
Distributed Architectures for Massively-Multiplayer

Online Games

Chris GauthierDickey

Department of Computer Science

1202 University of Oregon

Eugene OR 97403-1202

chrisg@cs.uoregon.edu

1 Introduction

Traditionally, multi-player games have used a client/server communication
architecture. This architecture has the advantage that a single authority
orders events, resolves conflicts in the simulation, acts as a central repository
for data, and is easy to secure. On the other hand, this architecture has
several disadvantages. First, it introduces delay because messages between
players are always forwarded through the server. Second, traffic at the
server increases with the number of players, creating localized congestion1.
Last, this architecture is limited by the computational power and storage
capacity of the server. While we can throw technology at most of these
problems in the form of more servers, disk farms, and higher bandwidth
lines, this solution incurs significant cost.

To address these problems, I propose researching fully distributed, peer-
to-peer architectures for massively-multiplayer2 online games (MMGs3). This
architecture allows peers to send messages directly to each other, reducing
the delay for messages and eliminating localized congestion. It allows players
to start their own games without the incredible investment in resources re-
quired by a client/server architecture. Furthermore, this architecture allows
games to overcome the bottleneck of server-only computation and storage

1One local game developer states that the bandwidth requirement for their massively-
multiplayer game is equivalent to the city of Eugene’s telephone bandwidth.

2According to the game industry, massive means anything on the order of 104 or greater
3MMO is the current industry acronym, though I think MMG is easier to remember.

Other acronyms include MMPG, MMOG, and MMPOG.

1



by harnessing the processing power and storage capacity of the players’ ma-
chines through peer-to-peer . Finally, this architecture is more resilient and
available because it does not have a single point of failure.

However, in order to develop a peer-to-peer architecture for MMGs, we
must understand the research in three fundamental areas: network commu-
nication, peer-to-peer storage, and peer-to-peer computation. In this paper,
I cover the primary results from these areas and discuss their relevance to
the peer-to-peer architecture for MMGs.

2 Definition of an MMG

A massively multiplayer online game is a networked game with two distin-
guishing features. First, the magnitude of the number of concurrent players
is typically on the order of 104 or more. Second, MMGs have persistent
state. This means that an MMG, unlike other networked games which end
after some goal is completed, can continue indefinitely. Players join the
game and play until they are ready to quit, at which point the state of their
alter-ego in the game is saved. When they return, the state is restored. This
also holds true for the virtual world. For example, Alice might own a house
in an MMG which other players can visit even when she is not online.

MMGs typically fall into three different archetypes, which we define as
first-person shooters (FPS), role-playing games (RPG), and real-time strat-
egy games (RTS). In an FPS, the main goal is typically to kill the other
players with various weapons from the virtual world. A player can only
sustain several hits, depending on the weapon, which results in the need for
fast reflexes and reaction times. The twitch nature of FPSs requires a low
network latency of 150-250ms.

In an RPG, one of the primary goals in the game is to develop one’s alter-
ego by increasing abilities and gathering new equipment. These goals are
achieved by grouping with other players to explore new lands, kill monsters,
and sometimes by fighting with other players. However, combat in RPGs
is resolved through a mathematical system based on the alter-ego’s abilities
and equipment. Thus, players do not need the same kind of responsiveness
from a game.

In an RTS, a player is in control of units in a virtual world, where a unit
might be a soldier, vehicle, or building. The player acts as the commander
of the units and instructs them on what actions to take. Players compete
with each other to either destroy all the units of the other player, or capture
some vital piece in a game. As with RPGs, combat is not resolved simply by

2



Archetype Tolerated Latency Example MMG

First-person shooter (FPS) 150 − 250ms Planetside
Role-playing game (RPG) 500 − 1000ms Everquest
Real-time strategy (RTS) < 1.5s None developed

Table 1: Archetypes for MMGs, tolerated latencies, and industry examples

clicking on another player to shoot her, but by ordering the units to attack
other units. Thus, players have been reported to tolerate latencies up to 1
second, without it detracting from the game [BT01]. Table 1 summarizes
these types of games.

Considering these latencies, a peer-to-peer architecture must provide
low-latency communication so that the interactive nature of the MMG is
maintained. In addition, the architecture needs to provide long-term, reli-
able persistence of the game state. Finally, the architecture must distribute
and coordinate process execution among the peers.

The rest of this paper is organized as follows: Section 3 covers the funda-
mental issues in designing any distributed system. Section 4 covers network
communication and considerations when designing low-latency protocols for
MMGs. Section 5 discusses peer-to-peer storage research while Section 6
covers peer-to-peer computation. Section 7 covers scientific research that
specifically covers games. Finally, Section 8 summarizes how these areas
relate to a P2P architecture for MMGs and briefly discusses the direction I
am interested in.

3 Foundations of Distributed Systems

In this section, I describe the definition of a distributed system with respect
to how it applies to my research area. I then describe the fundamental
problems and results of distributed systems research: synchronization, con-
sistency, and event ordering.

3.1 Definition of a Distributed System

In a traditional monolithic system, a single processor interleaves the execu-
tion of multiple processes running in the system. All processes share the
same processor, caches, memory, and disk space. When multiple processes
must communicate and coordinate with each other, a monolithic system
uses shared memory or message passing through the operating system. The

3



advantage of the monolithic system is that certain events, such as load-
ing and storing a variable in memory, are easily designed to be atomic at
the hardware level—hence, we can implement a variety of synchronization
mechanisms at the hardware level.

A distributed system is defined as one in which the processes only co-
ordinate through message passing [CDK01]. This definition is appropriate
because it implies that no hardware will be used to synchronize processes or
maintain consistency. In other words, I am interested only in those systems
that are distributed over a network such as the Internet, and not multi-
processor systems which can use hardware to synchronize and maintain co-
herence in the system. This narrower definition makes sense in the context
of distributed real-time interactive applications where the whole point of the
application is for collaboration over a wide-area network.

Distributed systems are divided into two models: synchronous and asyn-
chronous. In the synchronous model, processes execution occurs in syn-
chronous rounds (i.e., they proceed in lockstep)[Lyn96] according to a global
clock. The advantage of the synchronous model is that it is easier to reason
about, with the caveat that most real distributed systems are not completely
synchronous. In the asynchronous model, processes execute local instruc-
tions at arbitrary speeds. This model has the advantage that algorithms
designed for it can run on all types of networks without timing guarantees.
The disadvantage of the asynchronous model is that some problems are more
difficult, if not impossible, in the asynchronous system [Lyn96].

Regardless of the distributed system model, three fundamental prob-
lems plague the design of distributed systems: Ordering of events, syn-
chronization of processes, and consistency of data. Event ordering ensures
that events can be ordered as needed in the absence of any global timing
mechanism. Synchronization of processes enforces the correct sequencing of
instructions by all processes that both the program specifies and the pro-
grammer expects. Consistency of data ensures that all processes agree on
the current state of the data.

These three problems are related. For example, if we can totally order
events between all processes, then by implementing reading and writing
shared variables as events, one can trivially ensure consistency through the
ordering of those reads and writes.

3.2 Event Ordering

Event ordering can be classified as strong or weak event ordering. In strong
event ordering, all events in a distributed system, whether they are local

4



or shared events, are totally ordered. Lamport defined this ordering as
sequential consistency [Lam79]4. Dubois et al. describe weak ordering as a
total ordering on global events, with local events occurring in some arbitrary
interleaving with respect to each other [DSB88]. For instance, only accesses
to shared memory in a multiprocessor system need to be totally ordered,
while other events that occur locally on the processors can be interleaved in
any order5.

3.2.1 Strong Event Ordering

To address strong event ordering, Lamport defined the happened before re-
lation in [Lam78]. The happened before relation, or →, is defined as:

1. If events a and b are in the same process, and a occurred before b,
then a → b.

2. If a is the event that a message was sent from process P1 and b is the
event of receiving that message in P2, then a → b.

With this definition, the definition of a and b occurring concurrently is when
a 9 b and b 9 a.

Lamport then described a logical clock C as having the condition that for
any events a, b, if a ⇒ b, then C〈a〉 < C〈b〉. To order events totally, one can
provide an arbitrary ordering on any two events which occur during the same
logical time. However, this arbitrary ordering may lead to an unexpected
total ordering, therefore Lamport described the strong clock condition as:
for any events a, b in the system, if a � b then C〈a〉 < C〈b〉, where � is
a relation that orders events in ’real’ time. In order to achieve the strong
clock condition, Lamport describes how to use real clocks, synchronized to
within µ (the smallest message delay between two processes), so that events
in the system can be totally ordered.

The importance of this work cannot be overstated: Lamport provided
an algorithm for totally ordering events in a distributed system with the
use of real clocks. He also provided an algorithm to synchronize clocks
with the messages so that anomalous behavior (in the form of incorrectly

4Lamport actually defined this much more rigorously as, “. . . the result of any execution
is the same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in the order
specified by its program.” [Lam79]

5Weak ordering can be seen as the sequencing of shared events, where local events
occur between the ticks of the clock of the shared events.

5



ordered events) does not occur. In essence, Lamport’s algorithm allows us
to transform an asynchronous system into a synchronous system.

3.2.2 Weak Event Ordering

Jefferson described Virtual Time in [Jef85] as a more natural ordering of
events for a distributed system than strong event ordering. Jefferson’s con-
cept of virtual time is conceptually like Lamport’s regular clock condition[Lam78],
except that local events do not advance the time (in other words, the 1st
condition of the happened before relation is not used to define virtual time).
Using virtual time, Jefferson defines the Time Warp algorithm that is used
to synchronize distributed systems.

Time warp works as follows:

1. All messages are timestamped according to the current virtual time
locally.

2. Virtual time is advanced to the timestamp of the next queued message
to be processed.

Time warp gets its name because a system can roll-back all events that
have occurred whenever it receives a message from another system with a
time earlier than its current virtual time. Thus, it can execute arbitrarily far
into the future, even sending out events to other systems, but must roll-back
time whenever it receives an event from an earlier period.

Jefferson also provides an algorithm for estimating the global virtual
time. The global virtual time (GVT) is the earliest virtual time of any pro-
cess currently executing in the system. The GVT can be used to determine
how long old events must be tracked because a system will never be rolled
back to a time earlier than the GVT. The GVT can also be used to deter-
mine when to commit to I/O or when an global snapshot of the system has
completed.

Time warp seems to be particularly interesting to distributed discrete
event simulation, where any system can execute arbitrarily into the future.
The GVT is in some ways like lazy synchronization. In the system, each
process may execute arbitrarily ahead, but as a whole the system is known
to be synchronized at any point in time before the GVT.

3.3 Synchronization

Synchronization is the correct sequencing of processes to ensure mutually
exclusive access to shared writable structures [DSB88]. Mutual exclusion

6



is necessary for writable structures to prevent inconsistent state among the
processes. We can divide synchronization mechanisms into hardware and
software categories.

Because we are interested in distributed systems that only use message
passing to between processes, we preclude the use of hardware mechanisms
such as atomic load and stores, suspend-locks, and hardware compare-and-
swap instructions [DSB88]. On a parallel system with shared memory, we
might use semaphores or barriers. However, with only message passing,
to provide synchronization, we have to use distributed mutual exclusion
algorithms.

A number of distributed mutual exclusion algorithms are presented in
[CDK01]. A simple ring-based algorithm logically arranges nodes in a ring
and passes a token that allows a member of the system access to the shared
writable structure. Other possibilities are multicast with logical clocks or
distributed voting [CDK01].

3.4 Consistency

Consistency algorithms are designed to solve two fundamental issues: mem-
ory consistency or coherence, with respect to memory reads and writes
[Lam79, DSB88, Lyn96, CDK01], and state consistency. Traditionally, con-
sistency has focused on memory coherence. In a multi-processor system,
each processor might have a private cache, which may lead to inconsistent
states depending on the read and write policies of the memory system. In
a fully distributed system, each system has its own local memory and must
update others concerning state changes that are shared by all participants.

State consistency, on the other hand, requires that all processes agree
on some state or value in the system. Lamport, Shostak, and Pease were
some of the first to address this issue formally as distributed consensus
in [LSP82]. They abstract the problem as the (now famous) Byzantine
Generals Problem where a general needs to tell his lieutenants whether to
attack or retreat from an upcoming battle. However, any of the participants
may be a traitor, including the general. The goal then of a distributed
consensus algorithm is to make sure that all non-traitors arrive at the same
conclusion by the end of the algorithm.

Lamport et al. describe two algorithms: one that uses oral messages
only, called OM(m), and one that uses unforgeable signed messages, called
SM(m). Their results show that for m traitors, OM(m) requires 3m + 1
generals and m rounds of message passing to complete. SM(m), on the other
hand, requires only m + 2 generals, though still up to m rounds of message

7



passing. In addition, they show that distributed consensus is impossible in
an asynchronous system.

3.4.1 Group Membership

One particular problem in distributed systems involves determining the
membership of the system at a given point in time. Chandra et al. note
that this problem is similar to distributed consensus in that we want all
nodes to agree on a value, which in this case is the membership list of the
group[CHTCB96]. As with distributed consensus, they show that this prob-
lem is impossible in an asynchronous system, and tractable in a synchronous
one.

3.5 Relevance to Research

Event ordering, synchronization, and consistency form the backbone of any
distributed system. These inter-related components are necessary to design
any distributed system. From this background work, we can draw several
conclusions.

First, we know that a distributed architecture for MMOs requires a syn-
chronous system in order to maintain consistency and to determine group
membership. Lamport’s work shows us how to transform an asynchronous
system into a synchronous one. Second, the Byzantine Generals Problem
maps directly to the problem of having a cheating player in a game that is
maliciously trying to corrupt the system. Any algorithms that ignore the
results from Lamport et al. will be subject to this kind of corruption. Third,
the problem of interactive consistency, in which every process proposes a sin-
gle value and the goal is for each process to agree on a vector of values, can
be solved by running a distributed consensus algorithm from each process
[CDK01]. Last, the concept of a global virtual time allows us to see that
beyond an event horizon back in time, we can ensure that no changes will
be necessary to the ordering of events.

With this background knowledge in hand, we now discuss research di-
rectly related to peer-to-peer architectures for massively-multiplayer games.

4 Distributed Communication

Our definition of a distributed system states that communication between
nodes only occurs through message passing over a network. Therefore, in
this section we discuss the network communication that is relevant to MMGs.

8



4.1 IP Multicast

While all current games use unicast for communication, and typically build
on top of UDP, understanding multicast is important. Game players typi-
cally have less bandwidth for communication than game companies which
host servers. Multicast could significantly reduce network traffic for dis-
tributed games. In addition, solving the problem of totally ordered, reliable
multicast also solves the Byzantine General’s Problem [CDK01].

The original concepts behind multicast were formalized by Deering and
Cheriton in [DC90]. The goal of their design was to make multicast as similar
to unicast as possible. To summarize their design, multicast uses groups
that can be addressed by a single address, groups are open (knowledge of
group membership is not necessary), hosts can join and leave at will, and
hosts can belong to more than one group at a time. The first large scale
multicast sessions began with the MBone, a set of tunnels over the Internet
that connected to LANs that were multicast capable [Alm00].

The primary problem with the original multicast routing protocol (or
DVMRP) is that it is efficient only if a large number of nodes in the system
are participating, due to the amount of message passing that must occur
to maintain multicast trees [DC90]. This led to research that focused on
sparse protocols, where membership in the system only comprises a small
percentage of the total number of nodes. Protocol Independent Multicast
(PIM) [DEF+94] and Core Based Trees [BFC93] are examples of sparse
multicast protocols.

In building multicast trees, two primary methods have been investigated:
shortest path trees and core based trees. Shortest path trees are rooted at
the source with receivers at the leaves. Core based trees pick a central node
in a minimum spanning tree that acts as the core. Sources unicast messages
to the core which are then multicast to all group members. Core placement
was studied extensively in [CZD, TR97].

Unfortunately PIM and CBT did not address several fundamental prob-
lems. First, neither considered inter-domain multicast, which is important
since ISPs wish to do policy-based routing. The MASC/BGMP architecture
addressed this by allowing intra-domain multicast to use whatever multicast
protocol it deemed necessary and by building a bi-directional core-based tree
rooted in the domain of the source of the multicast group [KRT+98].

Second, some researchers felt that the multicast model was too general.
Thus, single-source multicast (SSM) was created in the form of EXPRESS
multicast [HC99]. In SSM, only one source can multicast messages to the
group and an SPT is built rooted at the source. Holbrook and Cheriton ar-

9



gued that SSM was applicable to many multicast problems such multimedia
broadcast [HC99]. Zappala and Fabbri added proxies to SSM in order to
extend the SSM model to the general multicast model; in other words, the
use of proxies allows any number of sources to send over the SSM tree and
allows receivers to subscribe to the additional sources [ZF01].

4.2 Reliable Multicast

IP multicast assumes best-effort delivery and does not guarantee all packets
will arrive at the receivers. Various researchers designed reliable multicast
variants [HSC95, LP96, FJL+97, LESZ98, KKT00, KHTK00]. These de-
signs typically involve using some nodes to cache data that can then later
be recovered. In addition, reliable multicast requires that receivers can ac-
tually detect lost packets. This implies that packets are either sequenced or
that receivers expect packets periodically and can therefore detect missing
packets.

In LBRM, a special logging server is added to the network and records
all multicast packets 6 [HSC95]. RMTP is similar to LBRM in that certain
receivers are designated to cache packets. In SRM, however, any receiver
can respond to a lost packet message [LP96, LESZ98]. RMX uses a desig-
nated host at the LAN level and the multicast tree is built over the RMX
receivers [KKT00]. Each RMX node limits the data flow according to the
reception abilities of its receivers. Finally, Kasera et al. propose using mul-
tiple multicast groups for error recovery [KHTK00]. In their proposition,
nodes subscribe to alternate channels to recover missing packets.

4.3 Congestion Controlled Multicast

In addition to reliability, scientists have also studied congestion control with
multicast. Congestion control is vital to the sustainability of the Internet
as Jacobson described in [Jac88]. In order to provide congestion control for
multicast effectively, two problems need to be addressed. First, we have
to make sure to only count one packet as lost when a single packet is lost
over multiple paths. Second, we have to adjust the sending rate based on
the congestion window for all receivers [BTK98, GS99]. This means that a
source needs to track the congestion window for each receiver individually in
order to keep performance at a maximum without overwhelming any single
user.

6LBRM was designed in the context of distributed interactive simulations, where adding
logging servers to the system was not considered a serious issue.

10



RLM addresses the congestion issue by assuming that we can divide a
multicast stream into multiple layers [MJV96]. For instance, a media stream
can be layered, with each successive stream adding higher quality data to
the receiver. MTCP, on the other hand, uses specific receivers to collect data
about their children in the multicast tree [RBR99]. This data is collected
and collated up the tree until the source receives a report that represents
the state of the multicast tree. The source then adjusts the sending rate
based on the report.

4.3.1 Application Layer Multicast

While a large amount of research went into designing multicast, one ques-
tions why it has not been widely deployed. First, ISPs have been leery to
enable new technology that has not been standardized (no one has agreed
on the best form of multicast). Second, billing in the multicast model is a
difficult problem. A single source can send just one packet that is duplicated
thousands of times in another domain. Thus, one ISP would could use very
little resources while generating a large volume of traffic in another.

By building multicast at the application layer, instead of at the net-
work layer, researchers hope to make multicast available on the Internet.
They also argue that the network layer is not an appropriate place for mul-
ticast when you consider that multicast requires state to be kept on each
router (which is the part of the end-to-end principle [SRC84]). In order
to design application layer multicast, an overlay over the physical topology
must be built. These overlays are either unstructured, where the routing
maintenance algorithms do not try to build some sort of structure on the
overlay, or they are structured. However, from these overlays, application
layer multicast builds a tree for distribution. Narada was one of the first
application layer multicast protocols [CRZ00] and was shown to be capable
of handling media streaming in [CRSZ01]. Narada works by building a mesh
between members of a group and then building a tree for message distribu-
tion. SCRIBE, on the other hand, uses Pastry ([RD01]) to build a peer-
to-peer network with the group members. Each multicast group maps to a
particular node in the overlay which then acts as the root of the multicast
tree [CDKR02]. We also note that several other application layer multicast
protocols have been designed, and these two are simply representatives of
the research in application layer multicast.

11



4.4 Secure Peer-to-Peer Communication

The final area in network communication research that we examine is that
of secure communication in peer-to-peer networks. The issue we examine
here is how can we build a peer-to-peer network such that a malicious node
cannot disrupt the services it provides. Note that some research has focused
on building secure P2P networks for the purpose of disseminating security
updates ([LRP04]) or for ensuring that communications are available in
a time of crisis ([KMR02]). These systems have a different purpose than
general P2P communication in that they operate on a different time scale
and are more heavy-weight than an MMG can afford.

A peer-to-peer network works at the application layer by building a
virtual overlay on top of the physical Internet—a problem not unlike appli-
cation layer multicast. Peers in the network follow some routing invariant
that allows peers to route messages on the network based on the contents
of an object. Typically, an object is hashed to produce an identifier which
is then used as an address that can be routed to in the P2P network.

In [Wal02] and [CDG+02], scientists address how to create secure routing
in a P2P network. Castro et al. define secure routing as:

1. A malicious node cannot alter routing tables

2. A malicious node cannot affect locating a key by dropping or manip-
ulating messages

Their solution can be summarized as using certified IDs, so that joining
a P2P network becomes costly in terms of time or money; mapping IDs in
the key space, and not basing it on network locality; using the first two
assumptions and a detector to discover nodes that are violating these two
assumptions.

In addition to these problems, Wallach adds that we can audit nodes
periodically to ensure that they are correctly storing their prescribed values
and routing messages properly [Wal02]. He also suggests signing content
to ensure that it is not tampered with, but this is more of a problem with
secure P2P storage and not routing. We discuss this problem in Section 5.

4.5 Key Results

In the previous sub-sections, we have covered a large amount of research
related to networking in general. From these, we now summarize the key
results.

12



Large-scale multicast was shown to be possible at all levels of the network,
from the LAN [DC90] to intra-domain [BFC93, DEF+94, Alm00, CZD,
TR97] to inter-domain [KRT+98]. However, as IP layer (or native) multicast
has yet to be widely deployed, researchers have developed and demonstrated
the feasibility of application layer multicast [CRZ00, CRSZ01, CDKR02].
While the major concern with application layer multicast has been the in-
creased delay from overlay topologies that do not match the physical topol-
ogy, the results from research have shown that delays are typically about
twice that of native multicast.

The results from reliable multicast [HSC95, LP96, FJL+97, LESZ98,
KKT00, KHTK00] have shown that reliable multicast is possible, but that
some form of caching is necessary for receivers to be able to recover lost
packets. In multicast congestion control, the key result is that sources must
track individual congestion windows for all receivers, though the congestion
window information may be aggregated up towards the receiver [MJV96,
GS99, BTK98, RBR99].

In peer-to-peer routing security, the main results appear to be that nodes
should not be able to arbitrarily choose their own ID in the key space and
that routing invariants should be verified at run-time [Wal02, CDKR02].

4.6 Relevance to Research

Past network research on multicast and peer-to-peer routing is important for
a P2P architecture for MMGs. In order to reduce network communication,
a P2P architecture would ideally use some form of multicast. Realistically,
application layer multicast would be used due to the problem that native
multicast is not widely deployed.

Games, like multicast recipients, are faced with the fact that receivers
do not all have equal bandwidth. Therefore, an architecture should consider
how to provide congestion control and reliability for all users. However,
games do not require that all packets are transfered reliably. In addition,
currently games do not use congestion control. History has shown us that
congestion control is necessary for the sustainability of the Internet. Main-
taining low latency and providing congestion control seem to be two con-
flicting interests, unfortunately.

Security in games is a major concern, and in particular, security flaws
that allow players to cheat. We define cheating as any action taken by a
player that gives them an unfair advantage over other players. If a peer-
to-peer communication network is built, it will undoubtedly need to take
cheating into consideration to prevent players from violating routing and

13



message passing invariants.

5 Peer-to-Peer Storage

The second component of a peer-to-peer architecture for MMGs is storage.
In a typical distributed system, each node has local storage, but data may be
migrated to other nodes for performance reasons, or replicated for reliability.
Having distributed storage creates the need for locks or mutual exclusion to
ensure the consistency of data.

Perhaps the most notorious peer-to-peer storage system was Napster,
which gained its notoriety from its users illegally sharing music files [nap].
Though users transferred files directly from each other, Napster was not
entirely peer-to-peer. Instead, Napster used a central server that clients
connected to in order to locate music stored by other peers.

Gnutella, on the other hand, is a completely peer-to-peer network [gnu]
and serves the same purpose as Napster. The success of Napster, and other
so called unstructured peer-to-peer networks, has prompted the creation of
other peer-to-peer systems and motivated the research community to ex-
plore the viability of peer-to-peer storage. However, researchers feel that
storage and lookup in unstructured peer-to-peer networks suffers from poor
performance. In Gnutella, for example, the only way to locate data is to
broadcast a request to the peers you know about–and even then, you are
not guaranteed to discover the location of the data.

5.1 Structured Peer-to-Peer Storage

The two key functions required for peer-to-peer storage are simply the stor-
age and retrieval of data. Similar to a file system, structured peer-to-peer
systems take an object, or its name, and translate it into an address in
the network7. This basic functionality can be seen simply as a distributed
hash table; names are hashed into addresses so that they can be stored and
retrieved from those addresses in the peer-to-peer network.

All DHTs work similarly. DHTs have a key space, which is specified as
some number of bits. Objects that are to be placed in the network use some
kind of cryptographically secure hashing function to return a hash value that
fits in the key space. Nodes in the peer-to-peer network are also hashed into

7Of course a file system uses a table that maps names or file identifiers to locations on
the disk, which is slightly different than simply hashing an object with a mathematical
function to get an address

14



DHT route length in hops topologically sensitive

Chord O(lgN)

CAN O(N 1/d) X

Pastry O(lgN) X

Tapestry O(lgN) X

Table 2: Features of DHTs. N is the number of nodes in the DHT and d is
the dimension chosen for CAN.

the key space. Thus, to determine where to store an item on the network,
one simply hashes the object and routes to the node whose ID is closest to
the object.

In order to route objects or requests to other nodes in the network,
peers need to maintain routing tables. This maintenance is dependent on the
DHT algorithms, but typically the DHT forms some sort of logical structure.
Chord ([SMK+01]), for example, is a logical ring, while CAN ([RFH+01]) is
a d-dimensional torus. The differences between route management in these
DHTs are in routing guarantees (how long it takes to route to an item) and
network locality (how well does the overlay map to the underlying network).
Table 5.1 lists the differences.

DHTs, such as Chord [SMK+01], CAN [RFH+01], Pastry [RD01] and
Tapestry [ZHS+04], are the cornerstone for any peer-to-peer storage system.
At its core, Oceanstore uses a DHT, and builds global-scale storage services
around it to provide consistency, reliability, and security [KBC+00]. Other
services have also been built on top of DHTs, such as multicast (SCRIBE
on top of Pastry, for example [CDKR02]), which use the DHT primarily for
routing.

5.2 Key Results

The key results from research in DHTs and peer-to-peer storage have primar-
ily come from simulation or small Planetlab live tests with a few hundred
nodes. The simulations seem reasonable and demonstrate the ability for
DHTs to scale well with the number of nodes in the system. This is due to
the small amount of routing state (typically O(lgn), where n is the number
of nodes) and minimizing the number of hops required to store and retrieve
data.

Reliability of data in these systems comes typically from replication.
Since peers may join and leave frequently, DHTs need to handle unexpected
departures gracefully. The main problem with unexpected departures is

15



that the data stored by the exiting node is lost. Any system planning on
using a DHT for permanent state cannot expect data owners to constantly
refresh the system (because, for instance, the owners may no longer be on
the system). Thus, reliability is typically addressed through replication.
Theoretically, if we have enough nodes and enough replication, the odds of
data loss can be reduced to an arbitrarily small number.

Some DHTs are easier to replicate on than others. For example, Chord
suggests modifying the basic Chord protocol so that data is stored on the k

closest nodes to the key [SMK+01]. Because routing in Chord keeps neighbor
lists, whenever a neighbor has crashed, the node can store its replicated
data on an additional node. Other DHTs, such as CAN, usually depend
on the data owner periodically replicating the data by using different hash
functions. Unfortunately, this leaves data reliability in the hands of the data
owner.

The reachability of data (or in some sense the reliability of routing)
in DHTs is addressed nicely by CAN. While we can rely on the routing
mechanisms of the DHT to ensure that data is reachable, DHTs that use
proximity metrics for routing may all choose the same close broken link.
CAN suggests a work around to this problem by using additional realities.
A reality in CAN is a mapping of nodes to the key space. Any number of
realities can be created by simply using additional hashing functions on the
node IDs. Every object is then stored in each reality and querying for an
object can occur simultaneously in each reality, thereby reducing the chance
of failure and decreasing the number of hops to an object since we are now
routing in more than one reality.

Another major result comes in the area of security in DHTs. Sit and
Morris contributed a set of guidelines on security considerations when build-
ing a DHT [SM02]. These guidelines are:

• Define verifiable system invariants. For example, if a DHT has a spe-
cific routing invariant, make sure that it can be verified and then verify
it at runtime.

• Allow a querier to observe the lookup progress. This prevents a mali-
cious node from routing to an incorrect hop.

• Assign keys to nodes in a verifiable way. This prevents a node from
choosing its ID such that it can own the data that it is interested in
on the DHT.

• Do not allow server selection in routing. Pastry, for example, chooses
the next hop based on a proximity metric, such as round-trip estimates.

16



Even if a querier can observe the lookup process, they cannot tell
which route is closer to the malicious node. Therefore, a malicious
node might purposely choose the farthest route.

• Cross-check routing tables using random queries (however, this can be
prevented if a querier can observe the lookup progress).

• Avoid single points of responsibility. In other words, storing only a
single item on the DHT without replication allows a single node to
refuse to serve the data to other members in the system.

These guidelines address the major problems with current DHTs. For
example, none of the DHTs previously listed allow a querier to observe the
lookup progress. Some DHTs allow server selection (Pastry, Tapestry), and
some DHTs do not assign keys in a verifiable way (CAN lets a node randomly
assign its own identifier in the key space).

5.3 Relevance to Research

Designing a peer-to-peer storage system for MMGs has several unique char-
acteristics. First, players expect that data stored in the MMG, such as their
character information, never gets lost. Second, we need to prevent other
players from tampering with the stored information.

This research addresses these problems by showing that DHTs are indeed
scalable with the number of nodes in the system. Second, reliability can
be increased through replication. Theoretically, we can replicate enough
times so that the probability that data is lost is less than a database will
be destroyed in a client/server architecture (assuming a sufficiently large
number of nodes). Third, by following the guidelines presented in [SM02],
we can address some of the problems of players tampering with data or
trying to manipulate the storage or retrieval of data in the P2P storage
network.

Ultimately, the success of using a DHT or similar structure for peer-to-
peer storage in an MMG depends on its ability to quickly retrieve and store
data, and its resilience in the face of high churn, or the rapid joining and
leaving of nodes in the system.

6 Peer-to-Peer Computation

Peer-to-peer computation is a form of distributed computing over a peer-
to-peer network. Scheduling occurs in a completely distributed manner and

17



peers must both discover resources and verify results. A distinguishing fea-
ture of peer-to-peer computing is that peers are not set up for the sole pur-
pose of supporting the system. Instead, peer-to-peer computing is trying to
take advantage of the idle cycles of peers. The main problems in peer-to-
peer computing are trying to discover idle cycles in a timely manner, process
migration, and result verification.

The goal of peer-to-peer computing in an MMG is to schedule tasks that
the server, in client/server architecture, normally handles. For instance,
monsters in an MMG are controlled by an artificial intelligence (AI) process
that determines how the monster reacts to players and how it fights during
combat. The computation component of the architecture needs to schedule
this AI process to be executed by players of the game.

6.1 Relevant Research

Recently, SETI@home ([ACK+02]) and the Stanford Folding project ([fol])
have received attention as large scale distributed computing projects. How-
ever, both of these projects have one common feature: the computation is
easily subdivided into a countless number of problems and no communication
between subproblems has to occur. Therefore, a client/server architecture
for these distributed problems works well. Each client simply downloads a
new problem set, solves it, and returns results to the server–all without need-
ing to communicate with other clients. Obviously, distributed computing is
much more difficult when peers must communicate.

Some distributed systems use a centralized scheduler. In Condor, for
instance, a single system is used to locate machines with available cycles for
users that are requesting additional cycles [LLM88], but scheduling is limited
to a single LAN. Their work demonstrated that centralized scheduling could
take advantage of the majority of idle cycles available. Butt et al. added
the ability for schedulers in Condor to communicate with each other and
schedule across domains [BZH03]. This flock of Condors uses Pastry for
resource discovery. Recall that Pastry nodes keep a routing table that is
topologically sensitive to the underlying network. In a flock of Condors,
a scheduler advertises resources to all nodes in its Pastry routing table,
allowing scheduling to occur on closer locations and ideally saving time.

SHARP (Secure, Highly Available Resource Peering) is a system to ad-
dress trading and sharing resources [FCC+03]. SHARP places no restrictions
on the underlying mechanisms for communication, but shows how digital sig-
natures can be used in order to guarantee resources. Their resource sharing
mechanism is conceptually simple. A node that has resources signs a mes-

18



sage stating that it has granted a resource to another system for some given
time. The other system then uses this receipt to redeem the resources. The
interesting property of SHARP is that resources can be traded, divided, and
duplicated (oversubscribed). The digital signatures provide evidence for re-
pudiation if the resource provider fails to fulfill its contract–though SHARP
does not suggest how repudiation should occur.

However, Butt et al. in [BFH+03] suggest that cycles are too dynamic
to advertise because the information will be too stale by the time cycle
requesters receive the information. Instead, they propose using a cycle dis-
covery protocol. In their system, they simply forward requests to nodes and
nodes which are available schedule the process for execution.

Lo et al. in [LZZ+04] describe four classes computation that are candi-
dates for peer-to-peer computing in their system called Cluster Computing
on the Fly (CCOF): infinite workpile, workpile with deadlines, tree-based
search algorithms, and point-of-presence applications. They envision a num-
ber of community based overlays for the purpose of scheduling. Each com-
munity schedules locally with a local coordinator and coordinators use CAN
([RFH+01]) to schedule processes globally.

6.2 Key Results

Condor showed us that remote scheduling was effective in taking advantage
of idle cycles, but uses centralized scheduling [LLM88]. While a flock of
Condors allows remote scheduling over a WAN, each Condor system must
be manually set up and managed.

Fu et al. discussed the need for over-subscription of resources in order
to maintain a high load in the system [FCC+03]. They argue that systems
should oversubscribe because any system requesting resources might crash
or leave, thereby leaving cycles unused.

The question of whether to advertise idle cycles or to discover them
is still an open problem. [BFH+03] suggested that resource discovery was
probably the best method since advertisement information was very likely
too stale to use. Lo et al. stated that they had found rendezvous points (a
form of advertising) worked best with respect to heavy workloads [LZZ+04].

6.3 Relevance to Research

Comparing the requirements of P2P computation in an MMG with the given
research is somewhat difficult. In an MMG, a process would interact in real-
time with some set of players in the game. In the discussed research, we are

19



trying to discover idle cycles to schedule long-running processes and often
to take advantage of as many idle machines as possible.

Scheduling techniques and resource discovery have obvious applications
in designing a P2P MMG scheduler. Perhaps the work in [LZZ+04] is most
relevant to our research. Their point-of-presence application is similar in
requirement (strategically located nodes in the P2P network that are used
to execute processes) to our needs. The scheduler, in this instance, would
need to locate process execution strategically to the needs of the game.

7 Game Research

Research in interactive games has gained popularity recently. However, some
research, in particular that related to distributed interactive simulations
(DIS), has had an influence on previously developed games. In this section, I
first discuss the relevance of DIS 8 followed by research which has specifically
focused on games.

7.1 Distributed Interactive Simulations

Distributed Interactive Simulation (DIS) was born from a DARPA initiative
to build large scale, distributed, interactive simulations for creating theater
of war scenarios. Over the years, the goal was to create larger and larger
scenarios with hundreds of thousands of units (though not all necessarily
interactive). The result of this initiative was a workshop dedicated to DIS9

and a slew of standards located in difficult to access standards documents
[dis95a, dis95b]10.

All DISs run to date have been designed for large supercomputers, har-
nessing hundreds of processors connected by high-speed links. More recently,
grid technology, such as Globus [glo], has been used to manage the connec-
tion and process execution on the connected supercomputers.

Part of the work that came out of the design of DIS was that by Van Hook
et al. in [HCNF94]. In this paper, two important algorithms were developed.
The first of these is grid-based filtering, where each node calculates its area
of interest based on dividing the virtual world into a grid. This area is then

8One might also include networked virtual environments, or NVEs, which were born
from the DIS initiative. Basically NVEs are non-military related DIS applications. MMGs
could be considered a subset of these applications.

9The last workshop was held in 1996.
10The goal of the DIS workshop was to develop standards for intercommunication be-

tween different simulation models.

20



relayed to an application gateway (or AG), which appropriately filters all
updates to a local LAN based on the union of the areas sent to it by local
nodes.

The second algorithm is called rethresholding. In DIS, entities are dead-
reckoned, meaning that their position was predicted, by other entities, be-
tween network updates. Each entity has a threshold, or margin of error, that
it allows other entities to experience before it is forced to send out a new
update. This meant that slowly moving entities, or those that were moving
in an accurately predictable manner, sent fewer updates, thereby reducing
traffic significantly.

These two algorithms had a huge influence on networking design for
games. Games use both techniques to reduce traffic, albeit at the expense
of making it easier for players to cheat through the network protocols .

LBRM, which is log-based receiver-reliable multicast, is designed specifi-
cally for DIS [HSC95]. In the context of DIS, separate loggers for logging all
multicast packets are appropriate. Further, LBRM also introduces a tech-
nique where entities send a heartbeat update and then back off exponen-
tially, unless a change to the entity occurs. This technique further reduces
the messaging requirements in DIS.

Léty and Turletti describe a multicast based communication architecture
in [LT99]. They divide the virtual world into cells, which can be dynamically
resized, split, and joined depending on the number of multicast addresses
available and the density of players in a cell. Their work introduces a sat-
isfaction metric, which is a measure of the amount of relevant traffic versus
irrelevant traffic. They argue that a user is more satisfied when they receive
a higher ratio of relevant traffic to irrelevant traffic. Through simulation,
they show that static splitting of the virtual environment results in a signif-
icantly lower satisfaction than when dynamic cell adjustment was used.

7.2 Protocols

Designing game protocols requires an approach different than just trying to
achieve the lowest latency and fastest speed. In particular, the problem of
cheating by manipulating packets plagues modern games. The main cheats
that occur through packet manipulation are the fixed-delay cheat, where a
fixed amount of delay is added to each packet; the timestamp cheat, where
timestamps are changed on packets to alter when events actually occurred;
the suppressed update cheat, where updates are purposely not sent to other

21



players; and the inconsistency cheat11, where different updates from one
player are sent to different players. These cheats can be prevented by de-
signing the protocol appropriately.

Diot, Gautier and Kurose described the first protocol for distributed
games in [DG99] and [GDK99] and built a game called MiMaze to demon-
strate its feasibility. Their work is important because they developed a
technique called bucket synchronization, in which game time is divided into
’buckets’, in order to maintain state consistency among players. The Mi-
Maze protocol uses multicast to exchange packets between players, resulting
in a low latency.

At the other end of the spectrum, Baughman and Levine presented the
lockstep protocol to address the problem of cheating with dead-reckoning
[BL01]. Lockstep works by dividing game time into rounds, during which
players reliably send a cryptographic hash of their move to all other players.
Once every player has received the hash, the plain-text move is then reliably
sent to all players. The game proceeds to the next round only after the hash
and the move have been received by all players.

Lockstep is a major advance in distributed protocols because it is prov-
ably secure against several cheats. The drawback of lockstep is that its
playout latency, which is the time from when an update is sent out to when
the update can be displayed to other players, is unacceptably high for real-
time games. The use of reliable transport bounds its playout latency at three
times the maximum delay between any two players, assuming no packets are
lost.

To mitigate the playout latency, asynchronous synchronization (AS) was
developed using lockstep [BL01]. AS uses spheres of influence that are di-
lated each round and allows players that are virtually far apart to proceed
asynchronously in round progression. Once the spheres intersect, actions
must be resolved. This technique can be used with any protocol as a method
of reducing communication, but it requires that every player know and keep
track of every other player. Unfortunately, using AS subjects lockstep to
collusion cheats.

Cronin et al. designed the sliding pipeline protocol[CFJ03] in order to
improve the lockstep protocol. An adaptive pipeline is added that allows
players to send out several moves in advance without waiting for ACKs from
the other players, reducing the time that is dead-reckoned between rounds.
The pipeline depth is designed to grow with the maximum latency between
players so that jitter, or inter-packet arrival time, is reduced.

11This cheat is the same problem as Lamport’s Byzantine Agreement problem.[LSP82]

22



While sliding pipeline reduces jitter and dead-reckoning, it still has the
same playout latency as lockstep. In terms of security, the protocol prevents
the lookahead cheat, but allows a player to use the suppressed update cheat.
Even with an adaptive pipeline to help detect this cheat, it can falsely label
someone with an increased delay as a cheater. Furthermore, a cheater can
use the suppressed update every other round and not be detected.

In the game industry, very few networked games are fully distributed.
One notable exception is Age of Empires (AoE) [Stu], in which games are
synchronized across clients and peer-to-peer communication is used [BT01].
AoE’s protocol is similar to bucket synchronization, except that unicast is
used. While AoE is a commercial success for distributed game protocols,
it is subject to all but the inconsistency cheat (because players periodically
exchange hashes of the game state with other players to detect inconsisten-
cies).

7.3 Architectures

Some researchers have recently suggested subscriber/publisher models for
data distribution with distributed games. A subscriber/publisher model
works by creating a mechanism whereby the game creates different types of
content to be published in the game. Interested parties subscribe to the pub-
lisher of the information they desire. Ideally only the messages that a player
desires are sent to them while they publish messages only to other players
that are interested. The primary difficulty with the publisher/subscriber
model is how quick new material for publishing can be advertised on the
network, and how fast a player can get the information he or she is inter-
ested in.

Bharambe et al. describe their system, Mercury, as a scalable publish-
subscribe system for distributed Internet games [BRS02]. Unlike Léty and
Turletti’s work in which subscription channels are based only on game po-
sition, Mercury allows channels to be of any subject. Mercury uses a sub-
scription language, which is a subset of a relational database query language,
such as SQL, and uses rendezvous points (RPs) which gather publications.
Publishers send their data to the RPs and subscribers send their queries
to the RPs to receive the publications. Bharambe et al. borrow heavily
from the ideas in Chord [SMK+01] and organize the RPs in a logical ring,
using similar routing mechanisms, with the primary difference being that
their subscription language allows them to match several RPs which contain
the requested subscription while Chord can only perform exact matches on
queries. Unfortunately, the results from the research on Mercury show that

23



it is unable to meet the necessary performance requirements of multi-player
online games.

Knutsson et al. also designed a publish/subscribe system [KLXH04] us-
ing Pastry [RD01] and Scribe [CDKR02]. The virtual world is divided into
regions, and players in each region form a group. Each region maps to a
multicast group through Scribe so that updates from the players are multi-
cast to the group. Consistency is achieved through the use of coordinators.
Every object in the game is assigned to a coordinator; therefore, any updates
to an object must be sent to the coordinator who resolves any consistency
problems. Fault tolerance is achieved through replication.

Butterfly.net [But03] is a grid-based solution for developing MMOGs.
Using the Globus toolkit [glo], developers are able to lease computer time
and space from Butterfly.net to run their MMOGs from. Terazona [Zon02],
on the other hand, is a cluster based architecture that allows developers to
more easily create clustered solutions to act as the servers in a traditional
client/server architecture.

7.4 Key Results

Grid-based filtering and rethresholding are both extremely important ideas
that resulted from DIS [HCNF94]. Grid-based filtering spawned other tech-
niques for interest management, where a node only receives updates about
the entities that it is interested in. Rethresholding also spawned research
into other techniques for dead-reckoning.

MiMaze demonstrated that bucket synchronization, dead-reckoning and
multicast helped provide a communication protocol that was usable by in-
teractive games [DG99]. Lockstep, on the other hand, demonstrated that
network-level cheats could be prevented by the protocol itself [BL01].

Research in publish/subscribe systems presented a new concept in dis-
tributed architectures for MMGs [BRS02, KLXH04]. Whether these archi-
tectures are truly feasible has yet to be demonstrated.

7.5 Relevance to Research Area

Obviously, the research discussed in this section is all relevant to P2P archi-
tectures for MMGs.

24



8 Conclusions and Future Work

The first question that one must answer when considering an area for re-
search is whether the area is a viable one for research in the first place.
Looking at the list of papers in Section 7 shows that very little work has
been done directly concerning my topic. In fact, the listed papers represent
the main scientific work that contributes to game research in general12.

Any architecture for massively-multiplayer games touches on just about
every area in computer science, including networking, distributed comput-
ing, and theory. By dividing the architecture into three main components
(communication, storage, and computation), we can begin to see the numer-
ous research questions that arise in each component.

Application-layer multicast and peer-to-peer routing generate ideas about
how to design the communication component. Secure DHTs help us see that
P2P storage is possible. P2P computing help demonstrate some of the key
ideas necessary to solving the problem of scheduling in a distributed MMG.

What is obvious about this area is that it is too large for any single
person to complete in a finite amount of time. As such, I plan to focus my
research on the communication component, with the possibility of explor-
ing the computation component. A major open problem that none of the
research in network communication addresses is how to handle the cheat-
ing while keeping a game running at an interactive rate. Furthermore, a
fully distributed architecture is useless for games if it allows players to cheat
freely and easily. I also argue that cheating must be addressed at the archi-
tectural level, and that doing so fundamentally changes the design of your
system. However, once we address cheating, how can we build a commu-
nication system that scales with the number of players? Last, none of the
game communication protocols address playing fair with TCP. In essence,
they do not use congestion control, which past history has shown us to be
a fatal problem on the Internet!

To conclude, I believe these three areas (communication, storage, and
computation) are the three primary areas that a fully distributed, peer-
to-peer architecture for massively-multiplayer games. Research from these
areas will help in the design of this architecture. I also believe that each of
these areas has a number of open, interesting research problems so that an
exploration in these areas will provide a significant body of research for a
Ph.D. dissertation.

12Aside from computer graphics, that is, under which real-time rendering typically cov-
ers computer graphics for games.

25



9 Acknowledgements

I would like to thank my committee for their help and suggestions on this
work: Daniel Zappala (chair), Virginia Lo, and Jun Li.

References

[ACK+02] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: An experiment in public-resource
computing. Communications of the ACM, 45:56–61, 2002.

[Alm00] Kevin Almeroth. The Evolution of Multicast: From the MBone
to Inter-Domain Multicast to Internet2 Deployment. IEEE
Network, 14:10–20, Jan/Feb 2000.

[BFC93] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core based
trees (CBT). In Conference proceedings on Communications
architectures, protocols and applications, pages 85–95. ACM
Press, 1993.

[BFH+03] A. Butt, X. Fang, Y. Hu, S. Midkiff, and J. Vitek. An Open
Peer-to-Peer Infrastructure for Cycle Sharing. Poster in ACM
Symposium on Operating System Principles, October 2003.

[BL01] Nathaniel E. Baughman and Brian Neil Levine. Cheat-proof
Playout for Centralized and Distributed Online Games. In IN-
FOCOM, pages 104–113, 2001.

[BRS02] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: A Scal-
able Publish-Subscribe System for Internet Games. In Proceed-
ings of the First Workshop on Network and System Support for
Games., April 2002.

[BT01] P. Bettner and M. Terrano. 1500 archers on a 28.8: Network
programming in the Age of Empires and beyond. In GDC 2001,
March 2001.

[BTK98] S. Bhattacharyya, D. Towsley, and J. Kurose. The Loss Path
Multiplicity Problem for Multicast Congestion Control. In Pro-
ceedings of INFOCOM, pages 856–863, 1998.

[But03] Butterfly.net, Inc. The Butterfly Grid: A distributed platform
for online games. http://www.butterfly.net/platform/, 2003.

26



[BZH03] A. Butt, R. Zhang, and Y. Hu. A Self-Organizing Flock of
Condors. In Proceedings of the Super Computing Conference,
2003.

[CDG+02] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure Routing for Structured Peer-to-Peer Overlay
Networks. In OSDI, December 2002.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg. Dis-
tributed Systems: Concepts and Design, 3rd Edition. Addison-
Wesley, 2001.

[CDKR02] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in Com-
munications (JSAC), 2002.

[CFJ03] Eric Cronin, Burton Filstrup, and Sugih Jamin. Cheat-
Proofing Dead Reckoned Multiplayer Games. In Interna-
tional Conference on Application and Development of Com-
puter Games, January 2003.

[CHTCB96] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and
Bernadette Charron-Bost. On the impossibility of group mem-
bership. In Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing, pages 322–330. ACM
Press, 1996.

[CRSZ01] Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui Zhang. En-
abling conferencing applications on the internet using an over-
lay muilticast architecture. In Proceedings of the 2001 confer-
ence on Applications, technologies, architectures, and protocols
for computer communications, pages 55–67. ACM Press, 2001.

[CRZ00] Yang Chu, Sanjay G. Rao, and Hui Zhang. A Case for End
System Multicast. In Proceedings of the 2000 ACM SIGMET-
RICS international conference on Measurement and modeling
of computer systems, pages 1–12. ACM Press, 2000.

[CZD] Kenneth L. Calvert, Ellen Witte Zegura, and Michael J. Don-
ahoo. Core Selection Methods for Multicast Routing. In IEEE
ICCCN.

27



[DC90] Stephen E. Deering and David R. Cheriton. Multicast routing
in datagram internetworks and extended LANs. ACM Trans-
actions on Computer Systems, 8(2):85–110, 1990.

[DEF+94] Stephen Deering, Deborah Estrin, Dino Farinacci, Van Jacob-
son, Ching-Gung Liu, and Liming Wei. An architecture for
wide-area multicast routing. In Proceedings of the conference
on Communications architectures, protocols and applications
(ACM SIGCOMM, pages 126–135. ACM Press, 1994.

[DG99] C. Diot and L. Gautier. A Distributed Architecture for Multi-
player Interactive Applications on the Internet. IEEE Networks
magazine, 13(4), July/August 1999.

[dis95a] IEEE Standard for Distributed Interactive Simulation – Ap-
plication Protocols (IEEE STD 1278.1-1995). IEEE Computer
Society, 1995.

[dis95b] IEEE Standard for Distributed Interactive Simulation – Com-
munication Services and Profiles (IEEE Std 1278.2-1995).
IEEE Computer Society, 1995.

[DSB88] Michel Dubois, Christoph Scheurich, and Fayé A. Briggs. Syn-
chronization, Coherence, and Event Ordering in Multiproces-
sors. Computer, 21(2):9–21, 1988.

[FCC+03] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and
Amin Vahdat. SHARP: An Architecture for Secure Resource
Peering. In Symposium on Operating System Principles, Octo-
ber 2003.

[FJL+97] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne,
and Lixia Zhang. A reliable multicast framework for light-
weight sessions and application level framing. IEEE/ACM
Trans. Netw., 5(6):784–803, 1997.

[fol] Folding@home distributed computing.
http://folding.stanford.edu.

[GDK99] L. Gautier, C. Diot, and J. Kurose. End-to-end transmission
control mechanisms for multiparty interactive applications on
the internet. In IEEE Infocom, 1999.

28



[glo] The Globus Alliance. http://www.globus.org.

[gnu] Gnutella. http://www.gnutella.com.

[GS99] S. Jamaloddin Golestani and Krishan K. Sabnani. Fundamen-
tal Observations on Multicast Congestion Control in the Inter-
net. In INFOCOM, pages 990–1000, 1999.

[HC99] Hugh W. Holbrook and David R. Cheriton. IP multicast chan-
nels: EXPRESS support for large-scale single-source applica-
tions. In Proceedings of the conference on Applications, tech-
nologies, architectures, and protocols for computer communica-
tion, pages 65–78. ACM Press, 1999.

[HCNF94] Daniel J. Van Hook, James O. Calvin, Michael K. Newton, and
David A. Fusco. An Approach to DIS Scaleability. In 11th DIS
Workshop, September 1994.

[HSC95] Hugh W. Holbrook, Sandeep K. Singhal, and David R. Cheri-
ton. Log-based receiver-reliable multicast for distributed inter-
active simulation. In Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for computer
communication, pages 328–341. ACM Press, 1995.

[Jac88] V. Jacobson. Congestion avoidance and control. In Sympo-
sium proceedings on Communications architectures and proto-
cols, pages 314–329. ACM Press, 1988.

[Jef85] David R. Jefferson. Virtual time. ACM Trans. Program. Lang.
Syst., 7(3):404–425, 1985.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi,
Sean Rhea, Hakim Weatherspoon, Chris Wells, and Ben Zhao.
OceanStore: an architecture for global-scale persistent storage.
In Proceedings of the ninth international conference on Archi-
tectural support for programming languages and operating sys-
tems, pages 190–201. ACM Press, 2000.

[KHTK00] Sneha Kumar Kasera, Gı́sli Hjálmtýsson, Donald F. Towsley,
and James F. Kurose. Scalable reliable multicast using multiple
multicast channels. IEEE/ACM Trans. Netw., 8(3):294–310,
2000.

29



[KKT00] S. K. Kasera, J. Kurose, and D. Towsley. RMX: Reliable Mul-
ticast for Heterogeneous Networks. In IEEE Infocom, 2000.

[KLXH04] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-Peer
Support for Massively Multiplayer Games. In IEEE Infocom,
March 2004.

[KMR02] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Over-
lay Services. In Proceedings of ACM SIGCOMM, 2002.

[KRT+98] Satish Kumar, Pavlin Radoslavov, David Thaler, Cengiz
Alaettinoğlu, Deborah Estrin, and Mark Handley. The
MASC/BGMP architecture for inter-domain multicast rout-
ing. In Proceedings of the ACM SIGCOMM ’98 conference
on Applications, technologies, architectures, and protocols for
computer communication, pages 93–104. ACM Press, 1998.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[Lam79] Leslie Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Trans. Com-
puters, pages 690–691, September 1979.

[LESZ98] Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia
Zhang. Local error recovery in SRM: comparison of two ap-
proaches. IEEE/ACM Trans. Netw., 6(6):686–699, 1998.

[LLM88] M. Litzkow, M. Livny, and M. W. Mutka. Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th International
Conference on Distributed Computing Systems, June 1988.

[LP96] J. C. Lin and S. Paul. RMTP: A Reliable Multicast Transport
Protocol. In IEEE Infocom, pages 1414–1424, March 1996.

[LRP04] J. Li, P. Reiher, and G. Popek. Resilient Self-Organizing Over-
lay Networks for Security Update Delivery. IEEE Journal
on Selected Areas in Communication, special issue on Service
Overlay Networks, January 2004.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
Byzantine Generals Problem. ACM Trans. Program. Lang.
Syst., 4(3):382–401, 1982.

30



[LT99] Emmanual Léty and Thierry Turletti. Issues in Designing a
Communication Architecture for Large-Scale Virtual Environ-
ments. In Networked Group Communications, pages 54–71,
1999.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, Inc., 1996.

[LZZ+04] Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and
Shanyu Zhao. Cluster Computing on the Fly: P2P Scheduling
of Idle Cycles on the Internet. In International Workshop on
Peer-to-Peer Systems, 2004.

[MJV96] Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-
driven layered multicast. In Conference proceedings on Appli-
cations, technologies, architectures, and protocols for computer
communications, pages 117–130. ACM Press, 1996.

[nap] Napster. http://www.napster.com.

[RBR99] Injong Rhee, Nallathambi Ballaguru, and George Rouskas.
MTCP: Scalable TCP-like Congestion Control for Reliable
Multicast. In INFOCOM, March 1999.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms Heidel-
berg, pages 329–350. Springer-Verlag, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Schenker. A scalable content-addressable network. In
Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications,
pages 161–172. ACM Press, 2001.

[SM02] Emil Sit and Robert Morris. Security Considerations for Peer-
to-Peer Distributed Hash Tables. In Peer-to-Peer Systems:
First International Workshop (IPTPS 2002), volume 608 of
Lecture Notes in Computer Science, pages 261–269. Springer-
Verlag Heidelberg, March 2002.

31



[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of the 2001 con-
ference on Applications, technologies, architectures, and proto-
cols for computer communications, pages 149–160. ACM Press,
2001.

[SRC84] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-
To-End Arguments in System Design. ACM Transactions on
Computer Systems, 2(4):277–288, nov 1984.

[Stu] Ensemble Studios. Age of Empires.
http://www.ensemblestudios.com/aoe.htm.

[TR97] David Thaler and Chinya V. Ravishankar. Distributed Center-
Location Algorithms. IEEE Journal on Selected Areas in Com-
munications, 15(3):291–303, 1997.

[Wal02] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues.
In International Symposium on Software Security, November
2002.

[ZF01] Daniel Zappala and Aaron Fabbri. Using SSM Proxies to
Provide Efficient Multiple-Source Multicast Delivery. In Pro-
ceedings from IEEE Global Internet Symposium (Globecom),
November 2001.

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea,
Anthony D. Joseph, and John D. Kubiatowicz. Tapestry: A
Resilient Global-SCale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications, 22(1):41–53, Ja-
nuray 2004.

[Zon02] Zona Inc. Terazona: Zona application framework whitepaper.
www.zona.net/whitepaper/Zonawhitepaper.pdf, 2002.

32


