
Algorithms and Data StruturesChapter 7
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/12

Chapter 7

Quiksort is a omparison sort that is not stable and has
Θ
(

n2
) worst ase running time. However, RandomizedQuiksort has O (n lg n) expeted running time. It isoptimized to have very good performane on averageompared to known omparison sorts with Θ(n lg n)expeted running times.

1. Algorithms and Data Structures – 2/12

Comparison Sorting

A omparison sort is a sort that uses only the ≤ operator amongkeys to sort the data. Comparison sorts have a theoretial
Ω (n lg n) bound on running time. Roughly, this follows beause aomparison sort of n items must be able to return any of the n!possible permutations of the input order. There must be n! pathsthrough the omparisons. Sine eah omparison results in twobranhes, there must be at least lg (n!)omparisons.Sorts that take advantage of features of the data an be Θ(n).For example, if the values are known to be n positive integersbounded by Mn for some �nite M , they an be sorted in lineartime by reading them into a diret address table, then readingthem out in order.

1. Algorithms and Data Structures – 3/12

Partitioning

The basi omponent of Quiksort is a routine,
PARTITION. For a value x in the array A[p, r],PARTITIONrearranges A so that for some q, x = A[q],
s ∈ {p, ..q − 1} → A[s] ≤ x, and
s ∈ {q + 1, ..r} → A[s] > x.The routine returns q.The PARTITION routine works by maintaining twoiterators, i, and j, with values in A[p, i] all less than orequal to x, and values in A[i+ 1, j] all greater than x.

1. Algorithms and Data Structures – 4/12

PARTITION

PARTITION (A, p, r)1. x = A[r]2. i = p− 13. for j = p to r − 14. if A[j] ≤ x5. i = i+ 16. exchange A[i] with A[j]7.exchange A[i+ 1] with A[r]8. return i+ 1

1. Algorithms and Data Structures – 5/12

QUICKSORT

QUICKSORT (A, p, r)1. if p < r2. q = PARTITION(A, p, r)3. QUICKSORT (A, p, q − 1)4. QUICKSORT (A, q + 1, r)

1. Algorithms and Data Structures – 6/12

Performane

If, miraulously, every partition value set in the reursivealls is the median of its array, QUICKSORT will have thereurrene

T (n) ≤ 2T
(

n
2

)

+ cn, so Θ(n lg n) running time.If, miraulously, every partition value set in the reursivealls is the minimum of its array, QUICKSORT will havethe reurrene

T (n) ≤ T (n− 1) + cn, so Θ
(

n2
) running time.

1. Algorithms and Data Structures – 7/12

Randomizing

RANDOMIZED-PARTITION (A, p, r)1. i = RANDOM (p, r)2. exchange A[r] with A[i]3. return PARTITION (A, p, r)

1. Algorithms and Data Structures – 8/12

Randomized Quiksort
RANDOMIZED-QUICKSORT (A, p, r)1. if p < r2. q = RANDOMIZED-PARTITION(A, p, r)3. RANDOMIZED-QUICKSORT (A, p, q − 1)4. RANDOMIZED-QUICKSORT (A, q + 1, r)

1. Algorithms and Data Structures – 9/12

Expeted Running Time

Note that the running time of all the

RANDOMIZED-PARTITION alls together gives a Θ−boundon the running time of RANDOMIZED-QUICKSORT.The expeted number of total omparisons in the alls to

RANDOMIZED-PARTITION gives a Θ−bound on theexpeted running time of RANDOMIZED-PARTITION.

1. Algorithms and Data Structures – 10/12

Indiator RVs

To simplify notation, denote the elements of A in sortedorder by z1 ≤ z2 ≤ ..zn. De�ne the indiator randomvariable Xij =
I {zi is compared to zj in a particular execution of RANDOMIZED-QUICKSOR .Observe that omparison takes plae only between apivot and a non-pivot. Values are used as pivots at mostone. If zk with zi < zk < zj is hosen as a pivot before

zi and before zj, then zi and zj will not be ompared inthat exeution of RANDOMIZED-QUICKSORT.

1. Algorithms and Data Structures – 11/12

E [Xij]

Pr (zi compared to zj) is equal to the probability that the�rst pivot seleted from {zi, zi+1..zj} is zi or zj. This is
2

j−i+1

.The expeted total number of omparisons is
E [X] =

∑n−1

i=1

∑n
j=i+1

2

j−i+1
=

∑n−1

i=1

∑n−i+1

k=2

2

k

≤
∑n−1

i=1

∑n
k=2

2

k
≤ 2

∑n
i=1

ln (n) = O (n lg n)Conlude that the expeted running time of

RANDOMIZED-QUICKSORT is O (n lg n).

1. Algorithms and Data Structures – 12/12

	{Chapter 7}
	{Comparison Sorting}
	{Partitioning}
	{PARTITION}
	{QUICKSORT}
	{Performance}
	{Randomizing}
	{Randomized Quicksort}
	{Expected Running Time}
	{Indicator RVs}
	{$Eleft [X_{ij}ight]$}

