n! because call is independent
and each value of r; is equally likely.

Finally, each sequence produces a distinct permutation,
because the permutations generated by sequences

< ry,r9..ry > and < s1, S9..5, > will differ in the first
position ¢ in which r; # s;. Thus n! distinct
permutations are generated, each with probability % as
required.

1. Algorithms and Data Structures — 25/27

RANDOM(a,b)

If you have just a random number generator that returns
values between 0 and some max — int, how would you
generate a uniform pick from {a,a + 1..b}7

1. Algorithms and Data Structures — 26/27

Motivating Example

Suppose max — int = 7, so the call to rand(), say, returns a value in
{0,1,2,3,4,5,6,7}. You want a value in {17,18,19}, {a..b} with
a=17,b=19. A valuein {0,1,2} ={0..b — a} would do: just add a
to the result.

We need to associate an the desired return values 0,1, and 2 with
disjoint events in {0,1,2,3,4,5,6,7} having equal probability, hence
equal numbers of elements, since rand() returns each value in
{0,1,2,3,4,5,6,7} with equal probability. In trying to produce 3 or

b — a + 1 events of equal size, the most we can have in each event is
3] = 2. If we return V“nd()J if it is in {0, 1,2} and otherwise discard

2
the result and repeat, we return 0 when rand() € {0.1}, 1 when

rand() € {2.3}, and 2 when rand() € {4.5}, and otherwise try again.

What does this suggest for max — int and b — a?

1. Algorithms and Data Structures — 27/27

	{Chapter 5}
	{Functions for Analysis}
	{Randomized Algorithm}
	{Discrete Probability Spaces}
	{Events}
	{Example}
	{Independence}
	{More Independence}
	{Random Variables}
	{Example}
	{Linearity }
	{Linearity Example}
	{Indicator Random Variables}
	{Example}
	{Hiring Problem, cont.}
	{Hiring Events}
	{Technical Aside}
	{Randomized Algorithm}
	{Permutation}
	{Uniform Permutation}
	{Initialization}
	{Maintenance}
	{Termination }
	{Combinatorial Argument}
	{RANDOM(a,b)}
	{Motivating Example}

