
Algorithms and Data Stru
turesChapter 7
Catherine Durso

cdurso@cs.du.edu

1. Algorithms and Data Structures – 1/12

Chapter 7

Qui
ksort is a
omparison sort that is not stable and has
Θ
(

n2
) worst
ase running time. However, RandomizedQui
ksort has O (n lg n) expe
ted running time. It isoptimized to have very good performan
e on average
ompared to known
omparison sorts with Θ(n lg n)expe
ted running times.

1. Algorithms and Data Structures – 2/12

Comparison Sorting

A
omparison sort is a sort that uses only the ≤ operator amongkeys to sort the data. Comparison sorts have a theoreti
al
Ω (n lg n) bound on running time. Roughly, this follows be
ause a
omparison sort of n items must be able to return any of the n!possible permutations of the input order. There must be n! pathsthrough the
omparisons. Sin
e ea
h
omparison results in twobran
hes, there must be at least lg (n!)
omparisons.Sorts that take advantage of features of the data
an be Θ(n).For example, if the values are known to be n positive integersbounded by Mn for some �nite M , they
an be sorted in lineartime by reading them into a dire
t address table, then readingthem out in order.

1. Algorithms and Data Structures – 3/12

Partitioning

The basi

omponent of Qui
ksort is a routine,
PARTITION. For a value x in the array A[p, r],PARTITIONrearranges A so that for some q, x = A[q],
s ∈ {p, ..q − 1} → A[s] ≤ x, and
s ∈ {q + 1, ..r} → A[s] > x.The routine returns q.The PARTITION routine works by maintaining twoiterators, i, and j, with values in A[p, i] all less than orequal to x, and values in A[i+ 1, j] all greater than x.

1. Algorithms and Data Structures – 4/12

PARTITION

PARTITION (A, p, r)1. x = A[r]2. i = p− 13. for j = p to r − 14. if A[j] ≤ x5. i = i+ 16. exchange A[i] with A[j]7.exchange A[i+ 1] with A[r]8. return i+ 1

1. Algorithms and Data Structures – 5/12

QUICKSORT

QUICKSORT (A, p, r)1. if p < r2. q = PARTITION(A, p, r)3. QUICKSORT (A, p, q − 1)4. QUICKSORT (A, q + 1, r)

1. Algorithms and Data Structures – 6/12

Performan
e

If, mira
ulously, every partition value set in the re
ursive
alls is the median of its array, QUICKSORT will have there
urren
e

T (n) ≤ 2T
(

n
2

)

+ cn, so Θ(n lg n) running time.If, mira
ulously, every partition value set in the re
ursive
alls is the minimum of its array, QUICKSORT will havethe re
urren
e

T (n) ≤ T (n− 1) + cn, so Θ
(

n2
) running time.

1. Algorithms and Data Structures – 7/12

Randomizing

RANDOMIZED-PARTITION (A, p, r)1. i = RANDOM (p, r)2. exchange A[r] with A[i]3. return PARTITION (A, p, r)

1. Algorithms and Data Structures – 8/12

Randomized Qui
ksort
RANDOMIZED-QUICKSORT (A, p, r)1. if p < r2. q = RANDOMIZED-PARTITION(A, p, r)3. RANDOMIZED-QUICKSORT (A, p, q − 1)4. RANDOMIZED-QUICKSORT (A, q + 1, r)

1. Algorithms and Data Structures – 9/12

Expe
ted Running Time

Note that the running time of all the

RANDOMIZED-PARTITION
alls together gives a Θ−boundon the running time of RANDOMIZED-QUICKSORT.The expe
ted number of total
omparisons in the
alls to

RANDOMIZED-PARTITION gives a Θ−bound on theexpe
ted running time of RANDOMIZED-PARTITION.

1. Algorithms and Data Structures – 10/12

Indi
ator RVs

To simplify notation, denote the elements of A in sortedorder by z1 ≤ z2 ≤ ..zn. De�ne the indi
ator randomvariable Xij =
I {zi is compared to zj in a particular execution of RANDOMIZED-QUICKSOR .Observe that
omparison takes pla
e only between apivot and a non-pivot. Values are used as pivots at moston
e. If zk with zi < zk < zj is
hosen as a pivot before

zi and before zj, then zi and zj will not be
ompared inthat exe
ution of RANDOMIZED-QUICKSORT.

1. Algorithms and Data Structures – 11/12

E [Xij]

Pr (zi compared to zj) is equal to the probability that the�rst pivot sele
ted from {zi, zi+1..zj} is zi or zj. This is
2

j−i+1

.The expe
ted total number of
omparisons is
E [X] =

∑n−1

i=1

∑n
j=i+1

2

j−i+1
=

∑n−1

i=1

∑n−i+1

k=2

2

k

≤
∑n−1

i=1

∑n
k=2

2

k
≤ 2

∑n
i=1

ln (n) = O (n lg n)Con
lude that the expe
ted running time of

RANDOMIZED-QUICKSORT is O (n lg n).

1. Algorithms and Data Structures – 12/12

	{Chapter 7}
	{Comparison Sorting}
	{Partitioning}
	{PARTITION}
	{QUICKSORT}
	{Performance}
	{Randomizing}
	{Randomized Quicksort}
	{Expected Running Time}
	{Indicator RVs}
	{$Eleft [X_{ij}
ight]$}

