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Abstract. This paper introduces the DUP System, a simple framework
for parallel stream processing. The DUP System enables developers to
compose applications from stages written in almost any programming
language and to run distributed streaming applications across all POSIX-
compatible platforms. Parallel applications written with the DUP System
do not suffer from many of the problems that exist in traditional parallel
languages. The DUP System includes a range of simple stages that serve
as general-purpose building blocks for larger applications.
This work describes the DUP assembly language, the DUP architec-
ture and some of the stages included in the DUP run-time library. We
then present our experiences with parallelizing and distributing the ARB
Project, a package of tools for RNA/DNA sequence database handling
and analysis.

1 Introduction

The widespread adoption of multi-core processors and the commoditization of
specialized co-processors like GPUs [1] and SPUs [2] requires the development
of tools and techniques that enable non-specialists to create sophisticated pro-
grams that leverage the hardware at their disposal. Mainstream and productive
development cannot rely on teams of domain and hardware experts using spe-
cialized languages and hand-optimized code, though this style of development
will remain applicable to high-performance computing (HPC) applications that
demand ultimate performance.

This paper introduces the DUP System 1, a language system which facil-
itates productive parallel programming for stream processing on POSIX plat-
forms. The goal of the DUP System is not to provide ultimate performance; we
are happy to sacrifice some performance for significant benefits in terms of pro-
grammer productivity. By providing useful and intuitive abstractions, the DUP
System enables programmers without experience in parallel programming to de-
velop correct parallel and distributed applications and obtain speed-ups from
parallelization.

1 Available at http://dupsystem.org/

http://dupsystem.org/


The key idea behind the DUP System is the multi-stream pipeline program-
ming paradigm. Multi-stream pipelines are a generalization of UNIX pipelines.
However, unlike UNIX pipelines, which are composed of processes which read
from at most one input stream and write to a single output stream (and possibly
an error stream), multi-stream pipelines are composed of processes that can read
from any number of input streams and write to any number of output streams.
In the remainder of this document, we will use the term “stage” for individual
processes in a multi-stream pipeline. Note that UNIX users — even those with
only rudimentary programming experience — can usually write correct UNIX
pipelines which are actually parallel programs. By generalizing UNIX pipelines
to multi-stream pipelines, we eliminate the main restriction of the UNIX pipeline
paradigm — namely, the inherently linear data flow.

In order to support the developer in the use of multi-stream pipelines, the
DUP System includes a simple coordination language which, similar to syntactic
constructs in the UNIX shell, allows the user to specify how various stages should
be connected with streams. The DUP runtime then sets up the streams and starts
the various stages. Key benefits of the DUP System include:

1. Stages in a multi-stream pipeline can generally run in parallel and on differ-
ent cores;

2. Stages can be designed, implemented, compiled and tested individually using
the most appropriate language and compiler for the given problem and target
architecture;

3. Stages only communicate using streams; streams are a great match for net-
working applications and for modern high-performance processors doing se-
quential work;

4. If communication between stages is limited to streams, there is no possibility
of data races and other issues that plague developers of parallel systems;

5. While the DUP System supports arbitrary data-flow graphs, the possibility
of deadlocks can be eliminated by only using acyclic data-flow graphs;

6. Applications built using multi-stream pipelines can themselves be composed
into a larger multi-stream pipeline, making it easy for programmers to ex-
press hierarchical parallelism and for the system to map stages to cores for
data locality.

In addition to introducing the DUP System itself, this paper also presents
experimental results from a case study involving the DUP System. The case
study shows that it is possible to rapidly parallelize and distribute an existing
complex legacy bioinformatics application and obtain significant speed-ups using
DUP.



2 Approach

The fundamental goal of multi-stream pipelines is to allow processes to read from
multiple input streams and write to multiple output streams, all of which may be
connected to produce the desired data-flow graph. This generalization of linear
UNIX pipelines can be implemented using traditional UNIX APIs2 especially the
dup2 system call. Where a typical UNIX shell command invocation only connects
stdin, stdout and stderr, the DUP System establishes additional I/O streams
before starting a stage. Using this method, traditional UNIX filters such as grep
can be used as stages in the DUP System without modification. New stages can
be implemented in any language environment that supports POSIX-like input-
output operations (specifically, reading and writing to a file). Since dup2 also
works with TCP sockets, the DUP System furthermore generalizes multi-stream
pipelines to distributed multi-stream pipelines.

2.1 The DUP Assembly Language

The DUP assembly language allows developers to specify precisely how to con-
nect stages (and, in the case of distributed systems, where those stages should
be run). Figure 1 lists the DUP assembly code for a distributed “Hello World”
example program.

s@10.0.0.1:88[0<in.txt,1|g1:0,3|g2:0] $ fanout;

g1@10.0.0.1:88[1|in:0] $ grep Hello;

g2@10.0.0.2:88[1|in:3] $ grep World;

in@10.0.0.2:88[1>out.txt] $ faninany;

Fig. 1. DUP specification. in.txt is passed to fanout which copies the stream to all
outputs, in this case stream 0 (≡ stdin) at g1 and stream 0 at g2. g1 and g2 run
grep, the outputs (1 ≡ stdout) flowing into stage in as streams 0 and 3 respectively.
in merges those streams and writes the output into out.txt. The resulting data flow
is illustrated in Figure 3.

In essence, the DUP language allows developers to specify a directed graph
using an adjacency list representation and IO redirection syntax similar to that
of well-known UNIX shells [3]. The nodes in the directed graph are the stages
initiated by DUP. A DUP program consists of a list of statements, each of which
corresponds to one such node. Statements start with a label that is used to
reference the respective stage in the specification of other stages. The keyword
DUP is used to reference streams associated with the controlling dup command
in the case that the dup command itself is used as a stage.

2 The APIs needed are supported by all platforms conforming to the POSIX standard,
including BSD, GNU/Linux, OS X, and z/OS.



<SESSION> ::= <STAGE>*

<STAGE> ::= <LABEL> ’@’ <ADDRESS> ’[’ <EDGE_LIST> ’]’ ’$’ <COMMAND> ’;’

<EDGELIST> ::= <EDGE> (’,’ <EDGE>)*

<EDGE> ::= <INTEGER> <OP> <NODE>

<NODE> ::= <INTEGER> | <REMOTEPR> | <UNIX_PATH>

<REMOTEPR> ::= <LABEL> ’:’ <INTEGER>

<OP> ::= ’|’ | ’<’ | ’>’ | ’>>’

Fig. 2. Grammar for the low-level DUP language. Note that we do not expect pro-
grammers to always develop applications using this language directly in the future; this
language is the “assembly” language supported by the DUP runtime system. Higher-
level languages that facilitate (static) process scheduling and AOP are under develop-
ment.

The label is followed by address information specifying on which system the
stage will be run. A helper daemon, dupd, is expected to listen at the specified
port and address. The address is followed by a comma-separated list of edges
representing primarily the outgoing streams for this stage. Input streams are
only explicitly specified in the case of input from files. Inputs from other stages
are not specified because they can be inferred from the respective entry of the
producing stage. DUP currently supports four different ways to create streams
for a stage:

Read An input file edge consists of an integer, the “<” operator and a path
to the file to be used as input. The integer is the file descriptor from which
the stage will read the input stream. The dupd daemon is responsible for
opening the input stream and validating that the file exists and is readable.

Write An output file edge for writing consists of an integer, the “>” operator
and a path to the file to be overwritten or created. The integer is the file
descriptor to which this stage will write. dupd checks that the specified path
can be used for writing.

Append An output file edge for appending consists of an integer, the “>>”
operator and a path to the file. The integer is the file descriptor to which
this stage will write.

Pipe Non-file output edges consist of an integer, the “|” operator, a stage label,
the “:” character and another integer. The first integer specifies the file
descriptor to which this stage will write. The label specifies the process on
the other end of the pipe or TCP stream and the second integer is the file
descriptor from which the other stage will read. If an edge list contains a label
that is not defined elsewhere in the configuration file then the configuration
file is considered malformed and rejected.

The final component of a complete stage statement is the command (with
arguments) that is used to start the process. Figure 2 contains a formal grammar
for the DUP language.



2.2 DUP System Architecture

The DUP System uses hosts running dupd servers which process requests from
dup clients asking for the establishment of TCP streams and UNIX pipes to
connect stages of a multi-stream data-flow application. The dup client interprets
the mini-language from Section 2.1 which specifies how the various stages for
the application should be connected. Figure 3 illustrates how the components of
the system work together.
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/gather out.txt
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TCP
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dupd
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Fig. 3. Overview for one possible configuration of the DUP System. Red (dashed)
lines show application data flow. Black (solid) lines correspond to actions by DUP.
Examples for DUP assembly corresponding to the illustration are given in Figures 1, 4
and 5 respectively: the three code snippets specify the same data-flow graph, but with
different commands.

The primary interaction between dup and the dupds involves four basic steps:

1. dup opens TCP connections to all dupds involved and transmits session in-
formation. The session information includes a unique session number and all
of the information related to processes that are supposed to be run on the
respective dupd.



2. When a stage is configured to transmit messages to a stage initiated by
another dupd, the dupd responsible for the data-producing stage establishes
a TCP connection to the other dupd and transmits a header specifying which
stage and file descriptor it will connect to the stream. If dup is used as a filter,
it too opens similar additional TCP streams with the respective dupds. The
main difference here is that dup also initiates TCP connections for streams
where dup will ultimately end up receiving data from a stage.

3. Once a dupd has confirmed that all required TCP streams have been estab-
lished, that all required files could be opened, and that the binaries for the
stages exist and are executable, it transmits a “ready” message to the con-
trolling dup process (using the TCP stream on which the session information
was initially received).

4. Once all dupds are ready, dup sends a “go” message to all dupds. The dupds
then start the processes for the session.

Complete details of the DUP protocol including details on error handling are
documented in a technical report [4].

2.3 Generic DUP Stages

Taking inspiration from stages available in CMS [5,6], the DUP System includes
a set of fundamental multi-stream stages. UNIX already provides a large number
of filters that can be used to quickly write non-trivial applications with a linear
pipeline. Examples of traditional UNIX filters include grep [7], awk [8], sed [8],
tr, cat, wc, gzip, tee, head, tail, uniq, buffer and many more [3].

While these standard tools can all be used in the DUP System, none of them
support multiple input or output streams. In order to facilitate the development
of multi-stream applications with DUP, we provide a set of primitive stages for
processing multiple streams. The current stages included with the DUP System
are summarized in Table 1. Many of the stages listed in Table 1 are inspired by
the CMS multi-stream pipeline implementation [6]. Naturally, we expect appli-
cation developers to write additional application-specific stages.

2.4 DUP Programming Philosophy

In order to avoid the common data consistency issues often found in parallel
programming systems, stages and filters for DUP should not perform any up-
dates to storage outside of the memory of the individual process. While the
DUP System has no way to enforce this property, updates to files or databases
could easily cause problems; if stages were allowed to update storage, changes in
the order of execution could easily result in unexpected non-determinism. This
might be particularly problematic when network latency and stage scheduling
causing non-deterministic runs are used in a larger system that replicates parts
of the computation (e.g., in order to improve fault-tolerance).

For applications that require parallel access to shared mutable state, the
DUP System can still be used to parallelize (and possibly distribute) those parts



Stage Description I/O Streams
in out

fanout Replicate input n times 1 n

faninany Merge inputs, any order n 1

gather Merge inputs, round-robin (waits for input) n 1

holmerge Forward input from stream that has sent the most data so
far, discard data from other streams until they catch up

n 1

deal Split input round robin to output(s), or per control stream 2 n

mgrep Like grep, except non-matching lines output to secondary
stream

1 2

lookup Read keys from stream 3; tokens to match keys from stream
0; write matched tokens to 1, unmatched to 4 and unmatched
keys to 5

2 3

gate forward 1st input to 1st output until 2nd input ready 2 1

cmd read commands from 0, run them, output their output 1 n

Table 1. Summary of general-purpose multi-stream stages to be used with DUP in
addition to traditional UNIX filters. Most of the filters above can either operate line-
by-line in the style of UNIX filters or using a user-specified record length.

that lend themselves naturally to stream processing. Other parts of the code
should then be designed to communicate with the DUP parts of the application
through streams.

We specifically expect stages developed for the DUP System to be written in
many different languages. This will be necessary so that the application can take
advantage of the specialized resources available in heterogeneous multi-core or
HPC systems. Existing models for application development on these systems of-
ten force the programmer to use a particular language (or small set of languages)
for the entire application. For example, in a recent study of optimization tech-
niques for CUDA code [9], twelve benchmark programs were modified by porting
critical sections to the CUDA model. On average, these programs were only 14%
CUDA-specific, yet the presence of CUDA sections limits the choice of languages
and compilers for the entire program. The implications are clear: the use of a
monolithic software architecture for programs designed to operate efficiently on
high-performance hardware will severely restrict choices of development teams
and possibly prevent them from selecting the most appropriate programming
language and tool-chain for each part of a computation. Using the DUP System,
developers will be able to compose larger applications from stages written in the
most appropriate language available.

Another important use-case for DUP is the parallel and distributed execu-
tion of legacy code. In contrast to other new languages for parallel programming,
which all too often advocate for large-scale (and often manual) program trans-
lation efforts, the DUP philosophy calls for writing thin wrappers around legacy
code to obtain a streaming API. As we experienced in our case study, it is typi-
cally easy to adapt legacy applications to consume inputs from streams and to
produce outputs as streams.



3 Case Study: Distributed Molecular Sequence String
Matching

Exact and inexact string searching in gene sequence databases plays a central
role in molecular biology and bioinformatics. Many applications require string
searches, such as searching for gene sequence relatives and mining for PCR-
primer or DNA- probe specific target sites in DNA sequences [10,11,12]; both of
these applications are important in the process of developing molecular diagnos-
tic assays for pathogenic bacteria or viruses which are based upon specific DNA
amplification and detection.

In the ARB software package, a suffix-tree-based search index, called the PT-
Server, is the central data structure used by applications for fast sequence string
matching [13]. A PT-Server instance is built once from the sequence entries of a
gene sequence database of interest and is stored permanently on disk.

In order to perform efficient searches, the PT-Server is loaded into main
memory in its entirety — if the entire data structure cannot fit into the avail-
able main memory (the PT-Server requires ∼ 36 bytes per sequence base), the
database cannot be efficiently searched.

In addition to memory consumption, the runtime performance of the search
can be quite computationally intensive. An individual exact string search — in
practice, short sequence strings of length 15–25 base pairs are searched for — is
quick (3–15 milliseconds). However, the execution time can become significant
when millions of approximate searches are performed during certain bioinfor-
matic analyses, such as probe design.

In the near future, the number of published DNA sequences will explode
due to the availability of new high-throughput sequencing technology [14]. As a
result, current sequential analysis methods will be unable to process the available
data within reasonable amounts of time. Furthermore, rewriting more than half-
a-million lines of legacy C and C++ code of the high-performance ARB software
package is prohibitively expensive. The goal of this case study was to see how
readily the existing ARB PT-Server could be distributed and parallelized using
the DUP System. Specifically, we were interested in parallelization in order to
reduce execution time and in distribution in order to reduce per-system memory
consumption.

3.1 Material and Methods

The study used 16 compute nodes of the Infiniband Cluster in the Depart-
ment of Informatics at the Technische Universität München [15]. Each node was
equipped with an AMD Opteron 850 2.4 GHz processor with 8 GB of mem-
ory, and the nodes were connected using a 4x Infiniband network. The SILVA
database (SSURef 91 SILVA 18 07 07 opt.arb) [16], which stores sequences of
small subunit ribosomal ribonucleic acids and consists of 196,890 sequence entries
(289,563,473 bases), was used for preparing test database sets and respective PT-
Servers. We divided the original database into 1, 2, 4, 8, and 16 partitions, and



a random sampling algorithm was used for composing the partitioned database
sets (within each database analysis set, each partition is about the same size).
The PT-Servers used in this study were created from these partitions. Table 2
characterizes the resulting partitions and PT-Servers.

# Part. # Sequences # MBases Memory (MB)
Part. total

1 196,890 289.6 1,430 1,430
2 98,445 144.7 745 1,489
4 49,222 72.4 402 1,609
8 24,611 36.2 231 1,849

16 12,305 18.1 145 2,327

Table 2. Resulting problem sizes for the different numbers of partitions. This
table lists the average number of sequences and bases for the PT-Server within
each partition and the resulting memory consumption for each PT-Server as well
as the total memory consumption for all partitions.

For the queries, we selected 800 inverse sequence strings of rRNA-targeted
oligonucleotide probe sequences of length 15–20 from probeBase, a database
of published probe sequences [17]. Each retrieved sequence string has matches
in the SILVA database and the respective PT-Server instance. Applying these
real world query sequence strings ensured that every search request required
non-trivial computation and communication. We generated four sets of inverse
sequence strings (400 strings each) by random string distribution of the origi-
nal dataset from probeBase, and every test run was performed with these four
datasets. The presented performance values are the means of the four individu-
ally recorded runs.

3.2 Adapting ARB for DUP

In the ARB software package, arb probe is a program which performs, per
execution, one string search using the PT-Server when a search string and ac-
companying search parameters are specified (these are passed as command line
arguments). For DUP, arb probe had to be modified to read the parameters
and the search string as a single line from stdin and pass one result set per
line to stdout. It took one developer (who had experience with ARB but not
DUP or distributed systems) about three hours to create the modified version
arb probe dup and another two hours to compile DUP on the Infiniband Clus-
ter, write adequate DUP scripts and perform the first run-time test. Debugging,
testing, optimization and gathering of benchmark results for the entire case study
was done in less than two weeks.

All searches were conducted using the program arb probe dup with similar
parameters: id 1 mcmpl 1 mmis 3 mseq ACGTACGT. The first parameter (id 1)
set the PT-Server ID; the second activated the reverse complement sequence
(mcmpl 1). For each dataset and approach, the third parameter was used to



perform an exact search (mmis 0) in order to find matches identical with the
search string and an approximate search (mmis 3) in order to find all identical
strings and all similar ones with maximum distance of three characters to the
search string. The last parameter indicated the match sequence.

Figure 4 shows the DUP assembly code for the replicated run with two
servers. Here, identical PT-Servers are used with the goal of optimizing execu-
tion time. Figure 5 shows the equivalent DUP assembly code for the partitioned
setting. In this case, since each PT-Server only contains a subset of the overall
database, all requests are broadcast to all PT-Servers using fanout.

s @opt1:88[0<in.txt,1|r1:0,3|r2:0] $ deal;

r1@opt1:88[1|re:0] $ arb_probe_dup;

r2@opt2:88[1|re:3] $ arb_probe_dup;

re@opt2:88[1>out.txt] $ faninany;

Fig. 4. DUP specification for the replicated configuration that uses identical
ARB servers. The queries are simply distributed round-robin over the two avail-
able ARB PT-Servers and the results collected as they arrive.

s @opt1:88[0<in.txt,1|p1:0,3|p2:0] $ fanout;

p1@opt1:88[1|pe:0] $ arb_probe_dup;

p2@opt2:88[1|pe:3] $ arb_probe_dup;

pe@opt2:88[1>out.txt] $ gather;

Fig. 5. DUP specification for the partitioned configuration where each ARB
server only contains a slice of the database. The queries are broadcast to the
available ARB PT-Servers and the results collected in round-robin order (to
ensure that results for the same query arrive in one batch).

3.3 Results and Discussion

As shown in Table 2, partitioning the original database into n partitions results
in almost proportional reductions in per-node memory consumption: doubling
the number of partitions means almost halving the memory consumption per
PT-Server partition. In practice we expect significantly larger databases to be
partitioned, resulting in partition sizes close to the size of the main memory of
the HPC node responsible for the partition.

For this case study, our first research goal was to compare the memory con-
sumption and performance of a single partition with the memory consumption
and performance of n partitions managed using DUP. For larger databases that
might be used in practice, this kind of comparison would not be possible, since
it is impossible to build a non-partitioned PT-Server for such large databases.

The second question we wanted to answer was how much performance could
be gained by distributing the queries over n identical (replicated) PT-servers,
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Server. An exact search and an approximate search (up to three mismatches)
was performed.

each containing the full database, as opposed to partitioned servers (each of
which would only contain a fraction thereof). Figure 6 summarizes the speedup
we obtained using n PT-Server replicas (each processing a fraction of the queries)
as well as the speed-up obtained by using n partitions (each processing all
queries). While one might not expect a performance increase for n partitions, the
work per query is less for each PT-Server in the partitioned case. This explains
the performance improvement for the partitioned runs.

The overall runtime for querying a partitioned PT-Server with one sequence
string set (400 requests) was in a range of 2 seconds (16 partitions) to 8.25
seconds (one partition) for exact searches, and 16 seconds (16 partitions) to 73
seconds (one partition) for approximate searches. For the replicated PT-Servers,
execution time for exact searches ranged from approximately 8.3 seconds on
one node to 1.5 seconds on 16 nodes. The approximate search (up to three
mismatches) ranged from 72 seconds on one node to 13 seconds on 16 nodes.

3.4 Conclusion and Future Work

The speed-ups achieved in this case study are by themselves clearly not sen-
sational; however, the ratio of speedup to development time is. Programmer
productivity is key here, especially since researchers in bioinformatics are rarely
also experts in distributed systems. Furthermore, the improvements in perfor-
mance and memory consumption are significant and have direct practical value
for molecular biologists and bioinformaticians, especially since, aside from the
acceleration of sequence string searches by a factor 3.5 to 5, this approach also
offers biologists the possibility to search very large databases using the ARB PT-
Server without having to access special architectures with extreme extensions to
main memory.



In the future, we plan to actually use DUP to drive large-scale bioinformatics
analyses. Depending on the problem size, we also expect to use DUP to combine
partitioning and replication in one system. For example, it would be easy to
create n replicas of m partitions in order to improve throughput while also
reducing the memory consumption of the PT-Servers. Additionally, we still need
to better understand the reason for the decrease of the slope of the speed-up
curve as the number of nodes grows and hopefully find ways to further improve
the scalability of the approach.

4 Related Work

The closest work to the DUP System presented in this paper are multi-stream
pipelines in CMS [6]. CMS multi-stream pipelines provide a simple mini-language
for the specification of virtually arbitrary data-flow graphs connecting stages
from a large set of pre-defined tools or arbitrary user-supplied applications. The
main difference between CMS and the DUP System (which uses parallel execu-
tion of stages) is that CMS pipelines are exclusively record-oriented and imple-
mented through co-routines using deterministic and non-preemptive scheduling
with zero-copy data transfer between stages. CMS pipelines were designed for ef-
ficient execution in a memory-constrained, single-tasking operating system with
record-oriented files. In contrast, DUP is designed for modern applications that
might not use record-oriented I/O and need to run in parallel and on many
different platforms.

Another close relative to the DUP System is Kahn Process Networks (KPNs) [18].
A major difference between DUP and KPNs is that buffers between stages in
DUP are bounded, which is necessary given that unbounded buffers cannot really
be implemented and that in general determining a bound on the necessary size of
buffers (called channels in KPN terminology) is undecidable [19]. Another major
difference with KPNs is that DUP does not require individual processes to be
deterministic. Non-determinism on the process level voids some of the theoreti-
cal guarantees of KPNs; however, it also enables programmers to be much more
flexible in their implementations. While DUP allows non-determinism, DUP pro-
grammers explicitly choose non-deterministic stages in specific places; as a result,
non-determinism in DUP is less pervasive and easier to reason about compared
to languages offering parallel execution with shared memory.

Where CMS pipelines focus on the ability to glue small, reusable programs
into larger applications, the programming language community has extended var-
ious general-purpose languages and language systems with support for pipelines.
Existing proposals for stream-processing languages have focused either on highly-
efficient implementation (for example, for the data exchange between stages [20,21])
or on enhancing the abstractions given to programmers to specify the pipeline
and other means of communication between stages [22]. The main drawback of
all of these designs is that they force programmers to learn a complex program-
ming language and rewrite existing code to fit the requirements of the particular
language system. The need to follow a particular paradigm is particularly strong



for real-time and reactive systems [21,23]. Furthermore, especially when target-
ing heterogeneous multi-core systems, quality implementations of the particular
language must be provided for each architecture. In contrast, the DUP language
implementation is highly portable (using only a handful of canonical POSIX
system calls) and allows developers to implement stages in any language.

On the systems side, related research has focused on maximizing performance
of streaming applications. For example, StreamFlex [21] eliminates copying be-
tween filters and minimizes memory management overheads using types. Other
research has focused on how filters should be mapped to cores [24] or how to
manage data queues between cores [20]. While the communication overheads of
DUP applications can likely be improved, this could not be achieved without
compromising on some of the major productivity features of the DUP System
(such as language neutrality and platform independence).

In terms of language design and runtime, the closest language to the low-
level DUP language is Spade [25] which is used to write programs for InfoSphere
Streams, IBM’s distributed stream processing system [26]. The main differences
between Spade and the low-level DUP language is that Spade requires developers
to specify the format of the data stream using types and has built-in computa-
tional operators. Spade also restricts developers of filters to C++; this is largely
because the InfoSphere runtime supports migrating of stages between systems
for load-balancing and can also fuse multiple stages for execution in a single ad-
dress space for performance. Dryad [27] is another distributed stream processing
system similar to Spade in that it also restricts developers to developing filters
in C++. Dryad’s scheduler and fault-tolerance provisions further require all fil-
ters to be deterministic and graphs to be free of cycles, making it impossible
to write stages such as faninany or holmerge in Dryad. In comparison to both
Spade and Dryad, the DUP System provides a simpler language with a much
more lightweight and portable runtime system. DUP also does not require the
programmer to specify a specific stream format, which enables the development
of much more generic stages. Specifically, the Spade type system cannot be used
to properly type stream-format agnostic filters such as cat or fanout. Finally,
DUP is publicly available whereas both Spade and Dryad are proprietary.

DUP is a coordination language [28] following in the footsteps of Linda [29]:
the DUP System is used to coordinate computational blocks described in other
languages. The main difference between DUP and Linda is that in DUP the
developer specifies the data flow between the components explicitly whereas in
Linda the Linda implementation needs to match tuples published in the tu-
plespace against tuples published by other components. The matching of tuples
in the Linda system enables Linda to execute in a highly dynamic environment
where processes joining and leaving the system are easily managed. However,
the matching and distribution of tuples also causes significant performance is-
sues for tuplespace implementations [30]. As a result, Linda implementations are
not suitable for distributed stream processing with significant amounts of data.



5 Conclusion
The significant challenges with writing efficient parallel high-performance code
are numerous and well-documented. The DUP System presented in this paper
addresses some of these issues using multi-stream pipelines as a powerful and
flexible abstraction around which an overall computation can be broken into in-
dependent stages, each developed in the language best suited for the stage, and
each compiled or executed by the most effective tools available. Our experience so
far makes us confident that DUP can be used to quickly implement parallel pro-
grams, to obtain significant performance gains, and to experiment with various
dataflow graph configurations with different load-distribution characteristics.
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