COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

Low-Latency and Cheat-proof Event Ordering for
Distributed Games

Chris GauthierDickey, Daniel Zappala and Virginia Lo
Department of Computer Science, 1202 University of Oregamgene OR 97403-1202
{chrisg | zappala| lo}@cs.uoregon.edu

Abstract—In this paper, we describe a new protocol networked games. Our work applies to small networked
for ordering events in peer-to-peer games that is provably games and also applies to MMOs as part of a larger com-
cheat-proof. We describe how we can optimize this protocol munication architecture [2]. In the context of MMOs, our
to react to changing delays and congestion in the network. protocol is used for small, virtually local groups that
We validate our protocol through simulations and demon- propagate events to other groups as needed.

strate its feasibility as a real-time, interactive protocd. To Buildi distributed icati hit
our knowledge, this is the first peer-to-peer protocol that uliding a distributed game communication architec-

is both cheat-proof and maintains the low latency required ture introduces the fundamental problem of cheating in

by interactive, real-time games. an untrusted environment. Specifically, how can players
trust each other to accurately represent when a given
Keywords: System design, Simulations event has occurred? Accordingly, we have designed the
New-Event Ordering (NEO) protocol, which provides
. INTRODUCTION low latency event ordering while provably preventing

Traditionally, multi-player games have used aommon protocol-level cheats.
client/server communication architecture. This architec- NEO provides much lower latency than previous event
ture has the advantage that a single authority ordenslering protocols, which are limited by the latency of
events, resolves conflicts in the simulation, acts astle slowest player to any other player in the game.
central repository for data, and is easy to secure. On tREO divides time into “rounds” and uses the round
other hand, this architecture has several disadvantagsation to bound the maximum latency of a plajrem
First, it introduces delay because messages betweemajority of other players in the gam&his means that
players are always forwarded through the server. Secoitds acceptable to be slow to some players, as long as
traffic at the server increases with the number of playerapst players get your updates in a timely fashion. While
creating localized congestion. Third, in the client/servédEOQ dramatically improves performance, it does not
architecture, players must trust that the server is nedmpromise trust. We show how NEO can prevent five
tainted. Last, this architecture is limited by the comeommon protocol-level cheats, under a broader definition
putational power of the server. While we can throwf cheating than has been previously used.
technology at most of these problems in the form of This paper has several important contributions. First,
more servers and higher bandwidth lines, this solutiave provide a taxonomy of cheats, explaining where they
incurs significant cost and is not a viable option for theccur and what can be done to counter them. Second,
average player who desires to host a game. we contribute NEO-the first cheat-proof, low-latency,

To address these problems, we propose using a pegingestion controlled protocol for real-time, interaetiv
to-peer architecture [1], [2]. This architecture allowgames. Third, we provide a study of NEO through simu-
peers to send messages directly to each other, reddgon and demonstrate its superior latency charactesisti
ing the delay for messages and eliminating localizéd comparison to other cheat-proof protocols. Last, we
congestion. It allows a player to host a game withodiemonstrate NEQ's ability to react to changing delay and
the need for a high-bandwidth, dedicated connection packet loss in the network.
the Internet. Last, players no longer need to trust an
individual server.

Most multiplayer games consist of 2 to 64 players,
though a certain class of games, termbthssively Before discussing NEO, we present our taxonomy of
Multiplayer Online Games(MMOs) scale to several common cheats in networked, multiplayer games. We
thousand players. In our work, we consider both types céditegorize the cheats according to theel they occur

Il. A TAXONOMY OF CHEATING

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

TABLE |
A TAXONOMY OF CHEATING

Distributed
Cheat Level P2P [Multicast | Client/Server
Denial of Service Network v v v
Fixed Delay Protocol v v *
Timestamp Protocol v v *
Suppressed Updatel Protocol v

Inconsistency Protocol v v
Collusion Protocol v v v
Secret revealing | Application | v v *
Bots/reflex enhancers Application | v v v
Breaking game rules Game v v v

Check marks indicate whether this type of cheat is possibtieuthe listed architecture. Stars indicate cheats whieh a
partially possible.

at: game, application, protocol, or network. Table | shows. Protocol level cheats

this taxonomy and the architectures they occur in. 1) Suppressed Updatdn this cheat, Eve suppresses
Cheats at the game level result from manipulatingpdates to Alice and Bob. Right before the game would
game rules for unintended results. At the applicatiatisconnect her due to packet loss, Eve sends a new
level, the code of the application is modified to give thepdate to her opponents. As a result, Alice and Bob do
player an unfair advantage. Cheats at the protocol levelt know where Eve is exactly or what actions she has
occur by modifying network packets or network protoperformed, giving her the ability to ’hide’.
cols'. Last, cheats at the network level occur because ofThis cheat is particularly powerful when a player’s
network security issues—for example, DoS attacks. update includes the actual location of a player instead

In addition to showing the taxonomy of cheating mettpf the series of moves (which is often the case when
ods, Table | shows which cheats can be used with thréging unreliable protocols since a move might have been
architectures (peer-to-peer, multicast, and client&ry dropped). In this case, Eve does not let other players
Both peer-to-peer and multicast architectures in thigow where she is and then picks an advantageous
case are considered to be fully distributed architectur@§ation several rounds later.
without a centralized server. We also do not consider a2) Fixed Delay: In this cheat, Eve purposely adds
multicast client/server architecture because the cheats@ fixed amount of delay to her outgoing packets while

sociated with the client/server architecture do not depefgcepting all incoming packets. This cheat allows her to
on unicast or multicast. receive updates faster than she is sending them, granting

This taxonomy reveals several interesting things abdiff’ e ability to respond to game events quicker. For
the way the architecture affects the types of cheatifig@mple, Eve has a 10ms connection to Alice, but
available. First, the client/server architecture by natufitificially adds a 140ms delay on outgoing updates.
prevents a client from sending different packets to oth&PYS: EVe can react to up?lates from Alice 10ms later,
clients, changing the timestamps on packets and IearnYHB'le Alice will not see Eves_updates _untll 140ms after
secrets which are normally not available to the clienf!€y occurred. The effect of disproportionate latency was
However, even though a client/server architecture pro¥@mined in [3], which showed that the added latency
vides some security for network level cheating, a cliefi'éctly affects the ability to win in some games.

can still artificially suppress packets or add fixed deIay_s.Th'S cheat is possible in the clle_nt/server arch_ltecture
if the server allows players to timestamp their own

T_he following section_s discgss the categories an dates (which may be done for performance reasons
Lhelr ;ﬁspect;:/ N cr:eat_s AI\T detal(ljs.Blnb tTe examplhes, t'\g to prevent clients from having to rescind moves they
;’;we reeocl Earac ersr.] ,'[Fe ar: ob, two non-cheatifg, already displayed on the player’s screen). Typically,
players, and Eve, a cheating player. though, the server determines when events occur and
local clients assume their updates were accepted by the

T . server unless they are told otherwise.
Typically protocol and application level cheats both occur throug . . .
modifying the application, though network cheats specifically target 3) Inconsistency cheatin the inconsistency cheat,

security problems with the network protocols. Eve sends her 'real’ update to every player, except Alice,

2

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

while sending a different update to Alice at timeNow Alice’s position from the game client and firing at Alice’s
Alice thinks Eve is in a different location than she reallpredicted location.
is, but every other player will disagree with Alice on Bots and reflex enhancers are not detectable by a
Eve's location. Later, Eve can send updates to Aligame or preventable by game rules. An extremely skilled
that merge the two differing opinions on her location iplayer may look like a bot if her accuracy is very high.
order to hide her cheat. In the worse case scenario, Alice
can corrupt an entire game, but Alice can also corrupt
a single player, eliminating them from the game. The - .
inconsistency cheat arises from the Byzantine General’sGame level cheats oceur by f"?dmg loopholes in the
Agreement problem [4], but in this case we are tryin ame rules. For example, if thg inventor of Poker had
to have an agreement on everyone's game state. ft out the ruIe’ that a player is not allowed to peek
4) Timestamp cheatBecause events must be ordere%t an opponents hanfj, then she could base her '?eXt
for consistency purposes, a global clock is often us veon hgr opponents (_:ards. Unfqrtunately, preventing
for time stamping. In the timestamp cheat, Eve waits 80pho|es in game rules is a non-trivial problem!
receive an update from Alice and then sends her update
with a timestamp that ibeforeAlice’s. For example, Eve 1. BACKGROUND
could send out a move with a timestamp earlier than theDiot, Gautier and Kurose described the first protocol
'Alice shoots Eve’ update just received. To other playerfr distributed games [6], [7] and built a game called
Eve’'s message appears to be delayed and the shot mid¥iiidlaze to demonstrate its feasibility. Their work is
The client/server architecture sidesteps this issue l@portant because they developed a technique called
cause the server can provides a total ordering on evebtsket synchronization, in which game time is divided
(based on when it receives the update, not when tinto ’'buckets’, in order to maintain state consistency
update is sent) and tells each client when each evamong players. The MiMaze protocol uses multicast to
occurred. exchange packets between players, resulting in a low
5) Collusion Cheat: A collusion cheat occurs by latency; however, it does not address the problem of
having several players collude and either share packefgating.
or modify them in some way to gain an advantage At the other end of the spectrum, Baughman and
over other players. For example, Eve is colluding withevine designed théockstepprotocol to address the
Mallory and is trying to catch Alice. Mallory seesproblem of protocol level cheats [8]. Lockstep uses
Alice, even though Eve cannot, so Mallory can simplgounds for time, which are broken into two steps: first,
inform Eve of Alice’s location. Recall that this occursveryone reliably sends a cryptographic hash of their
at the protocol level-in other words, Mallory can simplynove, then everyone sends the plain-text version of
forward Alice’s positional updates to Eve even thougteir move. This forces everyone tommittheir move,
she shouldn’t receive them. without revealing it, thereby preventing anyone from
knowing someone else’s move ahead of time.

To mitigate the problem of delay introduced by reli-
able transport, Baughman and Levine created the Asyn-
1) Secret revealing:Secret revealing occurs by Evechronous SynchronizatiolA§ protocol[8]. AS extends
altering her game client to give her information thahe basic Lockstep protocol by having players exchange
would normally not be available. For example, Eve maypdates only when their actions might intersect. Each
modify her client so that walls are translucent, givinglayer associates a sphere of influence with every other
her the ability to locate enemy players easily. player. When a player receives or misses an update from

In the client/server architecture, this cheat can ongnother player during a round, the associated sphere is
be prevented by revealing secrets at the last possibtntracted or dilated respectively. This allows players
moment. In the example above, the server would nit progress in rounds asynchronously until their sphere
reveal Alice’s position to Eve until Alice was in Eve’sintersects with another player's sphere—at which point
direct line of sight. Unfortunately, this leads to highhey must engage in Lockstep.
latency [5]. The AS protocol is a major advance in distributed

2) Bots/reflex enhancersthis cheat occurs by modi- protocols because it is provably secure against the fixed-
fying the client with additional software so that a playetlelay and timestamp cheats. It gains this security by
can react faster than humanly possible. For example, Beecing moves to occur in lockstep—no player can receive
can automatically aim her weapons at Alice by readirgyplain-text move before they commit their move.

Game level cheats

B. Application level cheats

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

Unfortunately, Lockstep has several drawbacks. Firébrm a group. Each region maps to a multicast group
its playout latency which is the time from when anthrough Scribe so that updates from the players are
update is sent out to when the update can be displayedrtolticast to the group. Consistency is achieved through
other players, has a minimum bound of three times tlige use ofcoordinators Every object in the game is
latency of the slowest link between any two players. Thassigned to a coordinator; therefore, any updates to an
bound is due to the use of reliable transport for sendimfpject must be sent to the coordinator who resolves
the hashed update, followed by sending the plain-texity consistency problems. Fault tolerance is achieved
update. The AS protocol does not help to reduce latenttyough replication. However, their system does not fully
because players that are close in the virtual world tdke cheating into consideration in its design, but instead
a game may in fact incur significant propagation anelegates it to future work.
gueueing delay. Second, Lockstep and AS are vulnerablén the game industry, very few networked games
to the suppressed update cheat—a malicious player ea@ fully distributed. One notable exception is Age of
stop sending updates, stopping round progression ulihpires (AoE) [14], in which games are synchronized
other players drop her from the game. Third, Lockstegrross clients and peer-to-peer communication is used.
and AS do not prevent the inconsistency cheat. Last, tAeE’s protocol is similar to bucket synchronization,
AS protocol is vulnerable to collusion. Since rounds nexcept that unicast is used. While AoE is a commercial
longer progress synchronously, a player can receivesiaccess for distributed game protocols, it is subject to all
plain-text update from another player and forward tHaut the inconsistency cheat (because players periodically
update on to other players who have not yet committedchange hashes of the game state with other players to
their move for that round. detect inconsistencies).

Cronin et al. designed the Sliding Pipeline (SP) pro- Finally, we note that the area of distributed interactive
tocol [9] in order to improve the lockstep protocol. Thegimulation (DIS) addresses some of the same issues, but
add an adaptive pipeline that allows players to send alt participants are trusted, so the DIS protocols do not
several moves in advance without waiting for ACKs fromttempt to prevent packet-level cheating.
the other players, reducing the time that is dead-reckoned
between rounds. The pipeline depth is designed to grow V. NEW-EVENT ORDERING PROTOCOL
with the maximum latency between players so ffitr, The New-Event Ordering (NEO) protocol is the first
or inter-packet arrival time, is reduced. protocol that totally orders events generated by a dis-

While the SP protocol reduces jitter and deadributed group, avoids five common protocol level cheats,
reckoning, it still has the same playout latency as lockas a playout latency that is independent of network
step. In terms of security, the protocol prevents tremnditions, and adapts to changing network conditions
timestamp cheat, but allows a player to use the fixetd optimize its performance. NEO was first described in
delay cheat [9] because a player can artificially increagds.
her delay to receive a plain-text move before committing NEO is purposely agnostic regarding the underly-
her move for a given round. The adaptive pipeline helflsg message propagation system. Unicast, multicast, or
detect this cheat, but it can falsely label someone witome type of overlay could be used to send messages,
an increased delay as a cheater. Furthermore, a chetiteugh the use of something other than unicast or native
can use the fixed-delay update cheat every other roundlticast could introduce new ways of cheating (such
and not be detected. as not forwarding messages along an application-layer

Bharambe et al. have proposed Mercury, a distributedllticast tree). However, this flexibility allows us to
publish-subscribe communication architecture [10]. Mehave alternatives when considering the extreme case of
cury provides channels, which can be of any subjeeyeryone in a game going to the same location in the
uses a subscription language (that is a subset of relatual world and having to exchange messages. In this
tional database query languages), and uses rendezwwase, group density could be used to trigger a switch to
points (RPs) to gather and disseminate publicatiomaulticast, for example.

Unfortunately their results show that it cannot meet With NEO, the majority always rules. This has the
the performance requirements for massively-multiplaybenefit that the protocol will adapt so that the majority
online games due to the routing delay introduced by theif players are receiving the best possible performance.
architecture [10]. However, this also means that if a majority of players

Knutsson et al. also designed a publish/subscribe sgan collude and cheat, then NEO will not be able to
tem [11] using Pastry [12] and Scribe [13]. The virtugbrevent it. We address this problem undgollusion
world is divided into regions, and players in each regioGheatsbelow.

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

In our discussion of NEO, we assume that all players
are in the same location of a virtual world, that all players
know of each other and communicate via UDP over

TABLE I
PLAYER A’ S TABLE OF VOTES

unicast, that any player can authenticate the message of Player | Bit-vector
another player through signatures, and that game time is g (1) i 8 i 8
§ynchronized between players using a time synchroniz- C 11100
ing protocol such as NTP [15]. D 11111

E packet lost
A. Basic NEO Protocol Voting tally | 34231

For simplicity, we start with a basic NEO protocol
that prevents only the suppressed update and timestamp
cheats. We later extend this protocol to address the other 1, andV"~! is the bit vector of votes for messages
three protocol level cheats. (defined shortly) received during roumd- 1.

In NEO, time is broken into equal intervals, called Because a player releases her key for an update
rounds, in which each player sends an update to all otlieamediately after the end of the round, she cannot accept
players. Each update is encrypted, and in the followiray late updates. However, each player may have a
round, each player sends the key for the previous updédifierent set of updates that arrived on time for a given
to all other players. round. To maintain consistency, players accept an update

NEO uses rounds in order to bound the maximuenly if a majority of players received the update on time.
delay that any player can have for sending their update Consistency is achieved through a distributed voting
Late updates are considered invalid, unless a majoritiechanism. A player votes positive for another player
of other people have received them. This means thlitthe other player's update was received on time;
unlike the lockstep or sliding pipeline protocol, whiclotherwise, she votes negative. An update is considered
have playout latencies bounded by 3 times the maximuwalid only if a majority of the players send a positive
latency between any two players, NEO bounds its playete. Each round the players tally the votes they have
out latency by only2d, whered is the round length and and decide which updates are considered valid. Any
is independent of any player’s latendhis allows game votes which are not received are considered abstentions;
developers to choose how big or small round length ispwever, a majority of votes must be received for the
balancing responsiveness of the game with the ability tote to be considered valid. If not enough votes are
play over long network distances. received, the players must attempt to contact the players

Presumably, the maximum round length is the maxipat abstained from the vote.
mum amount of time a round can be for a game to beTo understand how voting works, assume five players
playable. Thus, any player who cannot reach a major@ye in a game, and player A is tallying the votes from the
of players within the maximum round length cannot plagrevious round. Also assume that a majority is greater
the game with those players. This is acceptable, since than 50%. Table Il lists the voting bit-vectors that each
game is unplayable when a player’s delay is beyond thiyer has sent to player A. From the tally, we can
maximum round length. conclude that a majority received A, B and D’s updates,

Each message contains a time-stamped, signed, while a majority did not receive E's update (so it is
crypted updaté, a key for the previous round, and econsidered invalid). As for player C, player A cannot
signed bit-vector of messages received from the previodgtermine what the outcome of the vote is, so she must
round. For example, a messagé¢ from player A at contact another player to determine the outcome.
roundr has the following format: The primary reason for voting is that it allows rounds

. . 1 1 to progress without needing to hear from every player
M}y = E(Sa(Uj)), K, Sa(Vy™) 1) every round. This decouples the playout latency from
In this messageE(z) is an encrypted:, S4(z) repre- the_ players’_latency becau_se _round prog_ression no Io_nger
sentsA’s signature on, U7, is the update from playet relies on reliable communication. Assuming that a major-
for roundr, K, "' is A's key for the update from round 'ty of players are receiving updates and votes, NEO will
continue to progress through rouAd®n the other hand,

2Like the Lockstep protocol, we could also send a hash of the, L. L.
update for this round with the plaintext update for the previous round. |f & majority of players are not receiving updates from each
Conceptually, the two methods are equivalent—firstamenmitto a other, then the game is unplayable. But this holds true fgr an
move, then we reveal it. game, distributed or not!

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

with lockstep and the sliding pipeline protocols, if just Jound d“”"“"“;-e Do e and Key "

one player drops an update, all players must wait until -

that update is recovered before the game can progress to ; :

the next round. P K2 r=2
The secondary reason for using voting is that we only I r=3

want to reconcile a minority of players at any time in L ey e .

order to keep the majority of players happy. Recall that : r_5

dead-reckoning is being used between rounds so that if pilpel i ne ;
a player has to adjust their simulation, it is because she depth
is with a minority of players whose game state diﬁer,§lg_ 1

. Pipelining rounds in NEO.
from the majority.

B. Proof of Safety and Liveness Theorem 2:NEO is always live; thus, rounds advance
We now prove the safety and liveness of NEO byionotonically with real time.
showing that it does not produce an error condition |f we assume that the round durationdisthe current
and always progresses. Our assumptions are that playgfe is ¢+ and the start of the game occurred at time
know of each other and any player can authenticaie then we can determine the round number by the
the message of another player (through signatures). fdmction f(t) = (¢ — s)/d. This function increases
error occurs in our protocol if in round a player can monotonically with real time. Since NEO does not halt
receive the key for round from another player beforefor any purpose, even in the face of inadequate votes,
sending out their update for round Proving that an NEO always progresses. Therefore, NEO is live.
error condition never occurs with our protocol also acts
as evidence that the lookahead cheat and the fixed-delay , L
cheat cannot be used with our protocol. C.”NEO with Pipelined Rounds
Theorem 1:The NEO protocol is safe; therefore, no In the basic protocol, the delay from each player to
error condition occurs. the majority of other players is bounded by the duration
Proof: We proceed by induction om > 2, the number of the round. Increasing the round length increases the
of players communicating over NEO. Assume that tHfeequency with which the game must dead-reckon the
current time ist and that the duration of a round é& positions and actions of other players. During this period
Our proposition,P(n), is that forn players, no player of dead-reckoned time, the game is inconsistent and un-
can receive a key for the update at timmbeforet + d. responsive. To address these problems, NEO pipelines its
(B): P(2) : Let us name the two players asand B. rounds, similar to the technique of pipelining instructon
Without a loss of generality, we assuni2 will try to in a processor and to the SP protocol [9]. The pipeline
cheat. At timet, A sends her update t6. B decides depth is related to the round duration and the round
to wait before sending her update until she receives themival delay, as seen in Figure 1. This relationship can
key from A. By definition of the protocolA sends her be expressed in the following formula:
key att + d. Therefore,B cannot receive the key before round duration
t + d. Furthermore, any update th& sends for timet pipeline depth = - (2)
will ignored by A since it must arrive aftet + d. arrival delay
(I): AssumeP(n) is true andn > 2. We now show Using pipelined rounds does not significantly change our
that P(n + 1) is true. Since our inductive hypothesidasic protocol, except with regard to sending out the key
states that the: players are unable to receive the keto our encrypted update and how often updates are sent
before they send their update for timewe only need out. A dependency exists between the end of the round
to consider the interactions between one of the origintlat an encrypted update is sent out and the beginning of
n players, which we will callA and the new player, the round that the key is sent out (see Figure 1). Similar
which we call B. Without loss of generality, we assumdo a dependency in a processor pipeline where we must
B will try to cheat. B waits to send her update untilwait until the dependency has passed to execute a hew
she receives the key from at least one other player. Bystruction, we must wait until the round with the update
definition of the protocol, the other players will not sentlas passed before we can send the key for the update.
their key untilt + d. Therefore,B receives a key after For example, if a round starts &80ms and the round
t+d and is no longer able to send an update for timeduration is 120ms, then the key must not be sent until
Thus P(n + 1) is true and therefore NEO is safe. t=200ms. We can now generalize Equation 1 using the

6

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

pipeline depthi and round number for player A in the adjust the round duration and sending rate. To prevent
following equation: synchronization problems and to re-synchronize discon-
o r r—d r—d nected players who have returned, NEO updates include

My = E(Sa(U4), K47, Sa(Vi™) (3) the starting time of the round, the round duration, and

As the sending rate of updates increases, the responsiie- current sending rate. Over the long term, if any
ness and visual smoothness of the game increase. player consistently receives late messages, she can re-
synchronize her game state with the other players (as

D. Security when joining the game).

Now we explain how NEO prevents the cheats from Adjusting the round duration and sending rate is a
Section Il. We also describe how to prevent an artificisfadeoff in performance and overhead. Shorter rounds
majority. allow games to be more responsive to players, and higher

Fixed-Delay Cheat: NEO addresses this cheasending rates decrease the dead-reckoned time and jitter.
through the use of bounded round lengths. Late updatésO uses peer-to-peer voting to find a consensus for ad-
are simply ignored by everyone. justment; more frequent voting produces quicker reaction

Timestamp cheat: NEO prevents this cheat througho network conditions.
the use of bounded round lengths. Once a round haslo encourage players to participate in round length
passed, a player can no longer submit a move for ttad rate adjustment, we tie the algorithms into the basic
round; therefore it is impossible to receive a decryptddEO packet. This prevents a player from ignoring a call
update before submitting the move for the previous vote for a new round length or sending rate because
round. ignoring the call means the player must stop sending

Suppressed Update CheatNEO adjusts the sendingpackets altogether (or be detected as a non-participant).
rate of Eve’s opponents, as described in Section V. Eve’s
missing packets signal congestion to NEO, so that hgr adjusting the Round Duration

opponents will stop sending their updates to her. Thus’Because players send out their updates at the start of

she no longer has an advantage by suppressing Upd%taeaﬁ round, each player can record the delay from other

Z'i?hcgr SneaW':;ngrlz?gser:ersecﬁ:\ée r\:\ilrl Z?rgoln eggsiusggg%yers to herself. Early updates indicate that the round
' blay » they Py 9 uration can be decreased, from the perspective of that

by other players until they are removed from the Systeml'ayer, while late updates indicate that the round duration

Inconsistency Cheat: NEO addresses this chea . i
. . should be increased. NEO uses a weighted average over
through the use of digital signatures and state compati- . . .
e last several rounds to avoid reacting to transient

son. Players pgrlodlcally audit game stat_e by perf(_)rmlr(l: ngestion. NEO also measures the delay variance and
a state comparison. When two players discover differen ; 2
. . then each player votes according to their view of the
state, the trail of packets they have received can be use .
. \ . network. Once votes are collected and a majority of votes
as evidence against a cheating player.

To avoid direct state comparison, hashes of committc?'crie for an adjustment, the new round duration and the

moves can act as votes. While this introduces additional for the round change are advertised to all players.

bandwidth requirements, these hashes are exactly the

digital signatures required by the Byzantine GeneraB Adjusting the Sending Rate

problem to prevent inconsistency [4]. In addition to adjusting the round length, NEO should
Collusion Cheat: NEO addresses collusion at theeact to congestion as indicated by dropped packets.

architectural and protocol levels. First, NEO can adjuBvery player in the game can measure her own loss rate

the majority value sufficiently high to prevent collusionand other players’ late packets. Players can adjust the

Second, each game can be distributed with an individsnding rate locally and globally, to react to short-term

key that must be registered to play. The registratiand long-term congestion.

process can identify players and digitally sign their A player adjusts her sending rate locally by purposely

game keys to prevent a single player from artificiallgkipping updates. Skipped updates decrease responsive-

creating multiple identities so that they unfairly controhess in the game, but due to the voting mechanism in

the majority. NEO, other players will not need to retrieve her skipped
update. Players vote to globally adjust the sending rate
V. PERFORMANCEENHANCEMENTS in response to long term congestion. Each player keeps

In order to improve performance and to react ta weighted average of their local loss rate. When a
network congestion, we modify NEO to dynamicallynajority of votes for a global rate adjustment is collected,

7

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

the new rate and time of the rate change is advertised to
the players.

A player may also adjust her local sending rate in
order to prevent the suppressed update cheat. Becaus
a cheater may purposely skip updates, we want to
ensure that a player never sends more updates than
she is receiving. To achieve this, each person may skip
updates to a particular player whenever her rate exceeds
that player’s rate. Any player that attempts to suppress
packets to another player will find that the other play	- 2- Simulation Topology
will immediately begin to suppress messages in return.

50-1000ms
256Kbps

256kbps

50ms
256kbps

NEO is implemented as described in the Section IV.
VI. EXPERIMENTS NEO’s configurable parameters are discussed in the
ppropriate sections below.

In this sect|o_n, we describe our simulation method(')?fl— We use a simple star topology in order to measure the
ogy and experimental results. We show that NEO s:gv

e : erformance of NEO and Lockstep as seen in Figure 2.
nificantly outperforms Lockstep with regard to playo

I We th h h diust both th dwile more complicated network topologies could have
atency. We then show that we can acjust both the rouggd,, used, we argue that by using this simple topology,

length and rate of NEO to adapt to network Cond't'on%e can isolate the factors that affect the protocol perfor-

mance easier without having to consider the effect of an

A. Methodology underlying topology. _
. _ The primary metric we use to measure performance is

We use thens-2simulator [16] to simulate NEO and pjayout latency Playout latency is the time from when
Lockstep.ns-2is a packet-level simulator that allows us, player first sends out their update to when the update
to study the effects of dropped or delayed packets on g, pe displayed on the screen of the other players. The
performance of the protocols. second metric we use is updates/second. This metric

Baughman and Levine state that the Lockstep protoggtuitively represents how many updates a player can
uses reliable transport, though the actual implementgsmmit on average per second.

tion details are not included [8]. As a result, we have
implemented the Lockstep protocol as best we coulg: NEO vs. Lockstep
Originally, we used TCP as the underlying transport . _ _
protocol, but quickly discovered its abysmal performance 1) Maximum Delay:In the first experiment, we com-
as with Lockstep in the face of packet loss. Insteaf2'® the playout latency of NEO to Lockstep as delay
we have re-implemented Lockstep on top of UDP usidgcreases. Obviously, |f_ Lockstep hag reasonable perfor-
a simple reliable transport protocol to maximize LockTance, then the creation of NEO is superfluous. Our
step’s performance. hypothgss,_ which our simulations verify, is t_hat NEO
We optimize Lockstep’s stop-and-wait mechanism Bg\/lll mamtgm a playout latency bounded_ by its round
allowing any player that has received all hashed updalg89th while Lockstep’s playout latency will increase as
to immediately send out their plain-text update. As W€ delay of any player increases. _
further optimization, we allow the last player that sends "€ tested our hypothesis using the simple topology

the plain-text update to include the hash of their nelt Figure 2, and increased the latency of a single player
update, as the authors suggest [8]. from Oms to 1000ms. This means that the minimum

We do not implement event scoping in Locké‘tepd'Stance. betwe_en any two playetrs IS atlcljegstfc())srrg)s, Whllle
because we assume that all players are close eno maximum in our experiments would be ms. In

in the virtual world that event scoping would not bé S e.szr'[neEt’ we l\(ljlgg compare S?S'C ’;I]E(f) 2t80the
useful. Furthermore, the addition of event scoping migﬂpt!m'?e doc hstefpl. q duses roun fengt 0 dql msr,]
obscure the performance characteristics of the protoccﬂ Ipeline depth of 1, and does not perform round lengt

We leave studying the effects of event scoping as futu?e rgte adjustments. .
work. Figure 3 plots the playout latency versus the maximum

delay of a single player to the other players in the
“Baughman and Levine use the teasynchronous synchronization_S'mUIat'()n- W|th_ Lockstep, when the maximum delay
for event scoping [8]. increases to angingleplayer, the playout latency for all

8

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

3 INEOI I I I 100 - NEIO T T T LELELIL I T T T T LI 'E
5 5l.=—- Lockstep " Lockstep R
@ @ 100 o
> ok > E
c c B4 -
£ - o i .
© e = i
— 1.5 e — 10 i
o - o C Vi 3
g 1 z F A .
o o E
-7 1 LT
O_ I I I I I I I I I 0 [L L L L L1 1.1 I L L L L L1 1.l
O 100 200 300 400 500 600 700 800 900 1000 '6.01 .
Max Delay (ms) Global Loss Rate
Fig. 3. Average playout latency for all players except for singlBig. 4. Average playout latency for all players with global packet
g _Average play! y play p gleig ge play y play g p
player with increasing delay. loss.

players suffers dramatically. At Oms, the shortest del®@acket loss occurs. Our hypothesis is that Lockstep will
is 50ms, but Lockstep is bound by the longest distanciffer from high playout latency with increased packet
which is 100ms. Lockstep’s optimizations allow it tdoss, while NEO will only suffer from a poor playout
achieve a playout latency of around 250ms, which igtency when packet loss is significant.
slightly below the predicted 300ms latency. In fact, For this experiment, we first examine how the proto-
these optimizations allow Lockstep to achieve a playoaols behave when all links experience the same packet
latency of about 2.5 times the largest delay between dgs, and we vary the loss rate (generated by a uniform
two players. distribution) from .01 to .75. Our simulator is configured
With NEO, the playout latency increases only untWith the same topology previously used except that one
the single player is beyond the maximum round lengthlayer has a 100ms delay to the Internet. We compare
At this point, the playout latency drops back down to it1e playout latencies of the optimized Lockstep to basic
expected value, about 2 times the round length. Once f8EO with a round length of 250ms. Each experiment is
single player is beyond 200ms, her moves are droppéth a minimum of 5 repetitions, with new random seeds,
by the other players. until the standard error is below 5% or to a maximum
One might argue that we can modify Lockstep to dropf 100 repetitions.
the player with the large latency. However, this is not a Figure 4 shows the results of this experiment. We plot
trivial problem because a player may be experiencimg) a log-log scale so that our graph can more clearly
transient congestion leading to delay and loss. Droppidigplay packet loss under 10%. The graph also uses
players and having them rejoin could also lead to inst@Fror bars to display the 95% confidence interval on the
bility in the protocol and exacerbate network conditiongverage taken.
with an influx of traffic generated by joining the group. Lockstep demonstrates two trends. First, it consis-
NEO handles this problem problem by ignoring delaygéntly has a worse playout latency than NEO. Second,
or lost packets while preventing cheating so that othiés round lengths fluctuate wildly under packet loss. This
players can continue to play the game. trend is due to the use of reliable transport which must
NEO bounds the playout latency by the round lengtbetermine when a packet has actually been lost.
If a player experiences temporary congestion, and thereNEO performs well, keeping its playout latency con-
fore increased delay above the round length, then updagént for all players, even in the face of extremely high
generated by the player will likely be dropped by theoss. NEO performs so well even under higher packet
other players. Moreover, the player only needs to halasses because its voting mechanism can mask losses. If a
her delay less than the round length for a majorityacket is received by a majority of players, then only the
of players (i.e., more than 50%). Finally, the otheminority of players which didn’t receive it are required
players are not affected by the latencies of those with recover it. Therefore, only a minority experience a
large delays. Indeed, unless a majority of players degger playout latency for those updates.
experiencing delay above the round length, then the3) Packet Loss - Single PlayeMVe extend the pre-
protocol will progress smoothly for a majority of playersvious experiment by examining how Lockstep and NEO
2) Global Packet Lossin the second experiment, weperform when only a single player is experiencing packet
compare the playout latency of NEO to Lockstep whdoss. Rarely will an entire group experience the same

9

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

100 T T T T LELELEL T T T T LILILI 10 T T T T LELELELI T T T T LILILI
I ; I
- NEO *":5 E ?
Lockstep] .
@100 e = z 1 : R 4
2 A 3 8 A 3
5 # : 3 % :
51 5 :
- 10 1 $ 0.1 5 E|
= E E £ kY z
s f . . 2 ¥]
© - ’ - o} ¥, h
o " S
1_E o :nt:—:r:'*"""-j' 0.01 . .
B | == DIOEC(EStep | \.E\-x-\
L L L L L1 1.1 L L L L L1 1.1 L L L L Ll 11 L L L L L bxi 1
04,01 _ 01 1 0.00861 01 1
Single player loss rate Uniform Loss Rate

Fig. 5. Average playout latency for all players except single play&ig. 6. Average move rate for all players except single player with
with increasing packet loss. increasing packet loss.

packet loss rate. Thus, in this experiment, we use thRd sending rate, but also when they will change those
same parameters as the previous experiment, except fihmeters. We hypothesize and show that NEO players
we vary the packet loss of the player who is 100mgn agree on a new round length relatively quickly, even
from the Internet from 1% to 90%. We hypOtheSize th%ough they must exchange messages and agree in a
Lockstep will suffer from packet loss in a manner similagistributed fashion.
to the previous expe_riment, but that NEO players yvill For this simulation, we use the same topology, but
be unaffected by a single player with a poor connectiofyree players are at 50ms from the Internet and one
Figure 5 shows the results from our experiment. layer is 225ms from the Internet (for a maximum delay
Lockstep shows the familiar trend of being adversept >75ms between the farthest players). We use a global
affected by packet loss, but this time a single playgfss rate of 10% to explore round adjustment in the face
affects the entire group of players. Exgmlnlng Figures packet loss. To agree on a round length, players vote
and 5 reveals that packet loss by a single player or lincrease, decrease, or remain at the same duration.
entire group is detrimental to the playout latency. Amyhen a majority of players vote to increase, the round
player experiencing a brief, but modest, 10% packet Iogsgth is doubled. When they vote to decrease, the round
will render the game unplayable for everyone. length is reduced by 20ms. All NEO players maintain a
On the other hand, NEO performs extremely V_VEIEipeIine depth of 1 and begin with a round length of
None of the other players are affected by the singigoms. The maximum round length is set at 300ms.
player experiencing high packet loss. Figures 7 shows the result of the experiment for
4) Updates/Secondin our final comparison betweer?round length adjustment. The figure only shows the
Lockstep and NEO, we attempt to answer the questiiy; 5 seconds since the round length stabilizes after
of how the playout latency translates into updates pgloq seconds. The straight, horizontal line represents
second for eac_h player as packgt loss increases. WE maximum delay between any two players—which is
repeat the previous experiment with global packet 105, (arget goal of our adjustment algorithm. The lines
and Figure 6 shows our results. overlap for players 2-4. Player 1 initially takes longer
I Our r(le(sultls show Ithatdwlhlle the playout Iatelncy ' increase her round length to 200ms because of her
ow packet loss or low delay may not seem large, fiqiqnce 1o the other players. However, beyond this, the
translates into a disparagingly low update rate for pIaEﬂTayers are able to quickly agree on the new round

ers. At slightly over 1 “Pdate’se_cond’ chkstep wou @ngth and adjust it appropriately. The speed at which
not be useable for most interactive, real-time games. O is able to adjust to the new round length is quite
comparison, NEO performs well under packet loss a@gtisfactory

delay. As discussed before, NEO uses an exponential
. weighted average when measuring delay between players
C. Round Length Adjustment and takes the variance of the average into consideration

Beyond a comparison of NEO to Lockstep, we hawshen deciding how to adjust the round length. Using
examine the performance of NEO’s round length and rae@ exponential weighted average and calculating the
adjustment algorithms. Players using the NEO protocadriance prevents NEO from prematurely adjusting the
need to not only agree on how to adjust the round lengibund length.

10

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

0.35

o
N o
ol w

Round Length (s)
o
N

Pipeline Depth
w
|

0.15 player 1—= 2 -
player 2— —- player 1—
player 3- - - player 2— — -
0.1 player 4-----7 1= player 3- - -7
max delay (between any two players)— player 4-----
0.05 I I I I | 0 | l I I | l I
=20 1 2 3 4 5 0 05 1 5 2 25 3 35 4
Time (s) Time (s)
Fig. 7. Round length adjustment algorithm discovering maximuikig. 9. Rate adjustment algorithm with global 10% packet loss.
latency between players.
ST T T T T T T T 1
— NEO results are a preliminary evaluation of rate adjustment in
25— Lockstep - . .
2 - NEO. A complete design of rate adjustment for games,
0 -7
> 5 7 including testing against live traffic, congestion control,
3 — -7 = . .
I3 7 and fairness is left as future work.
§1.5— T - Initially, each player has a pipeline depth of 1 and
g L T measures the sending and receiving rate to each other
T e player. The round length is fixed at 200ms and the
o5 -7 = maximum pipeline depth is set to 5.
-~ 0 0 1 1 L 1 Figure 9 shows the result of this experiment. All player
06100 200 300 400 500 600 700 800 900 1000 lines in the graph overlap. Initially, all players are not

Max Delay (ms) experiencing significant packet loss so they begin to

Fig. 8. Average playout latency as delay increases with NEO’s rouicrease their sending rate. However, as their pipeline
length adjustment algorithm. rate reaches 5, they have an increased probability for

packet loss and therefore their measured rate is lower
than their maximum rate. Thus, at 3 seconds into the

With round length adjustment, we can re-exammsemulation, they cut their sending rate in half. Without

the comparison between NEO and Lockstep. Lookin : : :
. cket loss, the rate will ramp up to its maximum and
closely at Figure 3 reveals that Lockstep actually p fr

forms better when the delay between players is sma(lﬁtten out for the duration of the simulation (not shown

This is because the playout latency in NEO is guided b)l/J_?ht.z Sepa(;?-rizzit;ilgtsg'that rate adiustment reacts to
the round length. Once we add round length adjustment IS experl W Ju

to NEO, its playout latency surpasses Lockstep at I?t r;ackel';s ?U'Ckly aEnd t‘? ppdrp p;lately': fulis thebse?dtilr\;g
data points as shown in Figure 8. rate for all players. Each adjustment takes about two

round lengths in delay.

D. Rate Adjustment

Besides reacting to changing delays on the Internet,
NEO needs to react to packet loss as an indicationThe problem of trust and event ordering in commu-
of congestion so that it can back off on its sendingication protocols is a pervasive problem in distributed
rate. By adjusting the pipeline depth (analogous to tlsgstems. In networked online games, this problem man-
congestion window in TCP), we can slow down or speefists itself through cheating players who try to subvert
up the rate that NEO injects packets into the networthe communication protocol to gain an unfair advantage
We hypothesize that NEO will adjust the sending ratver other players. Networked games also introduce the
globally in response to packet loss, though the speedpabblem of trying to maintain real-time, interactiveness
which it adjusts will be determined by the round lengttbetween players. Taken in isolation, we can solve either

For this simulation, we placed everyone at 50ms froof these problems at the exclusion of the other. For
the Internet. We introduced an artificial 10% globahaximum security, we can ignore the interactiveness
packet loss rate. While an artificial 10% packet loss is nobmponent of games. For maximum performance, we
sufficient to demonstrate proper rate adjustment, thesan ignore the problem of cheating.

VIlI. CONCLUSION

11

COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGONTECHNICAL REPORT. CIS-TR-2004-2

The NEO protocol solves both of these challenging@i] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer
problems. NEO handles the problem of security by

encrypting updates and then revealing the keys at[ﬁ] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, Decen-

later time. It also handles the problem of interactive
communication by bounding the maximum latency of
any update from a player by the current round length.
The NEO protocol is provably secure against commayk;
protocol level cheats. Our simulations show that it adapts
to changes in delay on the network by increasing or de-

creasing its round length. It also reacts to congestion
changing its sending rate. Furthermore, the majority

it

players in NEO will always experience the best protocol
performance because NEO adapts to the requirement$taf J: Postel, “Network Time Protocol,” RFC 1305, March 1992.

the majority of players. Majority voting also prevents lo

packets from unnecessarily being recovered and keeps

NEO viable even in the face of high packet loss.

These properties of NEO lead us to believe that
NEO is a valuable protocol for peer-to-peer, real-time,
interactive games. Our simulations lead us to believe that
a real-world implementation will perform well. As future
work, we plan on developing a congestion-controlled
rate adjustment algorithm for NEO that is friendly to
TCP. We also plan on implementing NEO with a real
peer-to-peer game to evaluate user experiences with its

performance over the Internet.

REFERENCES

[1] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low La-

tency and Cheat-proof Event Ordering for Peer-to-Peer Games,”

in ACM NOSSDAVJune 2004.

(2
Architecture for Massively Multiplayer Online Games,”ACM
NetGames Workshopugust 2004.

C. GauthierDickey, D. Zappala, and V. Lo, “A Fully Distributed

[3] J. Nichols and M. Claypool, “The Effects of Latency on Online

Madden NFL Football,” inrACM NOSSDAVJune 2004.
(4]
Problem,”ACM Trans. Program. Lang. Systol. 4, no. 3, pp.
382-401, 1982.
[3]
sure Control to Prevent Cheating in Online Games,’AtM
NOSSDAY June 2004.
C. Diot and L. Gautier, “A Distributed Architecture for Multi-
player Interactive Applications on the Internd&EE Networks
magazinevol. 13, no. 4, July/August 1999.

(6]

(7]

K. Li, S. Ding, and D. McCreary, “Analysis of State Expo-

L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals

L. Gautier, C. Diot, and J. Kurose, “End-to-end transmission

control mechanisms for multiparty interactive applications on

the internet,” inlEEE Infocom 1999.

(8l
Centralized and Distributed Online Games,” INFOCOM,
2001, pp. 104-113.

[0l
Reckoned Multiplayer Games,” imternational Conference on
Application and Development of Computer Gaméanuary
2003.

[10]
Publish-Subscribe System for Internet Games,Pinceedings

N. E. Baughman and B. N. Levine, “Cheat-proof Playout for

E. Cronin, B. Filstrup, and S. Jamin, “Cheat-Proofing Dead

A. R. Bharambe, S. Rao, and S. Seshan, “Mercury: A Scalable

of the First Workshop on Network and System Support for

Games. April 2002.

Support for Massively Multiplayer Games,” IiEEE Infocom
March 2004.

tralized Object Location, and Routing for Large-Scale Peer-
to-Peer Systems,” irProceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms Heidelberg
Springer-Verlag, 2001, pp. 329-350.

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
“SCRIBE: A large-scale and decentralized application-level
multicast infrastructure, TEEE Journal on Selected Areas in
Communications (JSAC2002.

P. Bettner and M. Terrano, “1500 archers on a 28.8: Network
programming in the Age of Empires and beyond,” Game
Developers Conferencélarch 2001.

S[t16] “The Network Simulator - ns-2,” http://www.isi.edu/nsnam/ns/.

12

