Secure Peer-to-Peer Trading
for Multiplayer Games

Chris GauthierDickey and Craig Ritzdorf
Department of Computer Science
University of Denver
chrisg@cs.du.edu | critzdor@cs.du.edu

Abstract—A fundamental aspect of many multiplayer online
games is the ability to trade items between players. This might
take the form of items that were found in the virtual environment
or of purchased assets, but in either case, any multiplayer game
that supports trading or exchanging items in the game must
do so in a secure manner. We have developed a protocol to
solve the problem of secure, peer-to-peer trading in games in
which the primary concern is that items are exchanged fairly, and
additionally that items are not duplicated. Our protocol enables
one-way and two-way trades and can be extended to multi-
item trades. We show that our protocol addresses the security
threats which it might encounter, and then provide an analysis
to demonstrate the scalability of our protocol.

I. INTRODUCTION

Almost all types of online multiplayer games provide some
mechanism for players to exchange virtual items or game
currency. Furthermore most, if not all, massively multiplayer
online games also provide the ability to auction virtual items to
other players. Unfortunately, little work has been done in the
realm of peer-to-peer (P2P) games to address trading. There-
fore, we have developed a protocol for secure, P2P trading that
ensures virtual items can be traded fairly while catching the
duplication cheat, which allows players to unfairly duplicate
items in the game.

While one might assume that trading is something that
should be refereed by a centralized server (i.e., to prevent
the duplication cheat), game companies have a motivation to
use peer-to-peer protocols in implementing features of their
game to reduce computational overhead, network bandwidth,
and downtime caused by hardware failures. By using a P2P
approach, one can leverage the computational power of all of
the players in the game without sacrificing security. Further-
more, the protocol we have developed is compatible with a
centralized server such that the bulk of the transaction can
occur between peers, but a centralized server can be the final
arbiter in the trade if desired.

The duplication cheat is possible in P2P multiplayer games
because without complete control of a player’s machine, one
cannot ensure that an item is actually deleted from their
list of items after they have traded it to another player.
Furthermore, since virtual items are exchanged, the use of
the duplication cheat may allow the receiving player to view
the trade as successful even though the originating player may
still be using the traded item. By the same token, reputation
systems do little good in preventing the duplication cheat.

The receiving player would not necessarily know that the
originating player had not deleted the item and thus would
not report on them negatively. We do note, however, that a
player might try to leave a transaction incomplete, and if they
do so frequently, a reputation system might help in making it
less likely for others to try to trade with them.

Prior research in distributed trading has been in the form
of fair exchange protocols, where a trade is considered fair if
and only if the trade either occurs, and both parties complete
the exchange of items, or the trade is aborted, and neither
party receives the items. Beyond fair trades, some research
has looked at building secure and distributed auctions (e.g.,
for eBay), such as the work by Rolli et al. or Fontoura et
al [1], [2]. While we do not address auctions in this paper,
we believe that research in distributed and secure auctions is
certainly applicable towards auctions in multiplayer games.
Finally, Bitcoin [10], a digital currency, is directly related
to trading since they allow P2P trading of their currency.
However, we show why it is not a full solution for trading
in P2P games.

Our algorithm works on a simple principle: provide proof
of ownership and provably show that any trades that occurred
are valid. We then use a weak third party, in the form of a
distributed hash table (DHT), to prevent the duplication cheat
by allowing players to look up items owned by other players on
the DHT. Items are temporarily locked while trading to prevent
either player from using those which are to be exchanged.

We analyze the performance of our protocol to show its
scalability. Many modern multiplayer games have design lim-
itations on the number of times an item can be traded. For
example, most massively multiplayer online games (MMOGs)
allow you to trade some items as long as you have not used
them. Once they are used, they are bound to your character.
Some items are further limited in tradability in that as soon
as you pick them up, they cannot be traded. In essence, items
typically experience an upper bound on the number of times
they will be traded to other players.

This work provides the first look at trading virtual items in a
completely distributed fashion and as such we believe it is an
important step in developing a fully distributed architecture
for multiplayer games. In addition, the trading protocol is
agnostic towards the underlying network architecture (though
we assume some type of DHT will be used with O(lgn)
lookups and insertions), allowing it to be used with any P2P

architecture for games.

II. BACKGROUND

The most closely related research to our work centers
around fair exchange protocols. In these protocols, two parties
are trying to exchange digital assets and desire the exchange
to be simultaneous, such that either both receive the exchange,
or neither receive it [3]. In addition, fair exchange protocols
usually hope to prevent any useful information from being
exchanged, such that the data of the exchange should also
be hidden during the transmission until both parties receive
it. The second area most closely related to our work centers
around P2P architectures for multiplayer games.

A. Fair Exchange Protocols

Fair exchange protocols are extremely useful for various
cryptographic operations such as certified mail (i.e., receiving
a receipt for the mail simultaneously with the reader being
able to read the mail), purchases (i.e., payment is received
simultaneously with delivery of the digital asset), trading (i.e.,
exchanging two items simultaneously), and contract signing
(i.e., players exchange non-repudiable commitments to the text
of a contract). Obviously, the primary usage of fair exchange
protocols in games relates to trading virtual items.

Research in fair exchange protocols can be broadly cate-
gorized as either gradual protocols or third party protocols.
In gradual protocols, the exchange of data between the two
parties occurs over several rounds so that the probability of
receiving the correct data by the termination of the protocol
increases with the number of rounds of execution. In third
party fair exchange protocols, a trusted third party is used as
an arbitrator to ensure the trade occurs fairly.

One of the first gradual fair exchange protocols was due
to Ben-Or et al. and designed for signing contracts [4]. In
this protocol, player X and Y exchange messages of the form
“With probability p, this contract C' shall be valid. (signed by
X or Y).” With each iteration of the protocol, p is increased
monotonically. An expiration date is set additionally, so that
if either party chooses to abandon the protocol, a judge (i.e.,
trusted third party) can then choose a random value from 0-1
and determine whether the contract is valid or not.

In Damgard’s protocol, instead of exchanging signed mes-
sages, a series of hashed blocks of the contract are exchanged
first, and then the plaintext block in each iteration of the
protocol is revealed [5]. If either participant attempts to give
incorrect information, the judge can bias her decision based
on how many valid plaintext messages were received by
the complaining party. Okamoto and Ohta developed similar
gradual fair exchange algorithms using one-way permutations
and one-way functions [6]. Syverson allows weak secret bit
commitment in fair exchange protocols to create a more
efficient, but weaker version of gradual exchanges, with the
idea that instead of using hash functions or encryption which
are infeasible to break, weaker versions may be used as long
as it would take longer to break than the amount of time that
the information being protected is useful [7].

The major problem with gradual fair exchange protocols
is the number of messages that might have to be exchanged,
including an expiration date that could either be too soon or
too late. Even in the case of gradual fair exchange protocols,
a trusted third party is still sometimes needed (e.g., [4], [S]).

Trusted third-party protocols involve a third-party that is
trusted by both participants in an exchange to resolve any
issues in the exchange. Asokan et al. developed asynchronous
protocols for optimistic fair exchanges where a trusted third
party is only needed to abort an exchange or to resolve
an incomplete exchange [3]. In their protocol, both parties
exchange bit commitments (e.g., random strings of digits) in
the form of cryptographically secure hashes which they sign.
Once these are exchanged, they exchange the plaintext of their
hashes to show that the exchange is complete. The trusted
third party is only needed if the protocol needs to be aborted
by either participant and is accomplished through the use of
a special abort token. Bao developed a similar fair-exchange
protocol but only required an off-line trusted third party [8],
while Franklin and Reiter developed a protocol which relaxed
the trust level of the third party participant [9].

Our protocol differs from both gradual and trusted third
party fair exchange protocols in that: 1) the information being
exchanged is publicly available and so it’s not imperative to
hide the information completely prior to exchange, and 2) uses
a weak third party to store this information to prevent the
duplication cheat. We note that the fair exchange protocols
described do not handle the duplication cheat (though it’s not
normally an issue for the types of problems fair exchange is
typically applied to).

Bitcoin [10], a digital currency, uses cryptographic sig-
natures of “coin” transactions which are then wrapped in
“proof-of-work” chains. This provides for a one CPU, one
vote mechanism. As long as the majority of CPUs on the
network are honest, dishonest transaction records will be
removed from the network by virtue of the correct chain being
longer. Bitcoin’s procedure for creating one-way transactions
uses a form of gradual fair exchange in that a transaction
becomes more valid as the proof-of-work chain becomes
longer. In addition, Bitcoin only describes one-way exchanges,
requiring all transactions to be broadcast to all other users.
Finally, Bitcoin’s reliance on computation for consistency is
disadvantageous in gaming where game performance is often
bounded by the CPU or GPU.

B. Peer-to-Peer Architectures

In our protocol, we expect that any P2P architecture that is
used will likely have some type of distributed hash table built
for network communication between players. A distributed
hash table (DHT) typically provides O(lgn) lookups on a
key and returns a value. DHTs typically come in two flavors:
structured and unstructured, with structured DHTs guarantee-
ing that a key will be located quickly (generally O(lgn) time)
while unstructured DHT's not providing guarantees that if a key
exists it will be found, though providing other guarantees such
as locality.

TABLE I
ITEM PROFILE STORED IN DHT

[Field [bits
UUID 128 bits
Date 64 bits
Owner signature 512+ bits

Because we need to be sure that if we look up an object
by its universally unique identifier that we find it in the
DHT, we need some type of structured DHT for our protocol
(e.g., Chord [11], CAN [12], Pastry [13], Mercury [14],
and Kademlia [15]). To the best of our knowledge, none of
the peer-to-peer architectures for games in the literature has
considered how to handle in-game trading without resorting
to a centralized server.

III. PEER-TO-PEER TRADES
A. Assumptions

We make a few essential assumptions in order for our
protocol to work. First, we assume that all game items are
digitally signed by a signing authority. This is typically done
through a centralized server, and is required for identifying
valid items in the game. However, a centralized authority may
not be needed to ensure the items in a P2P game are valid—
for example, an architecture might have some subset of the
current players sign an item to prove it was generated validly
in game, or may further use a hybrid of a central authority for
important items and P2P for the rest. We do not explore this
further in this paper.

Second, we assume that all players have a universally unique
ID (UUID) that is digitally signed with a date to show that
they are currently valid players in the game. Again, this could
be done by a central authority, P2P, or in a hybrid manner.
Each player is able to sign items to show ownership, and other
players can verify those digital signatures.

Third, we assume that the P2P game runs some variation
of a distributed hash table (DHT). While the specifics of the
DHT are not extremely important (though obviously security
is important in games), we do assume that lookup and storage
on the DHT occurs in O(lgn) time.

We use the DHT to store item profiles. An item profile
includes the item unique identifier plus digital signatures
indicating ownership. To show ownership, the UUID of the
player is appended to the UUID and creation date of the item,
which then has the digital signature of the player appended.
Table I shows the fields of the item profile stored in the DHT.

We argue that any P2P architecture for multiplayer games
would necessarily include all of these assumptions.

B. Definitions

We use the following terminology to describe our protocol:

o UUID: universally unique identifier, typically a 128-bit
number

e msg = "1 agree to something”: a plain-text message,
abbreviated by using msg as a variable (typically for
digital signatures).

e Sa(msg): A digitally signed message by A. Recall that a
digital signature is usually an encrypted cryptographically
secure hash of a message, and by itself does not leak
information about the contents of the message.

C. One-way Trades

From a high-level perspective, a one-way trade works by
having one player sign ownership of an item over to another
player. When other players see this item, it includes the
signatures of the original owner and all consecutive one-way
trades so that other players can verify the signatures to check
for valid ownership. Once a trade has occurred, the receiving
player posts the new item on a DHT. Recall that a DHT stores
items using a (key,value) pair. Items are stored using their
UUID as the key, with the value being the item profile.

The primary problem with simply signing items over to
another player in a P2P architecture is that the original owner
has the ability to cheat by signing the same item over to several
players without deleting their version of the item. By doing so,
they can still use the item which appears to be valid by other
players even though they may have exchanged it for other
items or game currency. We call this the duplication cheat.

We believe that game companies are interested in control-
ling the game items specifically for game design purposes and
as such, the duplication cheat is fatal to almost all multiplayer
games where items need to be controlled. In many multiplayer
games, some items are considered powerful, as they grant
unique abilities or are significantly better than other game
items. If players are allowed to duplicate such items with
impunity, the game balance can be significantly disturbed.

We prevent the duplication cheat with our protocol as
follows. First, assume that the item was generated properly
with a UUID, a creation date, and a valid signature (see
Table I). To trade an item, the UUID and digital signature of
the receiving player is appended to the item profile. The player
trading the item then appends their UUID and digital signature
to the item to show that they consent to the trade. Note that a
digital signature is the encrypted secure hash of an item. Thus,
each additional signature includes information from all prior
signatures ensuring that the data cannot be altered without
making the signature invalid.

After the trading player appends their UUID and digital
signature to approve the trade, the receiving player posts the
item with its new profile to the DHT. The DHT acts as a
“weak” trusted third party, meaning that a node on the DHT
may be cheating, and therefore we must use replication to re-
duce the probability of choosing a colluding node accidentally.
Any player can look up the item on the DHT to verify valid
ownership. This of course implies that one additional step is
needed by our protocol. When a player joins the game, they
post their inventory of items to the DHT so that any player
can look up the item as needed. Figure 1 shows how an item
is traded from Alice to Bob.

Interestingly, the data on the DHT can be old, and a player
will be caught cheating as long as the data on the DHT is
at least one trade newer than that of the cheating player. If

Item profile before trade Item profile after trade

Iltem UUID Iltem UUID

Creation date Creation date

— Trade »

Alice's UUID Alice's UUID

Alice's
Signature

Alice's
Signature

"l want this
object"

Bob's
Signature

"Trade
accepted"

Alice's
Signature

Fig. 1. Example of a one-way trade: Alice trades an item to Bob. Bob signs
the item with a message showing that he wants the item, and Alice then signs
it with a message showing that she agrees to the trade. Of course the messages
”I want this item”, and so forth, can be significantly smaller and are just used
to make obvious what the players are signing.

a player queries the DHT and finds older data, then they can
simply update it with the newer data they’ve seen.

D. Two-way Trades

One-way trades are applicable when one player wants to
give another player an item. The more common scenario in
multiplayer games is likely to be bartering: one player would
like to exchange one or many items with another player. For a
two-way trade, we again consider Alice and Bob, where Alice
would like to exchange item X for item Y that Bob owns. For
simplicity, without loss of generality, we layout a one for one
trade. We begin with the case where neither item has been
traded previously, either in a one-way trade or two-way trade.

From a high-level perspective, our protocol has two phases:
a commitment phase, where both players commit to the trade,
and a completion phase, where the trade is completed. The
commitment takes the form of a message signed by both
players that they agree on the trade. This message can then
be appended (and stored in the DHT) on both items to
“lock” them, and this lock encourages both players to continue
through to the completion phase of the protocol. Once the
initiating player receives the commitment, they can sign this
message a 2nd time and this becomes the transaction receipt
which is henceforth attached to the item.

We begin with the commitment phase and without a loss of
generality, Alice goes first (see Figure 2):

1) Alice signs the message “X for Y with sequence number
1 on DATE”, which we call trade, and passes this
to Bob (S4(trade)). The sequence number used in a
trade is the greater of the two numbers obtained by
adding 1 to the last transaction on the item. Thus,
sequence numbers always increase monotonically. All
transactions also include a date that should be checked

Item profiles before trade Alice
Item X ltem Y X forY
Creation date Creation date Alice's
Signature
Item X ltem Y I
- Step 1
Alice's Bob's v
Signature Signature Bob
l After Trade l XforY
Alice's
Item X ltem Y Signature
Bob's
Creation date Creation date Signature
I
Item X ltem Y Step 2
Alice's Bob's . X
Signature Signature Transaction Receipt
XforY XforY XforY
Alice's Alice's Alice's
Signature Signature Signature
Bob's Bob's Bob's
Signature Signature Signature
Alice's Alice's Alice's
Signature Signature Signature

Fig. 2. Two-way trade: The left side of this figure shows the transformation
of the two items from when they first start to after the trade has occurred and
the transaction receipts have been appended to the items. The right side of
the figure shows Alice sending her request to Bob, who signs it and returns
it back to Alice. Once she signs it, the transaction receipt is complete.

to be reasonably close to what the other person thinks
the correct date and time are.

2) Bob takes the digitally signed message S4(trade) and
signs it to show his agreement. He passes this back to
Alice (Sp(Sa(trade))). If he doesn’t agree with the
trade, he simply doesn’t do anything else.

3) Once Alice has this message, or once Bob has signed
this commitment to the trade, either player can post this
message to Item X and Item Y to the DHT in both
UUID positions. This acts as a “lock” on both items,
and when it exists, they are unable to use the items that
are committed to a trade.

4) When Alice receives this signed commitment from Bob,
she signs it a final time to complete the transaction
(Sa(Sp(Sa(trade)))). This can then be posted to the
DHT to replace the lock on the items to show that the
trade is complete.

Once the trade is complete, the players have now swapped
items and must keep track of all trades associated with the
item. Each trade of an item causes a message to be appended
to it to show the trade so that the entire sequence of trades
can be followed (A to B to C...). In addition, each trade has
a sequence number associated with it, which allows circular
trading paths (e.g., Bob trades to Alice who trades back to
Bob). Again, when a player logs into the game, they post
their inventory to the DHT (checking it first to make sure it’s
not already there), since the DHT may have lost information
on their items. Many for one and many for many trades can
be accomplished by simply including all items in the trade
description.

TABLE II
SECURITY THREATS IN THE TRADING PROTOCOLS

Threat

| Resolution

Alice does not store her items on
the DHT when she first logs in

Old data is not an issue as players
can store items on the DHT when
they find one that a player has
which doesn’t exist yet.

Alice refuses to append her signa-
ture on the item profile to validate
the trade (one-way trade)

Bob can simply end the transac-
tion since it’s invalid without her
signature.

Alice attempts to alter the item
before trading it

Prevented by digital signatures
when the item was first created.
All appended signatures are on
the entire virtual item profile.

Alice does not delete the item
after trading it (duplication cheat)

Players randomly lookup items
on the DHT that are owned by
other players when they interact
with them.

Bob does not sign the commit-
ment to trade (two-way trade)

The trade is not valid until Bob
signs it, but the item can still be
used.

Alice does not sign the comple-
tion to trade (two-way trade)

Alice’s item is locked so she can-
not use the traded item until she

does so.

E. Multiple Item Trades

Both the one-way trade and the two-way trade protocols
may be used to trade multiple items. For example, rarely do
two players wish to simply exchange items that have the same
value. Instead, one player might offer a single desirable item
in exchange for several items. The two-way trade protocol can
handle this by simply extending the messages “X for Y” to
be “X for Y, Z, P, Q”. These items would all then be locked
via messages which would need to be signed by both parties.
One-way trades are trivially transformed into multi-one-way
trades by performing m one-way trades.

F. Scalability

Of course, in it’s current incarnation, the protocol is not
very scalable. To assist with the scalability issues, we require
players to examine the DHT only randomly on items they see.
The higher the probability they examine the DHT for an item,
the more likely that they will discover a player has used the
duplication cheat. We explore this further in Section IV.

G. Protocol Threats

We now discuss the security threats to this protocol and
show how they are addressed. Table II lists the security threats
to the protocol, and how they are addressed, when Alice is
trading an item to Bob. We assume that all simple threats,
such as malformed protocol messages can easily be checked
by either party and can be avoided at the commitment stage
by not signing the message.

There are a few issues with our protocol that merit discus-
sion. First, the major problem with all fair exchange protocols
is that someone can walk away in the middle of a transaction
leaving the other player stuck. By using two phases, one
player can at least lock the other player’s item if they are not
completing the transaction. The worse possible situation is if
they disappear for some significant amount of time, then return

and try to complete the transaction. To handle this problem,
an additional restriction could be placed on messages in the
form of an expiration. In other words, once Bob commits to
the trade with Alice, a date could be added so that if Alice
doesn’t complete the transaction by then, Bob can go ahead
and trade with someone else. Indeed, Bob’s item is locked in
the interim, but if this time limit is reasonably small (e.g.,
1 hour to account for clock differences), then they are not
inconvenienced for a long time.

Second, in our protocol, a player in theory could commit to
trading the same item to multiple players (assuming they all
asked to trade simultaneously). However, as soon as the first
commit occurred, that player now has proof that they were
trying to cheat. Even if multiple trade completions occur for
the same item, this will be discovered as soon as those players
try to take ownership of the item and post to the DHT. Since
we are using digital signatures, they now have proof of the
cheating player and severe consequences can be levied.

Finally, as discussed previously, since we query the DHT on
randomly chosen items from players we interact with, anyone
using the duplication cheat will eventually be caught.

IV. PERFORMANCE ANALYSIS

In order to understand the performance and scalability of
our protocol, we analyze the effect that trading items has on
the growth of the item profile that has to be stored in the DHT,
the number of signatures that have to be verified as the item
has been traded, and finally the probability that when you’re
verifying an item you have asked someone on the DHT who
is colluding with the person cheating. We assume that digital
signatures are approximately 1024 bits in size.

For item size growth on the DHT, we measured how large
the items grow as the number of times the item is traded
increases. Figure 3 shows the results and demonstrates that
the item size increases linearly with the number of trades. This
is expected since we append three signatures for each trade.
Our results also show that the computational cost of verifying
traded items increases linearly with the number of trades. We
note again that in many games, once an item is equipped or
used, the item can no longer be traded, so we expect the total
number of trades on an item to remain relatively low.

One problem with using a DHT for checking the ownership
of items is that if a group of players are colluding, we have
some probability of choosing them when we are looking up
the item. The distribution of UUIDs for items helps prevent
some of these issues, but some DHTSs are weaker than others
in randomizing a node’s storage address space, so we still
have some probability of having the item live on a colluding
player’s node.

To reduce this possibility, we can increase the number of
places an item is stored on the DHT by replicating it so
that the odds that all of those replications will be colluding
players drops significantly. Just finding one non-cheating node
would allow you to identify all of the colluding players. Thus,
we look at the probability that we will pick someone that
is colluding with the player we are checking. To do this, we

110000 T T
receipt(x) —+—

100000

90000

80000

70000

60000

bits

50000

40000

30000

20000

10000 L L L L L L L L
1

Trades

Fig. 3. Item profile size versus number of trades: The item profile size
increases linearly with the number of times the item has been traded.

05 —

04 i

02t |

Probability of choosing a colluder

01

10 20 30 40 50 60 70 80 20 100
Players

Fig. 4. The probability of picking someone else that is cheating versus the
number of alternate people we might pick for replication (the r value). In this
case, 10 players are colluding.

assume that items are replicated on the DHT up to r times. If ¢
players are colluding, then ideally we want to find a tolerance

value:
r<()0)

to ensure that the odds of running into only colluders is suffi-
ciently low. When T is higher, cheaters using the duplication
cheat will take longer to be caught. Figure 4 shows the results
of using 1, 2 and 4 replications on the DHT with 10 players
colluding. With 100 players, this implies that 10% of the
players are colluding together, but also shows that with as
few as 4 replications, the likelihood of those 4 nodes being in
collusion is less than 1%.

To help reduce the number of colluding players, one would
need a mechanism to reduce the ability of a player to have
multiple accounts and play simultaneously. However, even if
the players collude, they only need one item stored on a non-
colluding node in the DHT to have irrefutable evidence that
they are cheating.

V. CONCLUSION

In conclusion, we have developed the first protocol for
exchanging items fairly in a peer-to-peer game. Our protocol
requires the backing of a DHT to act as a “weak” trusted
third party in order to prevent the duplication cheat. We have
seen that as the number of times an item is traded, the storage
and computation costs grow linearly. Unlike traditional fair
exchange protocols, we do not need to keep items completely
secret from each other, allowing us to develop a more efficient
protocol for P2P games. We then showed that by replicating
items on the DHT we can ensure that the chances of picking
a colluder is sufficiently low.

As part of our future work, we plan on exploring ways in
which we can simulate trades so that the actual networking
costs of exchanging items and digital signatures can be mea-
sured further in a detailed analysis. We also plan on exploring
how items can be added and deleted from the game.

REFERENCES

[1] D. Rolli, M. Conrad, D. Neumann, and C. Sorge, “An asynchronous and
secure ascending peer-to-peer auction,” in Proceedings of the 2005 ACM
SIGCOMM workshop on Economics of peer-to-peer systems, ACM,
2005, pp. 105-110.

[2] M. Fontoura, M. Ionescu, and N. Minsky, “Decentralized peer-to-peer
auctions,” Electronic Commerce Research, vol. 5, no. 1, pp. 7-24, 2005.

[3] N. Asokan, V. Shoup, and M. Waidner, “Asynchronous protocols for
optimistic fair exchange,” in IEEE Symposium on Security and Privacy,
1998, pp. 86-99.

[4] M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest, “A fair protocol for
signing contracts,” IEEE Transactions on Information Theory, vol. 36,
no. 1, pp. 40-46, January 1990.

[5] I. B. Damgard, “Practical and provably secure release of a secret
and exchange of signatures,” in Advances in Cryptography — EURO-
CRYPT’93, ser. Lecture Notes in Computer Science, T. Helleseth, Ed.
Springer Berlin / Heidelberg, 1993, vol. 765, pp. 200-217.

[6] T. Okamoto and K. Ohta, “How to simultaneously exchange secrets by
general assumptions,” in Proceedings of the 2nd ACM Conference on
Computer and Communications Security. ACM, 1994, pp. 184 — 192.

[71 P. Syverson, “Weakly secret bit commitment: Applications to lotteries
and fair exchange,” in 1/th IEEE Proceedings of Computer Security
Foundations Workshop, June 1998, pp. 2-13.

[8] F. Bao, “Efficient and practical fair exchange protocols with off-line ttp,”
in Proceedings of IEEE Symposium on Security and Privacy, May 1998,
pp. 77-85.

[9] M. K. Franklin and M. K. Reiter, “Fair exchange with a semi-trusted

third party,” in Proceedings of the 4th ACM Conference on Computer

and Communications Security, 1997, pp. 1-5.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” http:

//bitcoin.org/about.html, 2008.

1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”

in Proceedings of ACM SIGCOMM, 2001, pp. 149-160.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scal-

able content-addressable network,” in Proceedings of ACM SIGCOMM,

2001, pp. 161-172.

A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems,” in

Proceedings of the IFIP/ACM International Conference on Distributed

Systems Platforms. Springer-Verlag, 2001, pp. 329-350.

A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting scal-

able multi-attribute range queries,” in Proceedings of ACM SIGCOMM,

August 2004.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-

tion system based on the xor metric,” in Peer-to-Peer Systems, ser.

Lecture Notes in Computer Science, P. Druschel, F. Kaashoek, and

A. Rowstron, Eds. Springer Berlin / Heidelberg, 2002, vol. 2429, pp.

53-65.

[10]

(11]

(12]

[13]

[14]

[15]

