
COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

Low-Latency and Cheat-proof Event Ordering for
Distributed Games

Chris GauthierDickey, Daniel Zappala and Virginia Lo
Department of Computer Science, 1202 University of Oregon,Eugene OR 97403-1202

{chrisg | zappala| lo}@cs.uoregon.edu

Abstract— In this paper, we describe a new protocol
for ordering events in peer-to-peer games that is provably
cheat-proof. We describe how we can optimize this protocol
to react to changing delays and congestion in the network.
We validate our protocol through simulations and demon-
strate its feasibility as a real-time, interactive protocol. To
our knowledge, this is the first peer-to-peer protocol that
is both cheat-proof and maintains the low latency required
by interactive, real-time games.

Keywords: System design, Simulations

I. I NTRODUCTION

Traditionally, multi-player games have used a
client/server communication architecture. This architec-
ture has the advantage that a single authority orders
events, resolves conflicts in the simulation, acts as a
central repository for data, and is easy to secure. On the
other hand, this architecture has several disadvantages.
First, it introduces delay because messages between
players are always forwarded through the server. Second,
traffic at the server increases with the number of players,
creating localized congestion. Third, in the client/server
architecture, players must trust that the server is not
tainted. Last, this architecture is limited by the com-
putational power of the server. While we can throw
technology at most of these problems in the form of
more servers and higher bandwidth lines, this solution
incurs significant cost and is not a viable option for the
average player who desires to host a game.

To address these problems, we propose using a peer-
to-peer architecture [1], [2]. This architecture allows
peers to send messages directly to each other, reduc-
ing the delay for messages and eliminating localized
congestion. It allows a player to host a game without
the need for a high-bandwidth, dedicated connection to
the Internet. Last, players no longer need to trust an
individual server.

Most multiplayer games consist of 2 to 64 players,
though a certain class of games, termedMassively
Multiplayer Online Games(MMOs) scale to several
thousand players. In our work, we consider both types of

networked games. Our work applies to small networked
games and also applies to MMOs as part of a larger com-
munication architecture [2]. In the context of MMOs, our
protocol is used for small, virtually local groups that
propagate events to other groups as needed.

Building a distributed game communication architec-
ture introduces the fundamental problem of cheating in
an untrusted environment. Specifically, how can players
trust each other to accurately represent when a given
event has occurred? Accordingly, we have designed the
New-Event Ordering (NEO) protocol, which provides
low latency event ordering while provably preventing
common protocol-level cheats.

NEO provides much lower latency than previous event
ordering protocols, which are limited by the latency of
the slowest player to any other player in the game.
NEO divides time into “rounds” and uses the round
duration to bound the maximum latency of a playerfrom
a majority of other players in the game.This means that
it is acceptable to be slow to some players, as long as
most players get your updates in a timely fashion. While
NEO dramatically improves performance, it does not
compromise trust. We show how NEO can prevent five
common protocol-level cheats, under a broader definition
of cheating than has been previously used.

This paper has several important contributions. First,
we provide a taxonomy of cheats, explaining where they
occur and what can be done to counter them. Second,
we contribute NEO–the first cheat-proof, low-latency,
congestion controlled protocol for real-time, interactive
games. Third, we provide a study of NEO through simu-
lation and demonstrate its superior latency characteristics
in comparison to other cheat-proof protocols. Last, we
demonstrate NEO’s ability to react to changing delay and
packet loss in the network.

II. A TAXONOMY OF CHEATING

Before discussing NEO, we present our taxonomy of
common cheats in networked, multiplayer games. We
categorize the cheats according to thelevel they occur

1

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

TABLE I

A TAXONOMY OF CHEATING

Distributed
Cheat Level P2P Multicast Client/Server

Denial of Service Network X X X

Fixed Delay Protocol X X ⋆

Timestamp Protocol X X ⋆

Suppressed Update Protocol X

Inconsistency Protocol X X

Collusion Protocol X X X

Secret revealing Application X X ⋆

Bots/reflex enhancers Application X X X

Breaking game rules Game X X X

Check marks indicate whether this type of cheat is possible under the listed architecture. Stars indicate cheats which are
partially possible.

at: game, application, protocol, or network. Table I shows
this taxonomy and the architectures they occur in.

Cheats at the game level result from manipulating
game rules for unintended results. At the application
level, the code of the application is modified to give the
player an unfair advantage. Cheats at the protocol level
occur by modifying network packets or network proto-
cols1. Last, cheats at the network level occur because of
network security issues–for example, DoS attacks.

In addition to showing the taxonomy of cheating meth-
ods, Table I shows which cheats can be used with three
architectures (peer-to-peer, multicast, and client/server).
Both peer-to-peer and multicast architectures in this
case are considered to be fully distributed architectures
without a centralized server. We also do not consider a
multicast client/server architecture because the cheats as-
sociated with the client/server architecture do not depend
on unicast or multicast.

This taxonomy reveals several interesting things about
the way the architecture affects the types of cheating
available. First, the client/server architecture by nature
prevents a client from sending different packets to other
clients, changing the timestamps on packets and learning
secrets which are normally not available to the client.
However, even though a client/server architecture pro-
vides some security for network level cheating, a client
can still artificially suppress packets or add fixed delays.

The following sections discuss the categories and
their respective cheats in details. In the examples, we
have three characters: Alice and Bob, two non-cheating
players, and Eve, a cheating player.

1Typically protocol and application level cheats both occur through
modifying the application, though network cheats specifically target
security problems with the network protocols.

A. Protocol level cheats

1) Suppressed Update:In this cheat, Eve suppresses
updates to Alice and Bob. Right before the game would
disconnect her due to packet loss, Eve sends a new
update to her opponents. As a result, Alice and Bob do
not know where Eve is exactly or what actions she has
performed, giving her the ability to ’hide’.

This cheat is particularly powerful when a player’s
update includes the actual location of a player instead
of the series of moves (which is often the case when
using unreliable protocols since a move might have been
dropped). In this case, Eve does not let other players
know where she is and then picks an advantageous
location several rounds later.

2) Fixed Delay: In this cheat, Eve purposely adds
a fixed amount of delay to her outgoing packets while
accepting all incoming packets. This cheat allows her to
receive updates faster than she is sending them, granting
her the ability to respond to game events quicker. For
example, Eve has a 10ms connection to Alice, but
artificially adds a 140ms delay on outgoing updates.
Thus, Eve can react to updates from Alice 10ms later,
while Alice will not see Eve’s updates until 140ms after
they occurred. The effect of disproportionate latency was
examined in [3], which showed that the added latency
directly affects the ability to win in some games.

This cheat is possible in the client/server architecture
if the server allows players to timestamp their own
updates (which may be done for performance reasons
or to prevent clients from having to rescind moves they
have already displayed on the player’s screen). Typically,
though, the server determines when events occur and
local clients assume their updates were accepted by the
server unless they are told otherwise.

3) Inconsistency cheat:In the inconsistency cheat,
Eve sends her ’real’ update to every player, except Alice,

2

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

while sending a different update to Alice at timet. Now
Alice thinks Eve is in a different location than she really
is, but every other player will disagree with Alice on
Eve’s location. Later, Eve can send updates to Alice
that merge the two differing opinions on her location in
order to hide her cheat. In the worse case scenario, Alice
can corrupt an entire game, but Alice can also corrupt
a single player, eliminating them from the game. The
inconsistency cheat arises from the Byzantine General’s
Agreement problem [4], but in this case we are trying
to have an agreement on everyone’s game state.

4) Timestamp cheat:Because events must be ordered
for consistency purposes, a global clock is often used
for time stamping. In the timestamp cheat, Eve waits to
receive an update from Alice and then sends her update
with a timestamp that isbeforeAlice’s. For example, Eve
could send out a move with a timestamp earlier than the
’Alice shoots Eve’ update just received. To other players,
Eve’s message appears to be delayed and the shot misses.

The client/server architecture sidesteps this issue be-
cause the server can provides a total ordering on events
(based on when it receives the update, not when the
update is sent) and tells each client when each event
occurred.

5) Collusion Cheat: A collusion cheat occurs by
having several players collude and either share packets
or modify them in some way to gain an advantage
over other players. For example, Eve is colluding with
Mallory and is trying to catch Alice. Mallory sees
Alice, even though Eve cannot, so Mallory can simply
inform Eve of Alice’s location. Recall that this occurs
at the protocol level–in other words, Mallory can simply
forward Alice’s positional updates to Eve even though
she shouldn’t receive them.

B. Application level cheats

1) Secret revealing:Secret revealing occurs by Eve
altering her game client to give her information that
would normally not be available. For example, Eve may
modify her client so that walls are translucent, giving
her the ability to locate enemy players easily.

In the client/server architecture, this cheat can only
be prevented by revealing secrets at the last possible
moment. In the example above, the server would not
reveal Alice’s position to Eve until Alice was in Eve’s
direct line of sight. Unfortunately, this leads to high
latency [5].

2) Bots/reflex enhancers:This cheat occurs by modi-
fying the client with additional software so that a player
can react faster than humanly possible. For example, Eve
can automatically aim her weapons at Alice by reading

Alice’s position from the game client and firing at Alice’s
predicted location.

Bots and reflex enhancers are not detectable by a
game or preventable by game rules. An extremely skilled
player may look like a bot if her accuracy is very high.

C. Game level cheats

Game level cheats occur by finding loopholes in the
game rules. For example, if the inventor of Poker had
left out the rule that a player is not allowed to peek
at an opponent’s hand, then she could base her next
move on her opponent’s cards. Unfortunately, preventing
loopholes in game rules is a non-trivial problem!

III. B ACKGROUND

Diot, Gautier and Kurose described the first protocol
for distributed games [6], [7] and built a game called
MiMaze to demonstrate its feasibility. Their work is
important because they developed a technique called
bucket synchronization, in which game time is divided
into ’buckets’, in order to maintain state consistency
among players. The MiMaze protocol uses multicast to
exchange packets between players, resulting in a low
latency; however, it does not address the problem of
cheating.

At the other end of the spectrum, Baughman and
Levine designed theLockstepprotocol to address the
problem of protocol level cheats [8]. Lockstep uses
rounds for time, which are broken into two steps: first,
everyone reliably sends a cryptographic hash of their
move, then everyone sends the plain-text version of
their move. This forces everyone tocommittheir move,
without revealing it, thereby preventing anyone from
knowing someone else’s move ahead of time.

To mitigate the problem of delay introduced by reli-
able transport, Baughman and Levine created the Asyn-
chronous Synchronization (AS) protocol[8]. AS extends
the basic Lockstep protocol by having players exchange
updates only when their actions might intersect. Each
player associates a sphere of influence with every other
player. When a player receives or misses an update from
another player during a round, the associated sphere is
contracted or dilated respectively. This allows players
to progress in rounds asynchronously until their sphere
intersects with another player’s sphere–at which point
they must engage in Lockstep.

The AS protocol is a major advance in distributed
protocols because it is provably secure against the fixed-
delay and timestamp cheats. It gains this security by
forcing moves to occur in lockstep–no player can receive
a plain-text move before they commit their move.

3

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

Unfortunately, Lockstep has several drawbacks. First,
its playout latency, which is the time from when an
update is sent out to when the update can be displayed to
other players, has a minimum bound of three times the
latency of the slowest link between any two players. This
bound is due to the use of reliable transport for sending
the hashed update, followed by sending the plain-text
update. The AS protocol does not help to reduce latency
because players that are close in the virtual world of
a game may in fact incur significant propagation and
queueing delay. Second, Lockstep and AS are vulnerable
to the suppressed update cheat–a malicious player can
stop sending updates, stopping round progression until
other players drop her from the game. Third, Lockstep
and AS do not prevent the inconsistency cheat. Last, the
AS protocol is vulnerable to collusion. Since rounds no
longer progress synchronously, a player can receive a
plain-text update from another player and forward the
update on to other players who have not yet committed
their move for that round.

Cronin et al. designed the Sliding Pipeline (SP) pro-
tocol [9] in order to improve the lockstep protocol. They
add an adaptive pipeline that allows players to send out
several moves in advance without waiting for ACKs from
the other players, reducing the time that is dead-reckoned
between rounds. The pipeline depth is designed to grow
with the maximum latency between players so thatjitter,
or inter-packet arrival time, is reduced.

While the SP protocol reduces jitter and dead-
reckoning, it still has the same playout latency as lock-
step. In terms of security, the protocol prevents the
timestamp cheat, but allows a player to use the fixed-
delay cheat [9] because a player can artificially increases
her delay to receive a plain-text move before committing
her move for a given round. The adaptive pipeline helps
detect this cheat, but it can falsely label someone with
an increased delay as a cheater. Furthermore, a cheater
can use the fixed-delay update cheat every other round
and not be detected.

Bharambe et al. have proposed Mercury, a distributed
publish-subscribe communication architecture [10]. Mer-
cury provides channels, which can be of any subject,
uses a subscription language (that is a subset of rela-
tional database query languages), and uses rendezvous
points (RPs) to gather and disseminate publications.
Unfortunately their results show that it cannot meet
the performance requirements for massively-multiplayer
online games due to the routing delay introduced by their
architecture [10].

Knutsson et al. also designed a publish/subscribe sys-
tem [11] using Pastry [12] and Scribe [13]. The virtual
world is divided into regions, and players in each region

form a group. Each region maps to a multicast group
through Scribe so that updates from the players are
multicast to the group. Consistency is achieved through
the use ofcoordinators. Every object in the game is
assigned to a coordinator; therefore, any updates to an
object must be sent to the coordinator who resolves
any consistency problems. Fault tolerance is achieved
through replication. However, their system does not fully
take cheating into consideration in its design, but instead
relegates it to future work.

In the game industry, very few networked games
are fully distributed. One notable exception is Age of
Empires (AoE) [14], in which games are synchronized
across clients and peer-to-peer communication is used.
AoE’s protocol is similar to bucket synchronization,
except that unicast is used. While AoE is a commercial
success for distributed game protocols, it is subject to all
but the inconsistency cheat (because players periodically
exchange hashes of the game state with other players to
detect inconsistencies).

Finally, we note that the area of distributed interactive
simulation (DIS) addresses some of the same issues, but
all participants are trusted, so the DIS protocols do not
attempt to prevent packet-level cheating.

IV. N EW-EVENT ORDERING PROTOCOL

The New-Event Ordering (NEO) protocol is the first
protocol that totally orders events generated by a dis-
tributed group, avoids five common protocol level cheats,
has a playout latency that is independent of network
conditions, and adapts to changing network conditions
to optimize its performance. NEO was first described in
[1].

NEO is purposely agnostic regarding the underly-
ing message propagation system. Unicast, multicast, or
some type of overlay could be used to send messages,
though the use of something other than unicast or native
multicast could introduce new ways of cheating (such
as not forwarding messages along an application-layer
multicast tree). However, this flexibility allows us to
have alternatives when considering the extreme case of
everyone in a game going to the same location in the
virtual world and having to exchange messages. In this
case, group density could be used to trigger a switch to
multicast, for example.

With NEO, the majority always rules. This has the
benefit that the protocol will adapt so that the majority
of players are receiving the best possible performance.
However, this also means that if a majority of players
can collude and cheat, then NEO will not be able to
prevent it. We address this problem underCollusion
Cheatsbelow.

4

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

In our discussion of NEO, we assume that all players
are in the same location of a virtual world, that all players
know of each other and communicate via UDP over
unicast, that any player can authenticate the message of
another player through signatures, and that game time is
synchronized between players using a time synchroniz-
ing protocol such as NTP [15].

A. Basic NEO Protocol

For simplicity, we start with a basic NEO protocol
that prevents only the suppressed update and timestamp
cheats. We later extend this protocol to address the other
three protocol level cheats.

In NEO, time is broken into equal intervals, called
rounds, in which each player sends an update to all other
players. Each update is encrypted, and in the following
round, each player sends the key for the previous update
to all other players.

NEO uses rounds in order to bound the maximum
delay that any player can have for sending their update.
Late updates are considered invalid, unless a majority
of other people have received them. This means that
unlike the lockstep or sliding pipeline protocol, which
have playout latencies bounded by 3 times the maximum
latency between any two players, NEO bounds its play-
out latency by only2d, whered is the round length and
is independent of any player’s latency.This allows game
developers to choose how big or small round length is,
balancing responsiveness of the game with the ability to
play over long network distances.

Presumably, the maximum round length is the maxi-
mum amount of time a round can be for a game to be
playable. Thus, any player who cannot reach a majority
of players within the maximum round length cannot play
the game with those players. This is acceptable, since the
game is unplayable when a player’s delay is beyond the
maximum round length.

Each message contains a time-stamped, signed, en-
crypted update,2 a key for the previous round, and a
signed bit-vector of messages received from the previous
round. For example, a messageM from player A at
roundr has the following format:

M r
A = E(SA(U r

A)), Kr−1

A
, SA(V r−1

A
) (1)

In this message,E(x) is an encryptedx, SA(x) repre-
sentsA’s signature onx, U r

A
is the update from playerA

for roundr, Kr−1

A
is A’s key for the update from round

2Like the Lockstep protocol, we could also send a hash of the
update for this round with the plaintext update for the previous round.
Conceptually, the two methods are equivalent—first wecommitto a
move, then we reveal it.

TABLE II

PLAYER A’ S TABLE OF VOTES

Player Bit-vector
A 1 1 0 1 0
B 0 1 0 1 0
C 1 1 1 0 0
D 1 1 1 1 1
E packet lost

Voting tally 3 4 2 3 1

r − 1, andV r−1 is the bit vector of votes for messages
(defined shortly) received during roundr − 1.

Because a player releases her key for an update
immediately after the end of the round, she cannot accept
any late updates. However, each player may have a
different set of updates that arrived on time for a given
round. To maintain consistency, players accept an update
only if a majority of players received the update on time.

Consistency is achieved through a distributed voting
mechanism. A player votes positive for another player
if the other player’s update was received on time;
otherwise, she votes negative. An update is considered
valid only if a majority of the players send a positive
vote. Each round the players tally the votes they have
and decide which updates are considered valid. Any
votes which are not received are considered abstentions;
however, a majority of votes must be received for the
vote to be considered valid. If not enough votes are
received, the players must attempt to contact the players
that abstained from the vote.

To understand how voting works, assume five players
are in a game, and player A is tallying the votes from the
previous round. Also assume that a majority is greater
than 50%. Table II lists the voting bit-vectors that each
player has sent to player A. From the tally, we can
conclude that a majority received A, B and D’s updates,
while a majority did not receive E’s update (so it is
considered invalid). As for player C, player A cannot
determine what the outcome of the vote is, so she must
contact another player to determine the outcome.

The primary reason for voting is that it allows rounds
to progress without needing to hear from every player
every round. This decouples the playout latency from
the players’ latency because round progression no longer
relies on reliable communication. Assuming that a major-
ity of players are receiving updates and votes, NEO will
continue to progress through rounds3. On the other hand,

3If a majority of players are not receiving updates from each
other, then the game is unplayable. But this holds true for any
game, distributed or not!

5

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

with lockstep and the sliding pipeline protocols, if just
one player drops an update, all players must wait until
that update is recovered before the game can progress to
the next round.

The secondary reason for using voting is that we only
want to reconcile a minority of players at any time in
order to keep the majority of players happy. Recall that
dead-reckoning is being used between rounds so that if
a player has to adjust their simulation, it is because she
is with a minority of players whose game state differs
from the majority.

B. Proof of Safety and Liveness

We now prove the safety and liveness of NEO by
showing that it does not produce an error condition
and always progresses. Our assumptions are that players
know of each other and any player can authenticate
the message of another player (through signatures). An
error occurs in our protocol if in roundr a player can
receive the key for roundr from another player before
sending out their update for roundr. Proving that an
error condition never occurs with our protocol also acts
as evidence that the lookahead cheat and the fixed-delay
cheat cannot be used with our protocol.

Theorem 1:The NEO protocol is safe; therefore, no
error condition occurs.

Proof: We proceed by induction onn ≥ 2, the number
of players communicating over NEO. Assume that the
current time ist and that the duration of a round isd.
Our proposition,P (n), is that forn players, no player
can receive a key for the update at timet beforet + d.

(B): P (2) : Let us name the two players asA andB.
Without a loss of generality, we assumeB will try to
cheat. At timet, A sends her update toB. B decides
to wait before sending her update until she receives the
key from A. By definition of the protocol,A sends her
key att+ d. Therefore,B cannot receive the key before
t + d. Furthermore, any update thatB sends for timet
will ignored by A since it must arrive aftert + d.

(I): AssumeP (n) is true andn ≥ 2. We now show
that P (n + 1) is true. Since our inductive hypothesis
states that then players are unable to receive the key
before they send their update for timet, we only need
to consider the interactions between one of the original
n players, which we will callA and the new player,
which we callB. Without loss of generality, we assume
B will try to cheat. B waits to send her update until
she receives the key from at least one other player. By
definition of the protocol, the other players will not send
their key until t + d. Therefore,B receives a key after
t+ d and is no longer able to send an update for timet.
ThusP (n + 1) is true and therefore NEO is safe.

round duration

arrival
delay

pipeline
depth

r=1

r=2

r=3

r=4

r=5

Dependency between
 update and key

U(1)

U(2)

U(3)

U(4)

U(5),K(1)

Fig. 1. Pipelining rounds in NEO.

Theorem 2:NEO is always live; thus, rounds advance
monotonically with real time.

If we assume that the round duration isd, the current
time is t and the start of the game occurred at time
s, then we can determine the round number by the
function f(t) = (t − s)/d. This function increases
monotonically with real time. Since NEO does not halt
for any purpose, even in the face of inadequate votes,
NEO always progresses. Therefore, NEO is live.

C. NEO with Pipelined Rounds

In the basic protocol, the delay from each player to
the majority of other players is bounded by the duration
of the round. Increasing the round length increases the
frequency with which the game must dead-reckon the
positions and actions of other players. During this period
of dead-reckoned time, the game is inconsistent and un-
responsive. To address these problems, NEO pipelines its
rounds, similar to the technique of pipelining instructions
in a processor and to the SP protocol [9]. The pipeline
depth is related to the round duration and the round
arrival delay, as seen in Figure 1. This relationship can
be expressed in the following formula:

pipeline depth =
round duration

arrival delay
(2)

Using pipelined rounds does not significantly change our
basic protocol, except with regard to sending out the key
to our encrypted update and how often updates are sent
out. A dependency exists between the end of the round
that an encrypted update is sent out and the beginning of
the round that the key is sent out (see Figure 1). Similar
to a dependency in a processor pipeline where we must
wait until the dependency has passed to execute a new
instruction, we must wait until the round with the update
has passed before we can send the key for the update.
For example, if a round starts att=80ms and the round
duration is 120ms, then the key must not be sent until
t=200ms. We can now generalize Equation 1 using the

6

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

pipeline depthd and round numberr for player A in the
following equation:

M r
A = E(SA(U r

A)), Kr−d

A
, SA(V r−d

A
) (3)

As the sending rate of updates increases, the responsive-
ness and visual smoothness of the game increase.

D. Security

Now we explain how NEO prevents the cheats from
Section II. We also describe how to prevent an artificial
majority.

Fixed-Delay Cheat: NEO addresses this cheat
through the use of bounded round lengths. Late updates
are simply ignored by everyone.

Timestamp cheat: NEO prevents this cheat through
the use of bounded round lengths. Once a round has
passed, a player can no longer submit a move for that
round; therefore it is impossible to receive a decrypted
update before submitting the move for the previous
round.

Suppressed Update Cheat:NEO adjusts the sending
rate of Eve’s opponents, as described in Section V. Eve’s
missing packets signal congestion to NEO, so that her
opponents will stop sending their updates to her. Thus,
she no longer has an advantage by suppressing updates
since she will no longer receive her opponent’s updates
either. If a player crashes, they will simply be ignored
by other players until they are removed from the system.

Inconsistency Cheat: NEO addresses this cheat
through the use of digital signatures and state compari-
son. Players periodically audit game state by performing
a state comparison. When two players discover different
state, the trail of packets they have received can be used
as evidence against a cheating player.

To avoid direct state comparison, hashes of committed
moves can act as votes. While this introduces additional
bandwidth requirements, these hashes are exactly the
digital signatures required by the Byzantine General’s
problem to prevent inconsistency [4].

Collusion Cheat: NEO addresses collusion at the
architectural and protocol levels. First, NEO can adjust
the majority value sufficiently high to prevent collusion.
Second, each game can be distributed with an individual
key that must be registered to play. The registration
process can identify players and digitally sign their
game keys to prevent a single player from artificially
creating multiple identities so that they unfairly control
the majority.

V. PERFORMANCEENHANCEMENTS

In order to improve performance and to react to
network congestion, we modify NEO to dynamically

adjust the round duration and sending rate. To prevent
synchronization problems and to re-synchronize discon-
nected players who have returned, NEO updates include
the starting time of the round, the round duration, and
the current sending rate. Over the long term, if any
player consistently receives late messages, she can re-
synchronize her game state with the other players (as
when joining the game).

Adjusting the round duration and sending rate is a
tradeoff in performance and overhead. Shorter rounds
allow games to be more responsive to players, and higher
sending rates decrease the dead-reckoned time and jitter.
NEO uses peer-to-peer voting to find a consensus for ad-
justment; more frequent voting produces quicker reaction
to network conditions.

To encourage players to participate in round length
and rate adjustment, we tie the algorithms into the basic
NEO packet. This prevents a player from ignoring a call
to vote for a new round length or sending rate because
ignoring the call means the player must stop sending
packets altogether (or be detected as a non-participant).

A. Adjusting the Round Duration

Because players send out their updates at the start of
each round, each player can record the delay from other
players to herself. Early updates indicate that the round
duration can be decreased, from the perspective of that
player, while late updates indicate that the round duration
should be increased. NEO uses a weighted average over
the last several rounds to avoid reacting to transient
congestion. NEO also measures the delay variance and
then each player votes according to their view of the
network. Once votes are collected and a majority of votes
are for an adjustment, the new round duration and the
time for the round change are advertised to all players.

B. Adjusting the Sending Rate

In addition to adjusting the round length, NEO should
react to congestion as indicated by dropped packets.
Every player in the game can measure her own loss rate
and other players’ late packets. Players can adjust the
sending rate locally and globally, to react to short-term
and long-term congestion.

A player adjusts her sending rate locally by purposely
skipping updates. Skipped updates decrease responsive-
ness in the game, but due to the voting mechanism in
NEO, other players will not need to retrieve her skipped
update. Players vote to globally adjust the sending rate
in response to long term congestion. Each player keeps
a weighted average of their local loss rate. When a
majority of votes for a global rate adjustment is collected,

7

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

the new rate and time of the rate change is advertised to
the players.

A player may also adjust her local sending rate in
order to prevent the suppressed update cheat. Because
a cheater may purposely skip updates, we want to
ensure that a player never sends more updates than
she is receiving. To achieve this, each person may skip
updates to a particular player whenever her rate exceeds
that player’s rate. Any player that attempts to suppress
packets to another player will find that the other player
will immediately begin to suppress messages in return.

VI. EXPERIMENTS

In this section, we describe our simulation methodol-
ogy and experimental results. We show that NEO sig-
nificantly outperforms Lockstep with regard to playout
latency. We then show that we can adjust both the round
length and rate of NEO to adapt to network conditions.

A. Methodology

We use thens-2simulator [16] to simulate NEO and
Lockstep.ns-2 is a packet-level simulator that allows us
to study the effects of dropped or delayed packets on the
performance of the protocols.

Baughman and Levine state that the Lockstep protocol
uses reliable transport, though the actual implementa-
tion details are not included [8]. As a result, we have
implemented the Lockstep protocol as best we could.
Originally, we used TCP as the underlying transport
protocol, but quickly discovered its abysmal performance
as with Lockstep in the face of packet loss. Instead,
we have re-implemented Lockstep on top of UDP using
a simple reliable transport protocol to maximize Lock-
step’s performance.

We optimize Lockstep’s stop-and-wait mechanism by
allowing any player that has received all hashed updates
to immediately send out their plain-text update. As a
further optimization, we allow the last player that sends
the plain-text update to include the hash of their next
update, as the authors suggest [8].

We do not implement event scoping in Lockstep4

because we assume that all players are close enough
in the virtual world that event scoping would not be
useful. Furthermore, the addition of event scoping might
obscure the performance characteristics of the protocols.
We leave studying the effects of event scoping as future
work.

4Baughman and Levine use the termasynchronous synchronization
for event scoping [8].

Internet
50-1000ms
256Kbps

50ms
256kbps

50ms
256kbps

50ms
256kbps

Fig. 2. Simulation Topology

NEO is implemented as described in the Section IV.
NEO’s configurable parameters are discussed in the
appropriate sections below.

We use a simple star topology in order to measure the
performance of NEO and Lockstep as seen in Figure 2.
While more complicated network topologies could have
been used, we argue that by using this simple topology,
we can isolate the factors that affect the protocol perfor-
mance easier without having to consider the effect of an
underlying topology.

The primary metric we use to measure performance is
playout latency. Playout latency is the time from when
a player first sends out their update to when the update
can be displayed on the screen of the other players. The
second metric we use is updates/second. This metric
intuitively represents how many updates a player can
commit on average per second.

B. NEO vs. Lockstep

1) Maximum Delay:In the first experiment, we com-
pare the playout latency of NEO to Lockstep as delay
increases. Obviously, if Lockstep has reasonable perfor-
mance, then the creation of NEO is superfluous. Our
hypothesis, which our simulations verify, is that NEO
will maintain a playout latency bounded by its round
length while Lockstep’s playout latency will increase as
the delay of any player increases.

We tested our hypothesis using the simple topology
in Figure 2, and increased the latency of a single player
from 0ms to 1000ms. This means that the minimum
distance between any two players is at least 50ms, while
the maximum in our experiments would be 1050ms. In
this experiment, we only compare basic NEO to the
optimized Lockstep. NEO uses round length of 200ms,
a pipeline depth of 1, and does not perform round length
or rate adjustments.

Figure 3 plots the playout latency versus the maximum
delay of a single player to the other players in the
simulation. With Lockstep, when the maximum delay
increases to anysingleplayer, the playout latency for all

8

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

Lockstep
NEO

Max Delay (ms)

P
la

yo
ut

La
te

nc
y

(s
)

10009008007006005004003002001000

3

2.5

2

1.5

1

0.5

0

Fig. 3. Average playout latency for all players except for single
player with increasing delay.

players suffers dramatically. At 0ms, the shortest delay
is 50ms, but Lockstep is bound by the longest distance,
which is 100ms. Lockstep’s optimizations allow it to
achieve a playout latency of around 250ms, which is
slightly below the predicted 300ms latency. In fact,
these optimizations allow Lockstep to achieve a playout
latency of about 2.5 times the largest delay between any
two players.

With NEO, the playout latency increases only until
the single player is beyond the maximum round length.
At this point, the playout latency drops back down to its
expected value, about 2 times the round length. Once the
single player is beyond 200ms, her moves are dropped
by the other players.

One might argue that we can modify Lockstep to drop
the player with the large latency. However, this is not a
trivial problem because a player may be experiencing
transient congestion leading to delay and loss. Dropping
players and having them rejoin could also lead to insta-
bility in the protocol and exacerbate network conditions
with an influx of traffic generated by joining the group.
NEO handles this problem problem by ignoring delayed
or lost packets while preventing cheating so that other
players can continue to play the game.

NEO bounds the playout latency by the round length.
If a player experiences temporary congestion, and there-
fore increased delay above the round length, then updates
generated by the player will likely be dropped by the
other players. Moreover, the player only needs to have
her delay less than the round length for a majority
of players (i.e., more than 50%). Finally, the other
players are not affected by the latencies of those with
large delays. Indeed, unless a majority of players are
experiencing delay above the round length, then the
protocol will progress smoothly for a majority of players.

2) Global Packet Loss:In the second experiment, we
compare the playout latency of NEO to Lockstep when

Lockstep
NEO

Global Loss Rate

P
la

yo
ut

La
te

nc
y

(s
)

10.10.01

1000

100

10

1

0.1

Fig. 4. Average playout latency for all players with global packet
loss.

packet loss occurs. Our hypothesis is that Lockstep will
suffer from high playout latency with increased packet
loss, while NEO will only suffer from a poor playout
latency when packet loss is significant.

For this experiment, we first examine how the proto-
cols behave when all links experience the same packet
loss, and we vary the loss rate (generated by a uniform
distribution) from .01 to .75. Our simulator is configured
with the same topology previously used except that one
player has a 100ms delay to the Internet. We compare
the playout latencies of the optimized Lockstep to basic
NEO with a round length of 250ms. Each experiment is
run a minimum of 5 repetitions, with new random seeds,
until the standard error is below 5% or to a maximum
of 100 repetitions.

Figure 4 shows the results of this experiment. We plot
on a log-log scale so that our graph can more clearly
display packet loss under 10%. The graph also uses
error bars to display the 95% confidence interval on the
average taken.

Lockstep demonstrates two trends. First, it consis-
tently has a worse playout latency than NEO. Second,
its round lengths fluctuate wildly under packet loss. This
trend is due to the use of reliable transport which must
determine when a packet has actually been lost.

NEO performs well, keeping its playout latency con-
stant for all players, even in the face of extremely high
loss. NEO performs so well even under higher packet
losses because its voting mechanism can mask losses. If a
packet is received by a majority of players, then only the
minority of players which didn’t receive it are required
to recover it. Therefore, only a minority experience a
larger playout latency for those updates.

3) Packet Loss - Single Player:We extend the pre-
vious experiment by examining how Lockstep and NEO
perform when only a single player is experiencing packet
loss. Rarely will an entire group experience the same

9

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

Lockstep
NEO

Single player loss rate

P
la

yo
ut

La
te

nc
y

(s
)

10.10.01

1000

100

10

1

0.1

Fig. 5. Average playout latency for all players except single player
with increasing packet loss.

packet loss rate. Thus, in this experiment, we use the
same parameters as the previous experiment, except that
we vary the packet loss of the player who is 100ms
from the Internet from 1% to 90%. We hypothesize that
Lockstep will suffer from packet loss in a manner similar
to the previous experiment, but that NEO players will
be unaffected by a single player with a poor connection.
Figure 5 shows the results from our experiment.

Lockstep shows the familiar trend of being adversely
affected by packet loss, but this time a single player
affects the entire group of players. Examining Figures 4
and 5 reveals that packet loss by a single player or an
entire group is detrimental to the playout latency. Any
player experiencing a brief, but modest, 10% packet loss
will render the game unplayable for everyone.

On the other hand, NEO performs extremely well.
None of the other players are affected by the single
player experiencing high packet loss.

4) Updates/Second:In our final comparison between
Lockstep and NEO, we attempt to answer the question
of how the playout latency translates into updates per
second for each player as packet loss increases. We
repeat the previous experiment with global packet loss
and Figure 6 shows our results.

Our results show that while the playout latency for
low packet loss or low delay may not seem large, it
translates into a disparagingly low update rate for play-
ers. At slightly over 1 update/second, Lockstep would
not be useable for most interactive, real-time games. In
comparison, NEO performs well under packet loss and
delay.

C. Round Length Adjustment

Beyond a comparison of NEO to Lockstep, we have
examine the performance of NEO’s round length and rate
adjustment algorithms. Players using the NEO protocol
need to not only agree on how to adjust the round length

Lockstep
NEO

Uniform Loss Rate

U
pd

at
es

/s
ec

on
d

10.10.01

10

1

0.1

0.01

0.001

Fig. 6. Average move rate for all players except single player with
increasing packet loss.

and sending rate, but also when they will change those
parameters. We hypothesize and show that NEO players
can agree on a new round length relatively quickly, even
though they must exchange messages and agree in a
distributed fashion.

For this simulation, we use the same topology, but
three players are at 50ms from the Internet and one
player is 225ms from the Internet (for a maximum delay
of 275ms between the farthest players). We use a global
loss rate of 10% to explore round adjustment in the face
of packet loss. To agree on a round length, players vote
to increase, decrease, or remain at the same duration.
When a majority of players vote to increase, the round
length is doubled. When they vote to decrease, the round
length is reduced by 20ms. All NEO players maintain a
pipeline depth of 1 and begin with a round length of
100ms. The maximum round length is set at 300ms.

Figures 7 shows the result of the experiment for
round length adjustment. The figure only shows the
first 5 seconds since the round length stabilizes after
three seconds. The straight, horizontal line represents
the maximum delay between any two players–which is
the target goal of our adjustment algorithm. The lines
overlap for players 2-4. Player 1 initially takes longer
to increase her round length to 200ms because of her
distance to the other players. However, beyond this, the
players are able to quickly agree on the new round
length and adjust it appropriately. The speed at which
NEO is able to adjust to the new round length is quite
satisfactory.

As discussed before, NEO uses an exponential
weighted average when measuring delay between players
and takes the variance of the average into consideration
when deciding how to adjust the round length. Using
an exponential weighted average and calculating the
variance prevents NEO from prematurely adjusting the
round length.

10

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

max delay (between any two players)
player 4
player 3
player 2
player 1

Time (s)

R
ou

nd
Le

ng
th

(s
)

543210

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Fig. 7. Round length adjustment algorithm discovering maximum
latency between players.

Lockstep
NEO

Max Delay (ms)

P
la

yo
ut

La
te

nc
y

(s
)

10009008007006005004003002001000

3

2.5

2

1.5

1

0.5

0

Fig. 8. Average playout latency as delay increases with NEO’s round
length adjustment algorithm.

With round length adjustment, we can re-examine
the comparison between NEO and Lockstep. Looking
closely at Figure 3 reveals that Lockstep actually per-
forms better when the delay between players is small.
This is because the playout latency in NEO is guided by
the round length. Once we add round length adjustment
to NEO, its playout latency surpasses Lockstep at all
data points as shown in Figure 8.

D. Rate Adjustment

Besides reacting to changing delays on the Internet,
NEO needs to react to packet loss as an indication
of congestion so that it can back off on its sending
rate. By adjusting the pipeline depth (analogous to the
congestion window in TCP), we can slow down or speed
up the rate that NEO injects packets into the network.
We hypothesize that NEO will adjust the sending rate
globally in response to packet loss, though the speed at
which it adjusts will be determined by the round length.

For this simulation, we placed everyone at 50ms from
the Internet. We introduced an artificial 10% global
packet loss rate. While an artificial 10% packet loss is not
sufficient to demonstrate proper rate adjustment, these

player 4
player 3
player 2
player 1

Time (s)

P
ip

el
in

e
D

ep
th

43.532.521.510.50

6

5

4

3

2

1

0

Fig. 9. Rate adjustment algorithm with global 10% packet loss.

results are a preliminary evaluation of rate adjustment in
NEO. A complete design of rate adjustment for games,
including testing against live traffic, congestion control,
and fairness is left as future work.

Initially, each player has a pipeline depth of 1 and
measures the sending and receiving rate to each other
player. The round length is fixed at 200ms and the
maximum pipeline depth is set to 5.

Figure 9 shows the result of this experiment. All player
lines in the graph overlap. Initially, all players are not
experiencing significant packet loss so they begin to
increase their sending rate. However, as their pipeline
rate reaches 5, they have an increased probability for
packet loss and therefore their measured rate is lower
than their maximum rate. Thus, at 3 seconds into the
simulation, they cut their sending rate in half. Without
packet loss, the rate will ramp up to its maximum and
flatten out for the duration of the simulation (not shown
due to space constraints).

This experiment shows that rate adjustment reacts to
lost packets quickly and appropriately cuts the sending
rate for all players. Each adjustment takes about two
round lengths in delay.

VII. C ONCLUSION

The problem of trust and event ordering in commu-
nication protocols is a pervasive problem in distributed
systems. In networked online games, this problem man-
ifests itself through cheating players who try to subvert
the communication protocol to gain an unfair advantage
over other players. Networked games also introduce the
problem of trying to maintain real-time, interactiveness
between players. Taken in isolation, we can solve either
of these problems at the exclusion of the other. For
maximum security, we can ignore the interactiveness
component of games. For maximum performance, we
can ignore the problem of cheating.

11

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT: CIS-TR-2004-2

The NEO protocol solves both of these challenging
problems. NEO handles the problem of security by
encrypting updates and then revealing the keys at a
later time. It also handles the problem of interactive
communication by bounding the maximum latency of
any update from a player by the current round length.

The NEO protocol is provably secure against common
protocol level cheats. Our simulations show that it adapts
to changes in delay on the network by increasing or de-
creasing its round length. It also reacts to congestion by
changing its sending rate. Furthermore, the majority of
players in NEO will always experience the best protocol
performance because NEO adapts to the requirements of
the majority of players. Majority voting also prevents lost
packets from unnecessarily being recovered and keeps
NEO viable even in the face of high packet loss.

These properties of NEO lead us to believe that
NEO is a valuable protocol for peer-to-peer, real-time,
interactive games. Our simulations lead us to believe that
a real-world implementation will perform well. As future
work, we plan on developing a congestion-controlled
rate adjustment algorithm for NEO that is friendly to
TCP. We also plan on implementing NEO with a real
peer-to-peer game to evaluate user experiences with its
performance over the Internet.

REFERENCES

[1] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low La-
tency and Cheat-proof Event Ordering for Peer-to-Peer Games,”
in ACM NOSSDAV, June 2004.

[2] C. GauthierDickey, D. Zappala, and V. Lo, “A Fully Distributed
Architecture for Massively Multiplayer Online Games,” inACM
NetGames Workshop, August 2004.

[3] J. Nichols and M. Claypool, “The Effects of Latency on Online
Madden NFL Football,” inACM NOSSDAV, June 2004.

[4] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,”ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.
382–401, 1982.

[5] K. Li, S. Ding, and D. McCreary, “Analysis of State Expo-
sure Control to Prevent Cheating in Online Games,” inACM
NOSSDAV, June 2004.

[6] C. Diot and L. Gautier, “A Distributed Architecture for Multi-
player Interactive Applications on the Internet,”IEEE Networks
magazine, vol. 13, no. 4, July/August 1999.

[7] L. Gautier, C. Diot, and J. Kurose, “End-to-end transmission
control mechanisms for multiparty interactive applications on
the internet,” inIEEE Infocom, 1999.

[8] N. E. Baughman and B. N. Levine, “Cheat-proof Playout for
Centralized and Distributed Online Games,” inINFOCOM,
2001, pp. 104–113.

[9] E. Cronin, B. Filstrup, and S. Jamin, “Cheat-Proofing Dead
Reckoned Multiplayer Games,” inInternational Conference on
Application and Development of Computer Games, January
2003.

[10] A. R. Bharambe, S. Rao, and S. Seshan, “Mercury: A Scalable
Publish-Subscribe System for Internet Games,” inProceedings
of the First Workshop on Network and System Support for
Games., April 2002.

[11] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer
Support for Massively Multiplayer Games,” inIEEE Infocom,
March 2004.

[12] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale Peer-
to-Peer Systems,” inProceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms Heidelberg.
Springer-Verlag, 2001, pp. 329–350.

[13] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
“SCRIBE: A large-scale and decentralized application-level
multicast infrastructure,”IEEE Journal on Selected Areas in
Communications (JSAC), 2002.

[14] P. Bettner and M. Terrano, “1500 archers on a 28.8: Network
programming in the Age of Empires and beyond,” inGame
Developers Conference, March 2001.

[15] J. Postel, “Network Time Protocol,” RFC 1305, March 1992.
[16] “The Network Simulator - ns-2,” http://www.isi.edu/nsnam/ns/.

12

