
Low Latency and Cheat-proof Event Ordering for
Peer-to-Peer Games∗

Chris GauthierDickey,
†

Daniel Zappala, Virginia Lo, and James Marr
‡

University of Oregon
Department of Computer Science

1202 University of Oregon
Eugene, OR 97403-1202

{chrisg | zappala | lo | james}@cs.uoregon.edu

ABSTRACT
We are developing a distributed architecture for massively-
multiplayer games. In this paper, we focus on designing
a low-latency event ordering protocol, called NEO, for this
architecture. Previous event ordering protocols prevent sev-
eral types of cheats at the expense of operating at the la-
tency of the slowest player. We broaden the definition of
cheating to include four common protocol level cheats and
demonstrate how NEO prevents these cheats. At the same
time, NEO has a playout latency independent of network
conditions and adapts to network congestion to optimize
performance.

Categories and Subject Descriptors: C.2.4 [Distributed
Systems]:Distributed applications, I.6.8 [Types of Simula-
tion]:Gaming

General Terms: Algorithms, Performance, Security

Keywords: low-latency, cheat-proof, peer-to-peer,
distributed, interactive, games

1. INTRODUCTION
Traditionally, multi-player games have used a client/server

communication architecture. This architecture has the ad-
vantage that a single authority orders events, resolves con-
flicts in the simulation, acts as a central repository for data,
and is easy to secure. On the other hand, this architecture
has several disadvantages. First, it introduces delay because
messages between players are always forwarded through the
server. Second, traffic at the server increases with the num-
ber of players, creating localized congestion. Third, with

∗This work was supported in part by the National Science
Foundation under grant ANI-9977524.
†Supported by an NSF Graduate Research Fellowship
‡Supported by an NSF Research Experience for Undergrad-
uates grant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04, June 18–18, 2004, Cork, Ireland.
Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

small multi-player games, the server is hosted by one player,
and the others must trust that the server is not tainted.
Last, this architecture is limited by the computational power
of the server. While we can throw technology at most of
these problems in the form of more servers and higher band-
width lines, this solution incurs significant cost.

To address these problems, we are developing a fully dis-
tributed, peer-to-peer architecture for massively-multiplayer
online games (MMOGs). This architecture allows peers to
send messages directly to each other, reducing the delay
for messages and eliminating localized congestion. It al-
lows players to start their own games without the incredible
investment in resources required by a client/server architec-
ture. Furthermore, this architecture allows games to over-
come the bottleneck of sever-only computation by harness-
ing the processing power of the players’ machines through
peer-to-peer computing.

To build a distributed game, we must first overcome the
fundamental problem of preventing cheating in an untrusted
environment. Specifically, how can players trust each other
to accurately represent when a given event has occurred?
Accordingly, the first component we have designed for this
architecture is the New-Event Ordering (NEO) protocol,
which provides low latency event ordering while still pre-
venting common protocol-level cheats. NEO provides much
lower latency than previous event ordering protocols, which
are limited by the latency of the slowest player to any other
player in the game. NEO divides time into “rounds” and
uses the round duration to bound the maximum latency
of a player from a majority of other players in the game.

This means that it is acceptable to be slow to some players,
as long as most players get your updates in a timely fash-
ion. While NEO dramatically improves performance, it does
not compromise trust. We show how NEO can prevent five
common protocol-level cheats, under a broader definition of
cheating than has been previously used.

In this paper, we describe our peer-to-peer game architec-
ture and the motivation behind designing a new architec-
ture. We then describe the NEO protocol and show how
it can provide low latency event ordering for distributed
games, while also preventing cheating at the protocol level.
We finish by extending NEO with several enhancements that
allow players to react to network congestion and improve
game play when congestion is low.

2. A TAXONOMY OF CHEATING
In order to understand the problems that arise when de-

signing a distributed event ordering protocol, we present a
short taxonomy of cheating. We define a cheat as any action
by a player that gives her an unfair advantage over another
player. Cheats can be categorized by the layer in which they
occur: game, application, protocol, or network. The cheats
are described in the context of the cheating player named
Eve and a competing player named Alice.

Game level cheats occur by breaking the rules of the game.
For example, Eve discovers that by dropping an object while
casting a spell allows her to keep a copy of the object in her
inventory, even though she just dropped it (granting her the
ability to duplicate any object in the game). Application
level cheats occur by modifying the code of the game or
operating system. A common example is modifying the ren-
dering code so that walls in a game are invisible, making it
easy to locate hidden players. Protocol level cheats occur
by modifying the protocol, such as changing the contents of
packets. Network level cheats occur because of properties
inherent in the network layer. A denial-of-service attack is
an example of a network level cheat.

Our focus in this paper is preventing protocol level cheats.
We define five common protocol level cheats, based on our
experience with distributed games:

Fixed-Delay Cheat: In the fixed-delay cheat, Eve adds
a fixed amount of delay to her outgoing packets, allowing
Eve to receive packets faster than she is sending them. Eve
gains the advantage of being able to react quicker to other
players than they can react to her delayed packets.

Timestamp Cheat: Because events must be ordered for
consistency purposes, a global clock is often used for time
stamping. In the timestamp cheat, Eve waits to receive
an update from Alice and then sends her update with a
timestamp that is before Alice’s. For example, Eve could
send out a move with a timestamp earlier than the ’Alice
shoots Eve’ update just received. To other players, Eve’s
message appears to be delayed and the shot misses.

Suppressed Update Cheat: In this cheat, Eve sup-
presses all updates to one or more players, while continuing
to receive their updates. This cheat allows Eve to ’hide’ from
other players, since they are no longer receiving her updates,
but she is receiving theirs. Eve sends a new packet with her
current position before she is dropped from the game.

Inconsistency Cheat: In the inconsistency cheat, Eve
sends different updates to different players in the game. We
describe this cheat in the context of Alice, a competing
player. Eve sends her ’real’ update to every player while
sending a different update to Alice at time t. Now Alice
thinks Eve is in a different location than she really is, but
every other player will disagree with Alice on Eve’s loca-
tion. Later, Eve can send updates to Alice that merge the
two differing opinions on her location in order to hide her
cheat. In the worse case scenario, Alice can corrupt an entire
game, but Alice can also corrupt a single player, eliminating
them from the game. The inconsistency cheat arises from
the Byzantine General’s Agreement problem [10], but in this
case we are trying to have an agreement on everyone’s game
state.

Collusion Cheat: A collusion cheat occurs by having
several players collude and either share packets or modify
them in some way to gain an advantage over other players.
For example, Eve is colluding with Mallory and is trying to

catch Alice. Mallory sees Alice, even though Eve cannot, so
Mallory can simply inform Eve of Alice’s location. Recall
that this occurs at the protocol level–in other words, Mallory
can simply forward Alice’s positional updates to Eve even
though she shouldn’t receive them.

3. MOTIVATION
Besides overcoming the limitations of the client/server ar-

chitecture, we are motivated to develop a fully distributed
architecture for MMOGs because of the past research related
to distributed games.

Diot, Gautier and Kurose described the first protocol for
distributed games in [6, 8] and built a game called MiMaze
to demonstrate its feasibility. Their work is important be-
cause they developed a technique called bucket synchroniza-
tion, in which game time is divided into ’buckets’, in order
to maintain state consistency among players. The MiMaze
protocol uses multicast to exchange packets between play-
ers, resulting in a low latency; however, it does not address
the problem of cheating.

At the other end of the spectrum, Baughman and Levine
designed the lockstep protocol to address the problem of pro-
tocol level cheats [1]. Lockstep uses rounds for time, which
are broken into two steps: first, everyone reliably sends a
cryptographic hash of their move, then everyone sends the
plain-text version of their move. This forces everyone to
commit their move, without revealing it, thereby preventing
anyone from knowing someone else’s move ahead of time.

To mitigate the problem of delay introduced by reliable
transport, Baughman and Levine added event scoping (called
asynchronous synchronization in [1]). Event scoping re-
quires that players exchange updates only when their actions
might intersect. To do this with lockstep, each player asso-
ciates a sphere of influence with every other player. When a
player receives or misses an update from another player dur-
ing a round, the associated sphere is contracted or dilated
respectively. This allows players to progress in rounds asyn-
chronously until their sphere intersects with another player’s
sphere–at which point they must engage in lockstep (and
wait for each other’s messages).

Lockstep is a major advance in distributed protocols be-
cause it is provably secure against the fixed-delay and times-
tamp cheats. It gains this security by forcing moves to occur
in lockstep–no player can receive a plain-text move before
they commit their move.

Unfortunately, lockstep has several drawbacks. First, its
playout latency, which is the time from when an update is
sent out to when the update can be displayed to other play-
ers, has a minimum bound of three times the latency of the
slowest link between any two players. This bound is due to
the use of reliable transport for sending the hashed update,
followed by sending the plain-text update. Event scoping
does not help to reduce latency because players that are
close in the virtual world of a game may in fact incur sig-
nificant propagation and queueing delay. Second, lockstep
is vulnerable to the suppressed update cheat–a malicious
player can stop sending updates, stopping round progression
until other players drop her from the game. Last, lockstep
is vulnerable to collusion when event scoping is used. Since
rounds no longer progress synchronously, a player can re-
ceive a plain-text update from another player and forward
the update on to other players who have not yet committed
their move for that round.

Cronin et al. designed the Sliding Pipeline (SP) protocol
[4] in order to improve the lockstep protocol. They add
an adaptive pipeline that allows players to send out several
moves in advance without waiting for ACKs from the other
players, reducing the time that is dead-reckoned between
rounds. The pipeline depth is designed to grow with the
maximum latency between players so that jitter, or inter-
packet arrival time, is reduced.

While the SP protocol reduces jitter and dead-reckoning,
it still has the same playout latency as lockstep. In terms
of security, the protocol prevents the timestamp cheat, but
allows a player to use the fixed-delay cheat [4] because a
player can artificially increases her delay to receive a plain-
text move before committing her move for a given round.
The adaptive pipeline helps detect this cheat, but it can
falsely label someone with an increased delay as a cheater.
Furthermore, a cheater can use the fixed-delay update cheat
every other round and not be detected.

Bharambe et al. have proposed Mercury, a distributed
publish-subscribe communication architecture [3]. Mercury
provides channels, which can be of any subject, uses a sub-
scription language (that is a subset of relational database
query languages), and uses rendezvous points (RPs) to gather
and disseminate publications. Unfortunately their results
show that it cannot meet the performance requirements for
MMOGs due to the routing delay introduced by their archi-
tecture [3].

In the game industry, very few networked games are fully
distributed. One notable exception is Age of Empires (AoE)
[2], in which games are synchronized across clients and peer-
to-peer communication is used. AoE’s protocol is similar to
bucket synchronization, except that unicast is used. While
AoE is a commercial success for distributed game proto-
cols, it is subject to all but the inconsistency cheat (because
players periodically exchange hashes of the game state with
other players to detect inconsistencies).

Finally, we note that the area of distributed interactive
simulation (DIS) addresses some of the same issues, but all
participants are trusted, so the DIS protocols do not attempt
to prevent packet-level cheating.

4. TOWARDS A PEER-TO-PEER GAME
ARCHITECTURE

We are developing a fully distributed MMOG architecture
based on four components. First, an authenticating compo-
nent is responsible for allowing or denying players access to
the game. Second, a communication component determines
how players send messages to each other. Third, the storage
component provides long-term storage for world state. Last,
the computation component determines how computations
are distributed to players in the game. Figure 1 shows our
architecture.

The authenticating component provides several necessary
functions. First, every player is uniquely identified in the
game, through a mechanism such as a public-key system or
registration in the game with something such as a credit
card number. This feature allows the system to determine if
any two identifiers belong to the same individual. Further, it
allows the game to permanently remove players and prevents
a single player from joining the game simultaneously with
multiple identities. Second, we assume the authenticating
component can generate keys for the game and authenticate

Communications Component

Virtual World

A

B

C

Computation Component

x
y

z

Storage Component

Authentication

Component

Player x: id, ip addr.
Player y: id, ip addr.
Player z: id, ip addr.
 .
 .
 .
 .

NEO Group

Player

Leader

Group

Hierarchy

Figure 1: Our peer-to-peer game architecture

players. We call this function the authenticating directory

(AD) service, which allows an authenticated player to locate
current players and allows authenticated players to present
proof that a player was cheating in order to permanently
ban another player from the game.

The communication component uses a self-organizing hi-
erarchy that mirrors the structure of the virtual world. This
model works well with games because events in one part of
the world do not affect other parts of the world. In each part
of the virtual world, players form a peer-to-peer network in
order to exchange event messages. These networks are at a
very small granularity, such as a room within a building, as
determined by how far events must propagate to reach the
affected players. Some events affect multiple groups, such
as the lights going off in a building; in these cases, the event
is propagated through the world hierarchy by group leaders
in each peer-to-peer network.

The storage component, which stores long-term game state,
is comprised of a distributed hash table (DHT), such as
CAN [13] or Chord [14], and security and reliability ser-
vices. A large amount of research is currently being per-
formed on peer-to-peer file systems (such as OceanStore [9]
or CFS [5]), and we hope to leverage this work and determine
how it meets the needs of a distributed MMOG. Particular
concerns include long-term persistent storage and fast and
secure updates.

The last component, the computation component, is used
to schedule game computations among the players. We are
currently researching scheduling techniques [11] to deter-
mine efficient algorithms to schedule computations on play-
ers’ processors, though games have unique requirements.
For example, the artificial intelligence (AI) of a monster
should be activated when a player approaches it within some
distance. However, the players directly interacting with the
monster cannot be trusted to accurately compute the AI of
the monster. On the other hand, the AI should be verified by
several other players to make sure that collusion doesn’t oc-
cur between distant players. The implication of these needs
is that a scheduler must be able to make decisions about
who can execute processes in the game and results must be
verified to prevent cheating.

5. LOW DELAY EVENT ORDERING
Our current focus is on designing the communications

component for our distributed game architecture. In par-
ticular, we are focusing on event ordering at the lowest level
in the communications hierarchy–within a group of players

that may be in the same room of a building. To provide this
local ordering, we use a global clock to mark when events
occur, but this leads to the challenging problem of trusting
whether an event actually occurred at the time a player as-
serts that it has. In the rest of this paper, we focus on this
problem in isolation; we recognize that several challenging
problems remain, such as splitting and merging groups of
players, and propagating events along the communications
hierarchy.

Lockstep is the first event-ordering protocol to address the
issue of cheat prevention. To guarantee that events have oc-
curred at the stated time, lockstep orders events by rounds,
incrementing a round only after every player has committed
their move for that round. The price of this total ordering
of events is a delay that is proportional to the largest delay
between any two players.

To understand this problem more clearly, let us assume
we have a multi-player game with a group of players located
in the US and all in the same virtual location in the game.
Under the lockstep protocol, the players must all exchange
messages. At time t, a new player arrives in the same virtual
location, but is connecting from Mongolia. A quick mea-
surement shows the average round-trip time from the US to
Mongolia is 728ms. This new player will force all players to
proceed in lockstep, which requires 3 times the longest delay
between players (due to the use of reliable transport). As-
suming links are symmetric, rounds will progress at the rate
of 1 round per 1,092ms, assuming that no packets are lost.
Typically, the desired round time is an order of magnitude
smaller [6].

Our protocol, inspired by bucket synchronization in [6],
uses rounds to order events. The length of a round is bounded
by a maximum latency, ensuring that players can receive up-
dates in a timely fashion. To prove that an event occurred at
its stated time, a player must be able to send her update to
a majority of other players within the round duration. This
proof is communicated to all the players through a round
of voting, indicating which messages each user has received
during the round duration. As long as a majority of players
receive updates on time, then with the situation above, the
slow player from Mongolia will not affect the round dura-
tion. The tradeoff is that a player who is slow to most other
players will also not be able to play in this area of the virtual
world. However, we feel this tradeoff is preferable to making
the game unplayable for everyone.

6. NEW-EVENT ORDERING PROTOCOL
The New-Event Ordering (NEO) protocol is the first pro-

tocol that totally orders events generated by a distributed
group, avoids five common protocol level cheats, has a play-
out latency that is independent of network conditions, and
adapts to changing network conditions to optimize its per-
formance.

NEO is purposely agnostic regarding the underlying mes-
sage propagation system. Unicast, multicast, or some type
of overlay could be used to send messages, though the use of
something other than unicast or native multicast could in-
troduce new ways of cheating (such as not forwarding mes-
sages). However, this flexibility allows us to have alterna-
tives when considering the extreme case of everyone in a
game going to the same location in the virtual world and
having to exchange messages. In this case, group density
could be used to trigger a switch to multicast, for example.

With NEO, the majority always rules. This has the bene-
fit that the protocol will adapt so that the majority of play-
ers are receiving the best possible performance. However,
this also means that if a majority of players can collude and
cheat, then NEO will not be able to prevent it. We address
this problem under Collusion Cheats below.

In our discussion of NEO, we assume that all players are
in the same location of a virtual world, that all players know
of each other and communicate via UDP over unicast, that
any player can authenticate the message of another player
through signatures, and that game time is synchronized be-
tween players using a time synchronizing protocol such as
NTP [12].

6.1 Basic NEO Protocol
For simplicity, we start with a basic NEO protocol that

prevents only the suppressed update and timestamp cheats.
We later extend this protocol to address the other three
protocol level cheats.

In NEO, time is broken into equal intervals, called rounds,
in which each player sends an update to all other players.
Each update is encrypted, and in the following round, each
player sends the key for the previous update to all other
players.

NEO uses rounds in order to bound the maximum delay
that any player can have for sending their update. Late up-
dates are considered invalid, unless a majority of other peo-
ple have received them. This means that unlike the lockstep
or sliding pipeline protocol, which have playout latencies
bounded by 3 times the maximum latency between any two
players, NEO bounds its playout latency by only 2d, where
d is the round length and is independent of any player’s la-

tency. This allows game developers to choose how big or
small the round length is, and therefore the responsiveness
of the game.

Presumably, the maximum round length is the maximum
amount of time a round can be for a game to be playable.
Thus, any player who cannot reach a majority of players
within the maximum round length cannot play the game
with those players. This is acceptable, since the game is
unplayable when a player’s delay is beyond the maximum
round length.

Each message contains a time-stamped, signed, encrypted
update, a key for the previous round, and a signed bit-vector
of messages received from the previous round. For example,
a message M from player A at round r has the following
format:

M
r

A = E(SA(Ur

A)), Kr−1

A , SA(V r−1

A) (1)

In this message, E(x) is an encrypted x, SA(x) represents
A’s signature on x, Ur

A is the update from player A for round
r, Kr−1

A
is A’s key for the update from round r − 1, and

V r−1 is the bit vector of votes for messages (defined shortly)
received during round r − 1.

Because a player releases her key for an update immedi-
ately after the end of the round, she cannot accept any late
updates. However, each player may have a different set of
updates that arrived on time for a given round. To maintain
consistency, players accept an update only if a majority of
players received the update on time.

Consistency is achieved through a distributed voting mech-
anism. A player votes positive for another player if the other
player’s update was received on time; otherwise, she votes
negative. An update is considered valid only if a majority

Table 1: Player A’s Table of Votes
Player Bit-vector

A 1 1 0 1 0

B 0 1 0 1 0

C 1 1 1 0 0

D 1 1 1 1 1

E packet lost

Voting tally 3 4 2 3 1

of the players send a positive vote. Each round the play-
ers tally the votes they have and decide which updates are
considered valid. Any votes which are not received are con-
sidered abstentions; however, a majority of votes must be
received for the vote to be considered valid. If not enough
votes are received, the players must attempt to contact the
players that abstained from the vote.

To understand how voting works, assume five players are
in a game, and player A is tallying the votes from the pre-
vious round. Also assume that a majority is greater than
50%. Table 1 lists the voting bit-vectors that each player
has sent to player A. From the tally, we can conclude that
a majority received A, B and D’s updates, while a majority
did not receive E’s update (so it is considered invalid). As
for player C, player A cannot determine what the outcome of
the vote is, so she must contact another player to determine
the outcome.

The primary reason for voting is that it allows rounds to
progress without needing to hear from every player every
round. This decouples the playout latency from the players’
latency because round progression no longer relies on reliable
communication. Assuming that a majority of players are
receiving updates and votes, NEO will continue to progress
through rounds1. On the other hand, with lockstep and the
sliding pipeline protocols, if just one player drops an update,
all players must wait until that update is recovered before
the game can progress to the next round.

The secondary reason for using voting is that we only want
to reconcile a minority of players at any time in order to keep
the majority of players happy. Recall that dead-reckoning
is being used between rounds so that if a player has to ad-
just their simulation, it is because she is with a minority of
players whose game state differs from the majority.

In [7], we prove the safety and liveness of NEO, but omit
the proof here due to space constraints. The safety and
liveness proof tells us that the fixed-delay and timestamp
cheats are not possible under NEO and that NEO always
progresses. Safety can be understood intuitively because a
key is never sent until the round is over, at which point no
new moves for the round can be generated. We prove live-
ness by showing that round numbers increase monotonically
with real time and that NEO does not halt for any reason,
even in the face of inadequate votes.

6.2 NEO with Pipelined Rounds
In the basic protocol, the delay from each player to the

majority of other players is bounded by the duration of the
round. Increasing the round length increases the frequency
with which the game must dead-reckon the positions and

1
If a majority of players are not receiving updates from each

other, then the game is unplayable. But this holds true for any
game, distributed or not!

round duration

arrival
delay

pipeline
depth

r=1

r=2

r=3

r=4

r=5

Dependency between
 update and key

U(1)

U(2)

U(3)

U(4)

U(5),K(1)

Figure 2: Pipelining rounds in NEO.

actions of other players. During this period of dead-reckoned
time, the game is inconsistent and unresponsive. To address
these problems, NEO pipelines its rounds, similar to the
technique of pipelining instructions in a processor and to the
SP protocol [4]. The pipeline depth is related to the round
duration and the round arrival delay, as seen in Figure 2.
This relationship can be expressed in the following formula:

pipeline depth =
round duration

arrival delay
(2)

Using pipelined rounds does not significantly change our ba-
sic protocol, except with regard to sending out the key to
our encrypted update and how often updates are sent out. A
dependency exists between the end of the round that an en-
crypted update is sent out and the beginning of the round
that the key is sent out (see Figure 2). Similar to a de-
pendency in a processor pipeline where we must wait until
the dependency has passed to execute a new instruction, we
must wait until the round with the update has passed before
we can send the key for the update. For example, if a round
starts at t=80ms and the round duration is 120ms, then the
key must not be sent until t=200ms. We can now generalize
Equation 1 using the pipeline depth d and round number r

for player A in the following equation:

M
r

A = E(SA(Ur

A)),Kr−d

A , SA(V r−d

A) (3)

As the sending rate of updates increases, the responsiveness
and visual smoothness of the game increase.

6.3 Security
Now we explain how NEO prevents the cheats from Sec-

tion 2:
Fixed-Delay Cheat: NEO addresses this cheat through

the use of bounded round lengths. Late updates are simply
ignored by everyone.

Timestamp cheat: NEO prevents this cheat through
the use of bounded round lengths. Once a round has passed,
a player can no longer submit a move for that round; there-
fore it is impossible to receive a decrypted update before
submitting the move for the previous round.

Suppressed Update Cheat: NEO adjusts the sending
rate of Eve’s opponents, as described in Section 7. Eve’s
missing packets signal congestion to NEO, so that her op-
ponents will stop sending their updates to her. Thus, she
no longer has an advantage by suppressing updates since
she will no longer receive her opponent’s updates either. If
a player crashes, they will simply be ignored by other players
until they are removed from the system.

Inconsistency Cheat: NEO addresses this cheat through
the use of digital signatures and state comparison. Players
periodically audit game state by performing a state compar-
ison. When two players discover different state, the trail of
packets they have received can be used as evidence against a
cheating player. Using the authentication component of our
architecture, cheating players can be permanently removed
from the game once this proof is provided.

Collusion Cheat: NEO addresses collusion at the archi-
tectural and protocol levels. First, NEO can adjust the ma-
jority value sufficiently high to prevent collusion. Second,
the AD service prevents players from logging in multiple
times and artificially gaining a majority. Third, the commu-
nication component of our architecture can randomly select
witnesses for a NEO group. As the number of witnesses in-
crease, the probability that a group of colluding players can
form a majority decreases.

7. PERFORMANCE ENHANCEMENTS
In order to improve performance and to react to network

congestion, we modify NEO to dynamically adjust the round
duration and sending rate. To prevent synchronization prob-
lems and to re-synchronize disconnected players who have
returned, NEO updates include the starting time of the
round, the round duration, and the current sending rate.
Over the long term, if any player consistently receives late
messages, she can re-synchronize her game state with the
other players (as when joining the game).

Adjusting the round duration and sending rate is a trade-
off in performance and overhead. Shorter rounds allow games
to be more responsive to players, and higher sending rates
decrease the dead-reckoned time and jitter. NEO uses peer-
to-peer voting to find a consensus for adjustment; more fre-
quent voting produces quicker reaction to network condi-
tions.

7.1 Adjusting the Round Duration
Because players send out their updates at the start of each

round, each player can record the delay from other players
to herself. Early updates indicate that the round duration
can be decreased, from the perspective of that player, while
late updates indicate that the round duration should be in-
creased. NEO uses a weighted average over the last several
rounds to avoid reacting to transient congestion. Once votes
are collected and a majority of votes are for an adjustment,
the new round duration and the time for the round change
are advertised to all players.

7.2 Adjusting the Sending Rate
In addition to adjusting the round length, NEO should

react to congestion as indicated by dropped packets. Every
player in the game can measure her own loss rate and other
players’ late packets. Players can adjust the sending rate
locally and globally, to react to short-term and long-term
congestion.

A player adjusts her sending rate locally by purposely
skipping updates. Skipped updates decrease responsiveness
in the game, but due to the voting mechanism in NEO, other
players will not need to retrieve her skipped update. Players
vote to globally adjust the sending rate in response to long
term congestion. Each player keeps a weighted average of
their local loss rate. When a majority of votes for a global
rate adjustment is collected, the new rate and time of the

rate change is advertised to the players.
A player may also adjust her local sending rate in order

to prevent the suppressed update cheat. Because a cheater
may purposely skip updates, we want to ensure that a player
never sends more updates than she is receiving. To achieve
this, each person may skip updates to a particular player
whenever her rate exceeds that player’s rate. Any player
that attempts to suppress packets to another player will find
that the other player will immediately begin to suppress
messages in return.

8. FUTURE WORK
While we can analyze the performance of NEO, certain

aspects of NEO are difficult to characterize. We plan to ex-
plore NEO’s performance through simulation and implemen-
tation, comparing NEO’s performance with both the lock-
step and sliding pipeline protocols. We plan to test NEO’s
adaptive qualities. Considering the amount of traffic that
online games generate as they become more popular each
year, we feel that any communication protocol for games
should “play fair” with TCP. Beyond NEO, we plan to con-
tinue developing our architecture. The next step is to design
the protocols for group management and event propagation
to test their feasibility. After that, we will design the storage
and computation components.

9. REFERENCES
[1] N. E. Baughman and B. N. Levine. Cheat-proof Playout for

Centralized and Distributed Online Games. In IEEE Infocom,
2001.

[2] P. Bettner and M. Terrano. 1500 archers on a 28.8: Network
Programming in the Age of Empires and Beyond. In Game
Developer’s Conference, March 2001.

[3] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: A Scalable
Publish-Subscribe System for Internet Games. In 1st workshop
on Network and System Support for Games, pages 3–9. ACM
Press, 2002.

[4] E. Cronin, B. Filstrup, and S. Jamin. Cheat-Proofing Dead
Reckoned Multiplayer Games. In Intl. Conf. on Application

and Development of Computer Games, January 2003.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area Cooperative Storage with CFS. In
Proceedings of SOSP, Oct 2001.

[6] C. Diot and L. Gautier. A Distributed Architecture for
Multiplayer Interactive Applications on the Internet. IEEE
Networks, 13(4), July/August 1999.

[7] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr.
Low-Latency and Cheat-Proof Event Ordering for Distributed
Games. Technical Report CIS-TR-2004-2, University of
Oregon.

[8] L. Gautier, C. Diot, and J. Kurose. End-to-End Transmission
Control Mechanisms for Multiparty Interactive Applications on
the internet. In IEEE Infocom, 1999.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An
Architecture for Global-Scale Persistent Storage. In ACM
ASPLOS, November 2000.

[10] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. In ACM Transactions on Programming
Languages and Systems, pages 382–401, July 1982.

[11] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster
Computing on the Fly: P2P Scheduling of Idle Cycles in the
Internet. In IPTPS, March 2004.

[12] J. Postel. Network Time Protocol. RFC 1305, March 1992.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A Scalable Content-Addressable Network. In
ACM SIGCOMM, 2001.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In ACM SIGCOMM, pages
149–160. ACM Press, 2001.

