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Chapter 5

Chapter 5 provides an oportunity to review some 
ommon
on
epts from Probability, as well as introdu
ing the te
hnique ofusing indi
ator random variables to simplify 
omputation ofexpe
ted values. The motivation for studying these 
on
epts here
omes from the need to do average 
ase analysis for algorithmswith widely di�ering performan
e on di�erent instan
es ofproblems of the same size, and also for the need to design andanalyze randomized algorithms.
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Fun
tions for Analysis

Example problem:

HIRE −ASSISTANT (n)1 best = 02 for i in 1 to n3 interview 
andidate i4 if 
andidate i is better than 
andidate best5 best = i6 hire 
andidate iThe number of hires depends on the order in whi
h 
andidates areinterviewed. What is the best 
ase? What is the worst 
ase? If theranks of the 
andidates are equally likely to be in any order, whatis the expe
ted number of hires?
1. Algorithms and Data Structures – 3/27



Randomized Algorithm

An algorithm is randomized if its behavior is determinedby the input and by values produ
ed by a randomnumber generator.If the distribution of performan
es of a randomizedalgorithm on a problem of size n does not depend on theinstan
e, the expe
ted performan
e (running time, say)is the average over all sequen
es of values returned bythe random number generator, weighted by theprobability of the sequen
e.
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Dis
rete Probability Spa
es

For our purposes, a dis
rete probability spa
e (S , P r)
onsists of a �nite or 
ountably in�nite set S ofout
omes and a fun
tion Pr : S → R with thefollowing properties:

• 0 ≤ Pr (s) ≤ 1 for all s ∈ S

•
∑

s∈S
Pr (s) = 1
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Events

In a dis
rete probability spa
e (S , P r) su
h as des
ribedabove, an event A is simply a subset of S .The fun
tion Pr 
an be extended to the power set of Sby de�ning

Pr(A) =
∑

s∈A Pr(s).Now

• 0 ≤ Pr (A) ≤ 1 for all A ⊆ S

• Pr (S ) = 1

1. Algorithms and Data Structures – 6/27



Example

Many programming languages o�er (pseudo) randomnumber generators. In the pseudo
ode in the text, forintegers a and b with a ≤ b, a 
all to RANDOM(a, b)returns an integer in {a, a+ 1..b}, with ea
h valueequally likely.We 
an model this with a probability spa
e with

S = {a, a+ 1..b} and Pr(x) =

{

0 x /∈ S

1
b−a+1 x ∈ S

.

If a = 0 and b = 9 and A = {x|x is a power of 2}, then

Pr (A) = Pr ({1, 2, 4, 8}) = 4
(

1
9−0+1

)

= .4.

1. Algorithms and Data Structures – 7/27



Independen
e

Two events, A and B, are independent if
Pr (A ∩B) = Pr (A)Pr (B). Intuitively, the twoevents are independent if knowing s ∈ A does not
hange the probability that s ∈ B.For example, suppose we model the result of rolling a dietwi
e and re
ording the resulting ordered pair of numbersas a probability spa
e with
S = {(a, b) |a ∈ {1, 2, 3, 4, 5, 6} ∧ b ∈ {1, 2, 3, 4, 5, 6}}and Pr(s) = 1

36 . Then the event A = {(a, b) |a = b}and B = {(a, b) |b = 6}are independent: Pr (A) = 6
36and Pr (B) = 6

36 , while Pr (A ∩B) = 1
36 =

6
36 ·

6
36 .
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More Independen
e

However, C = {(a, b) |a ≥ b} and B are notindependent: Pr (C) = 1
36

∑6
i=1 i =

1
36 ·

42
2 = 21

36 ,
Pr (B) = 6

36 , but Pr (C ∩ B) = 1
36 .Su

esive values of RANDOM (a, b) are usually modeledas independent.
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Random Variables

Given a dis
rete probability spa
e (S , P r), a randomvariable on (S , P r) is a fun
tion T : S → R.If T is a random variable on a dis
rete probability spa
e

(S , P r), the expe
ted value of T , E [T ], is
∑

s∈S
T (s)Pr(s), a weighted average of

{T (s1) , T (s2) ...}.
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Example

Let S be a standard de
k of 52 
ards, with fa
e values
{1, 2..13} in ea
h of four suits. To model a randomdraw, de�ne Pr (s) = 1

52 . De�ne T (s) = face value of s.Then

E [T ] =
∑

s∈S
T (s)Pr (s)

=
∑

s∈S
T (s) 1

52

=
∑

s:T (s)=1 1 ·
1
52 +

∑

s:T (s)=2 2 ·
1
52 + ...

∑

s:T (s)=13 13 ·
1
52

= 4 · 1 · 1
52 + 4 · 2 · 1

52 + ...4 · 13 · 1
52

= 4
52

∑13
i=1 i

= 1
13

13(14)
2 = 7
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Linearity

A key feature of expe
ted values that the expe
ted valueof a sum of random variables on the same spa
e is justthe sum of the expe
ted values: if T1 : S → R and
T2 : S → R , a1, a2 ∈ R, and a1T1 + a2T2 : S → R isde�ned by a1T1 + a2T2 (s) = a1T1 (s) + a2T2 (s) , then

E [a1T1 + a2T2] = a1E [T1] + a2E [T2].As a 
onsequen
e, if X1, ..Xnare random variables on

(S , P r), then ∑n
i=1Xi is a random variable on

(S , P r), and E [
∑n

i=1Xi] =
∑n

i=1E [Xi].
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Linearity Example

Model a random draw from a de
k of 
ards as above.Let the random variable T1 be the fa
e value, and let T2be de�ned by T2 (s) =

{

1 s is a heart

0 otherwise

.
E [T1 + T2] =

∑

s∈S
(T1 + T2) (s)Pr (s)

=
∑

s∈S
(T1 (s) + T2 (s))Pr (s)

=
∑

s∈S
(T1 (s)Pr (s) + T2 (s)Pr (s))

=
∑

s∈S
T1 (s)Pr (s) +

∑

s∈S
T2 (s)Pr (s)

= E [T1] + E [T2] = 7 + 1 · 13
52 + 0 · 39

52 = 7.25
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Indi
ator Random Variables

If A ⊆ S ,the indi
ator random variable XA : S → R is

de�ned by XA (s) =

{

0 s /∈ A

1 s ∈ A

.

In the example above, T2 is the indi
ator randomvariable for the set {s|s is a heart}.Note E [XA] = Pr (A):
E [XA] =

∑

s∈S
XA (s)Pr (s)

=
∑

s∈AXA (s)Pr (s) +
∑

s∈S−AXA (s)Pr (s)
=
∑

s∈A 1 · Pr (s) +
∑

s∈S−A 0 · Pr (s)
= Pr (A).
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Example

Let S be the set of permutations of {1, 2, 3, 4, 5}, ea
h equallylikely. Let T (σ) be the number of values in the permutation σ thatare exa
tly 1 greater then their prede
essor in the permutation.For example T (45312) = 2. What is the expe
ted value of T ?Use indi
ator random variables. Let A2 be the event that these
ond element is exa
tly 1 greater than the �rst.
Pr (A2) = 4 · 3! 1

5!
= 1

5

. De�ne A3, A4 and A5 similarly. Ea
hevent Ai has Pr (Ai) =
1
5

.The sum XA2
+XA3

+XA4
+XA5

= T . But

E [XAi
] = Pr (Ai) =

1
5

so
E [T ] = E [XA2

+XA3
+XA4

+XA5
] =

∑5
i=2E [XAi

] = 4
5

.
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Hiring Problem, 
ont.

We 
an just 
onsider the ranks of the 
andidates, with 1the lowest and n the highest. Then S is the set of allpermutations of {1, 2, ..n}. If ea
h permutation of ranksis equally likely, Pr (σ) = 1
n! .The expe
ted number of hires is the expe
ted number ofpositions i in a permutation σ = σ1σ2...σn satisfying

σi > σj for all j < i.
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Hiring Events

Set Ai to be the event that the ith 
andidate is hired,i.e. σi > σj for all j < i.

Pr (Ai) =

(

n

i

)

(i− 1)! (n− i)! 1
n! =

1
i

be
ause we


an have any 
hoi
e of i ranks in the �rst i positions,but the largest must be in the ith position.Set XAi

to be the indi
ator random variable for Ai.Then the number of hires in a permutation σ is

∑n
i=1XAi

(σ). Con
lude that the expe
ted number ofhires is ∑n
i=1E [XAi

] =
∑n

i=1
1
i

.The appendix equation A.7 gives that

∑n
i=1

1
i
= ln (n) +O (1). 1. Algorithms and Data Structures – 17/27



Te
hni
al Aside

∑n
i=1

1
i
= ln (n) +O (1) 
omes from

∑n
i=2

1
i
≤
´ n

x=1
1
x
dx = lnn ≤

∑n−1
i=1

1
i

. (Draw the graph,and 
onsider the upper sum and the lower sum forre
tangles of width 1.) Thus ∑n
i=1

1
i
≤ lnn+ 1, fromthe left side of the inequality, and ∑n

i=1
1
i
≥ lnn+ 1

n

,from the right.Con
lude lnn+ 1
n
≤
∑n

i=1
1
i
≤ lnn+ 1. This is mu
hfewer than the worst 
ase.
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Randomized Algorithm

The 
al
ulations above only apply if we 
an model allrank orders as equally likely. We 
an guarantee this bypermuting the input order in su
h a way that allpermutations are equally likely.
RANDOMIZED −HIRE − ASSISTANT (n)1 randomly permute the list of 
andidates2 HIRE −ASSISTANT (n)One 
ommon appli
ation of randomization in algorithmsis to arrange that no parti
ular input gives worst-
asebehavior. In that way, a regrettable relationship betweenthe distribution of the inputs and the behavior of thealgorithm 
an be avoided.
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Permutation

Permutation 
an be a

omplished using a randomnumber generator.

RANDOMIZE − IN − PLACE(A)1 n = A.length2 for i = 1 to n3 swap A[i] with A[RANDOM(i, n)]What is the running time?Claim that this routine yields ea
h possible permutationof A with equal probability.
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Uniform Permutation

Loop invariant: Just prior to the ith iteration of thefor-loop, A[1..i− 1] 
ontains ea
h possible permutationof length i− 1 of the elements of A with probability
(n−i+1)!

n! .
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Initialization

Here i = 1, so the 
laim is that the empty array A[1..0]
ontains all 0-permutations with probability n!
n! = 1. Thisis true.
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Maintenan
e

At stage i, the probability of sele
ting a parti
ular valuein A[i..n] to swap into A[i] is independent of theprobability that A[1..i− 1] is any parti
ular
i−permutation 〈x1, x2..xi−1〉 .Therefore the probability of produ
ing a given
i−permutation 〈x1, x2..xi−1, xi〉at the ith pass throughthe loop is the probability of entering the loop with thepermutation 〈x1, x2..xi−1〉, (n−i+1)!

n! , times theprobability that the swap in line 3 pla
es xi in the ithposition, 1
n−i+1 . This probability is (n−i)!

n! . When i isin
remented, the loop invariant will remain 
orre
t.
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Termination

At termination, i = n+ 1, so the loop invariant impliesthat all n−permutations of the elements of A areprodu
ed with probability 1
n! , as required.
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Combinatorial Argument

Alternatively, demonstrate that all permutations areequally likely to be generated by noting that there are n!possible sequen
es of results of the 
alls to
RANDOM(i, n), < r1, r2..rn > be
ause there are
n− i+ 1 possible out
omes for ri. Ea
h sequen
eo

urs with probability n! be
ause 
all is independentand ea
h value of ri is equally likely.Finally, ea
h sequen
e produ
es a distin
t permutation,be
ause the permutations generated by sequen
es

< r1, r2..rn > and < s1, s2..sn > will di�er in the �rstposition i in whi
h ri 6= si. Thus n! distin
tpermutations are generated, ea
h with probability 1
n! , asrequired.
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RANDOM(a,b)

If you have just a random number generator that returnsvalues between 0 and some max− int, how would yougenerate a uniform pi
k from {a, a+ 1..b}?
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Motivating Example

Suppose max− int = 7, so the 
all to rand(), say, returns a value in
{0, 1, 2, 3, 4, 5, 6, 7}. You want a value in {17, 18, 19}, {a..b} with
a = 17, b = 19. A value in {0, 1, 2} = {0..b− a} would do: just add ato the result.We need to asso
iate an the desired return values 0, 1, and 2 withdisjoint events in {0, 1, 2, 3, 4, 5, 6, 7} having equal probability, hen
eequal numbers of elements, sin
e rand() returns ea
h value in

{0, 1, 2, 3, 4, 5, 6, 7} with equal probability. In trying to produ
e 3 or

b− a+ 1 events of equal size, the most we 
an have in ea
h event is

⌊83⌋ = 2. If we return ⌊ rand()2

⌋ if it is in {0, 1, 2} and otherwise dis
ardthe result and repeat, we return 0 when rand() ∈ {0.1}, 1 when

rand() ∈ {2.3}, and 2 when rand() ∈ {4.5}, and otherwise try again.What does this suggest for max− int and b− a?
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