Algorithms and Data Structures
Chapter 7

Catherine Durso

cdurso@s. du. edu

1. Algorithms and Data Structures — 1/12

Chapter 7

Quicksort is a comparison sort that is not stable and has
© (nz) worst case running time. However, Randomized
Quicksort has O (nlgn) expected running time. It is
optimized to have very good performance on average
compared to known comparison sorts with © (nlgn)
expected running times.

1. Algorithms and Data Structures — 2/12

Comparison Sorting

A comparison sort is a sort that uses only the < operator among
keys to sort the data. Comparison sorts have a theoretical

(2 (nlgn) bound on running time. Roughly, this follows because a
comparison sort of n items must be able to return any of the n!
possible permutations of the input order. There must be n! paths
through the comparisons. Since each comparison results in two
branches, there must be at least Ig (n!)comparisons.

Sorts that take advantage of features of the data can be O (n).
For example, if the values are known to be n positive integers
bounded by Mn for some finite M, they can be sorted in linear
time by reading them into a direct address table, then reading
them out in order.

1. Algorithms and Data Structures — 3/12

Partitioning

The basic component of Quicksort is a routine,
PARTITION. For a value x in the array A|p, r| PARTITION
rearranges A so that for some ¢, x = Alq|,

se{p,..q — 1} — Als|] <=z, and

se€{qg+1,..r} — Als] > x.The routine returns q.

The PARTITION routine works by maintaining two
iterators, ¢, and 7, with values in Alp,] all less than or
equal to x, and values in Al + 1, j] all greater than .

1. Algorithms and Data Structures — 4/12

PARTITION

PARTITION (A, p,)

1. x = Alr]

2.1 =p—1

3. forjg =ptor — 1

4. if Alj] <z

b. 1 =1+ 1

6. exchange Ali| with A|j]
7 .exchange Ali + 1] with A|r]

8. return i + 1

1. Algorithms and Data Structures — 5/12

QUICKSORT

QUICKSORT (A, p, 1)

1.
2.
3.
4.

ifp <r
q = PARTITION(A, p,r)
QUICKSORT (A, p,q — 1)
QUICKSORT (A, q + 1,7)

1. Algorithms and Data Structures — 6/12

Performance

If, miraculously, every partition value set in the recursive
calls is the median of its array, QUICKSORT will have the

recurrence
T(n) < 2T (%) + cn, so © (nlgn) running time.

If, miraculously, every partition value set in the recursive
calls is the minimum of its array, QUICKSORT will have

the recurrence
T(n) <T(n—1)+cn, so O (n?) running time.

1. Algorithms and Data Structures — 7/12

Randomizing

RANDOMIZED-PARTITION (A, p,)
1. © = RANDOM (p, 1)

2. exchange A|r| with Ali]

3. return PARTITION (A, p,7)

1. Algorithms and Data Structures — 8/12

Randomized Quicksort

RANDOMIZED-QUICKSORT (A, p,)

L. ifp<r
2. q = RANDOMIZED-PARTITION(A, p,)
3. RANDOMIZED-QUICKSORT (A, p,q — 1)

4. RANDOMIZED-QUICKSORT (A, g+ 1, 7“)

1. Algorithms and Data Structures

-9/12

Expected Running Time

Note that the running time of all the
RANDOMIZED-PARTITION calls together gives a ©—bound
on the running time of RANDOMIZED-QUICKSORT.

The expected number of total comparisons in the calls to
RANDOMIZED-PARTITION gives a ©—bound on the
expected running time of RANDOMIZED-PARTITION.

1. Algorithms and Data Structures — 10/12

Indicator RVs

To simplity notation, denote the elements of A in sorted

order by z1 < 29 < ..z,. Define the indicator random

variable X;; =

1 {ZZ Is compared to z; in a particular execution of RANDOMIZED-QUI(

Observe that comparison takes place only between a
pivot and a non-pivot. Values are used as pivots at most
once. If z; with z; < 23, < z; is chosen as a pivot before
z; and before z;, then z; and z; will not be compared in
that execution of RANDOMIZED-QUICKSORT.

1. Algorithms and Data Structures — 11/12

E | X]

Pr (z; compared to z;) is equal to the probability that the

first pivot selected from {z;, zi+1..25} is z; or z;. This is
y
il

The expected total number of comparisons E

EX] =300 g = i Yy 2
Z Zk 213322@ 1111() O(nlgn)

Conclude that the expected running time of
RANDOMIZED-QUICKSORT is O (nlgn).

1. Algorithms and Data Structures — 12/12

	{Chapter 7}
	{Comparison Sorting}
	{Partitioning}
	{PARTITION}
	{QUICKSORT}
	{Performance}
	{Randomizing}
	{Randomized Quicksort}
	{Expected Running Time}
	{Indicator RVs}
	{$Eleft [X_{ij}
ight]$}

