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CHARACTERIZING AND MODELING MULTIPARTY VOICE
COMMUNICATION FOR MULTIPLAYER GAMES

Over the last few years, the number of game players using voice communication to talk to each other
while playing games has increased dramatically. Unlike traditional voice-over-IP technology, where most
conversations are between two people, voice communication in games often has 5 or more people talking
together as they play. We present the first measurement study on the characteristics of multiparty
voice communications and develop a model of the observed talking and silence periods that can be used
for future research, simulation, network engineering, and game development. Over a 3 month period,
we measured over 7,000 sessions on an active multi-party voice communication server to quantify the
characteristics of communication generated by game players, including group sizes, packet distributions,
user and session frequencies, and speaking (and silence) durations. Unlike prior results, our measurements
and models demonstrate that the speaking and silence periods fit a Weibull distribution.

1. INTRODUCTION

Multiparty voice communication (MVC) is an important application that needs to be studied
and researched. In multiplayer computer games, for example, thousands of players can interact and
communicate with each other using built-in voice chat systems (e.g., World of Warcraft†). Game
consoles have added multiplayer lobbies for player interaction as selling features of the hardware.
Further, multiparty voice communication is widely used for conference calls and voice chat software
and clearly will be part of future online collaborative systems. Thus, research in this area benefits
the future design of MVC systems, is relevant and interesting to online game development and de-
ployment, and is important to ISP network engineers supporting and hosting online game and voice
systems.

Our research is the first work to look at characterizing multiparty voice communications over
the Internet, and in particular when it is used with multiplayer games. Previous voice-over-IP (VoIP)
measurement work has looked at quality of service parameters such as packet loss, packet reordering
and its effects on sound quality, or at network characteristics and support of VoIP between two parties.
Instead, our research attempts to characterize the traffic, packet arrival rates, group sizes, session
frequencies and durations, and speaking and silence periods in order to develop mathematical models
for multiparty communication that can be used for simulation and modeling.
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In the past, multiparty voice communication was limited to small groups because player band-
width was limited to modem speeds. However, new computer games often include voice communi-
cation as an essential part of the playing experience. A typical multiplayer game might have up to 40
players coordinating with voice communication while spelunking. This differs significantly from a
Skype‡ session between two people.

To conduct our measurement study, we set up a TeamSpeak§ server which allows clients to join,
set up channels, and communicate with other clients on the same channel. We then recorded traffic
over a three month period and analyzed the resulting data.

Our results show that multiparty voice communication differs from traditional two-party com-
munication. We see that overall traffic follows a sinusoidal curve with a peak around 8PM and a
period of 24 hours. Group sizes tend to average 5 people while groups with more than 20 people are
the least common. Further, silence and talking periods followed a Weibull distribution, which differs
from prior research on voice communications.

The main contribution of this work is a characterization of traffic patterns, group patterns, and
voice patterns through measurements. In particular, we model the talking patterns mathematically,
based on the measured multiparty voice communication sessions. Further, the characterization of
voice patterns has typically been done on small sets of data; our study measures patterns from thou-
sands of hours of voice data with thousands of unique sessions. Thus, future research in MVC systems
will be able to use our models to drive experimental simulations, game developers can use these mod-
els to understand the impact of adding voice communications on network traffic already generated by
their games, and ISPs can use this information for provisioning servers for hosting MVC systems.

2. BACKGROUND

Voice patterns consist of on and off periods (also called talkspurts and silence periods). Over the
last 40 years, research has looked at these patterns and shown that the on periods follow an exponential
distribution [3, 15] in traditional telephony. These results are important because they allow designers
of hardware, codecs, and network administrators to predict the patterns of speech with mathematical
models. Our research follows in this tradition, though we look at multiparty voice communication
and study several orders of magnitude more sessions than previous research.

Markopoulou et al. measured the quality of voice communications over the Internet. They
measured delay and loss over wide-area backbone networks and used these results with a voice quality
model [10] to determine the efficacy of VoIP over the Internet for voice communication. The authors
show that while many Internet backbones have sufficiently low delay, delay variability, and loss,
several provide poor VoIP quality. Our work measures traffic directly at the server since we cannot
provide a client that generates end-to-end measurements. However, we are more interested in the
actual traffic patterns generated by the multi-party communications and less interested in whether or
not Internet backbones support VoIP.

Jiang et al. looked at the on-off patterns in VoIP by recording and digitizing conversations and
then applying gap detectors to determine how long people talked and how long they were silent [8].
Their results show that the length that people talk for somewhat follows an exponential distribution
while the gap they are silent for deviates significantly from the same distribution. Our measurements
differ and show that the on-off patterns of VoIP in multiparty communications follow Weibull distri-
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butions more accurately, without significant deviation.
Skype [1], a VoIP application, was measured by Chen et al. in order to determine the level

of user satisfaction [4]. By measuring network traffic characteristics, they correlated the amount of
jitter and interactivity of a session with the length of the call. Our work measures similar traffic
characteristics, but measures data between multiple parties. However, we do not examine or predict
conversation quality based on traffic characteristics.

Borella analyzed game traffic from a popular online game server on a LAN and modeled the
inter-packet arrival time and packet sizes with extreme distributions [2]. Their model was validated
using the λ2 test, which we also use to validate our models. The λ2 test is important in our situation
because we have large data sets with over 180k sample points and χ2 tests perform poorly in these
situations [2].

Henderson and Bhatti modeled network traffic of an online game over the Internet [7]. This
work was measured over the Internet instead of over a LAN, providing a more realistic model. Their
work shows a daily and weekly traffic pattern similar to what we measured with voice traffic: evenings
have peak traffic while early mornings have the lowest traffic. Further, more traffic is seen overall on
the weekends. Pittman et al. and Svoboda et al. had similar diurnal patterns in their measurement
work on large-scale multiplayer games [14, 16]. In addition, other researchers modeled game traffic
(packet sizes, arrival times, sessions) with similar results [5, 17].

Note that our early results were published in [11], but only included the initial CDFs of talkspurt
and silence periods. However, in this paper, we present our full range of results and model multiparty
voice communications.

3. TRACE COLLECTION

In this section, we describe the architecture of our network, the content of the server log file,
the collection of the VoIP sessions and the procedure that we used to clean the collected data.

3.1. NETWORK SETUP

TeamSpeak is a group voice communication server that allows multiple people to connect using
a TeamSpeak client, join channels, and talk simultaneously with other people in the same channel.
In this client/server architecture, the clients encapsulate voice packets using one of many codecs, and
send those packets to the server using UDP unicast. The server then unicasts the packets to the other
n−1 clients connected on the same channel. Note that the server does not multiplex the voice packets,
though we expect future architectures to do so.

We set up a TeamSpeak server and advertised it to game players as a free server beginning in
November of 2006. We then began logging all traffic on port 8767 to the server using tcpdump. The
server was set up to only allow 12.3kbps and 16.3kbps Speex encoding for voice.

Although TeamSpeak generates a server log file, the data contained in this file (even with max-
imum verbosity) is minimal and contains data only about logins, logouts, channel switching, and
administrative operations. Thus, we used tcpdump to record all packet information generated with
regards to the TeamSpeak server. We also discovered that when we compared data from the server
log and the trace files, the server log was not always accurate. For example, the server log would
show a player logging in multiple times without logging out. This was probably due to the fact that
the player’s connection died, but the server had not discovered it before the player re-logged in. How-



ever, from our packet traces we could determine a session by looking at the time that a player logged
into the server to the last time they sent or received a voice packet from any player.

Using the data recorded by our tcpdump logs, we could identify voice packets and separate
them from non-voice packets by their size and the codec ID. All voice packets were 155, 161, 205,
and 211 bytes. Incoming packets were 155 and 205 bytes for 12.3 and 16.3 kbps Speex encoding.
Outgoing packets were 161 and 211 bytes.

3.2. DATA CLEANING

As we began the analysis of our data, we discovered that some of the data points were extremely
different from the rest. These included excessively long talk sessions as well as silent periods. For
example, the extreme outliers of the talkspurts were data points where voice packets were delivered for
close to an hour, which would be fairly difficult to accomplish when you consider that we can detect
silence gaps as small as 100ms! We reckon that these are rare occasions resulting from something
such as loud background music or human behavior such as forgetting to log off while leaving the
computer for several hours. Therefore, we treated these data points as outliers and did not include
them in our final results.

While removing extreme outliers can be controversial, we justify our actions by noting that our
method removed few or no data points and that the methods used for curve fitting often pick the first
and last end-points of the data to begin and end the curve, and then adjust values to force the rest
of the graph to fit. Thus, the extreme outliers can cause a curve to not fit the data well, whereas
by removing the outliers and fitting the curve allows one to obtain a better fit, according to various
metrics. In Section 4.5, we detail the effects of our data cleaning.

To remove the extreme outliers, we first analyzed the linearity of the data. Prior researches
show that talkspurt and silence periods often follow an exponential distribution [3, 8, 15]. We also
plotted preliminary graphs to get an idea of the general trend of the data. Note that linearization for
the purpose of cleaning does not need to be perfect (e.g., we used an exponential form, though our
data turned out to be Weibull). The purpose of this process is to remove extreme outliers and, given
the large number of data points, removing only a small percentage of data points is acceptable.

Once the data was linearized, we identified the first and third quartiles. To keep as much data
as possible, we deleted only the extreme outliers. The data points, e, that are beyond the outer fences
are defined as:

e < Q1 − 3IQR or e > Q3 + 3IQR (1)

Here,Q1 is the first quartile,Q3 is the third quartile and IQRmeans the inter-quartile range (Q3−Q1).
While methods that remove all the outliers and not just the extreme ones use 1.5IQR we decided to
use 3IQR and only remove a very small amount of data, which we felt was sufficient enough for our
purposes.

4. MEASUREMENTS

Our measurements cover a 3 month period from December 2006 to February 2007. During this
time, we measured over 7000 sessions from over 800 IP addresses dispersed geographically for an
average of 1.46 GB/day in traffic.



Table 1: Heaviest user distributions with rankings.

(a) Distribution by country.

Country Player Distribution %
United States 60.53
Canada 26.63
Singapore 9.68
Australia 1.57

(b) Distribution by state.

State Player Distribution %
Pennsylvania 17.80
New York 8.40
California 7.20
Colorado 4.60
Florida 4.20
Texas 3.80
Washington 3.20

4.1. GEOGRAPHICAL DISTRIBUTION OF USERS

In order to ensure that our data was not biased due to the geographical location of clients con-
necting to the server, we took advantage of the fact that all the client IP addresses were obtainable
from our log files. Thus, we could estimate the locations of the clients and ensure that they were not
all from the same place. Using the free MaxMind tool, GeoLite Country¶, we determined the latitude,
longitude, country and state where applicable of each IP address. This free version of the software
claims to have over 98% accuracy. After processing our data we found that more than 87% of our
users were from North America, more than 60% of our users were from the United States, each of the
7 most popular states was responsible for more than 3% of the U.S. users and combined they were
responsible for almost 50% of the U.S. users, and none of the remaining states contributed more than
3% of the population individually.

Table 1a shows that the majority of our users are from the United States and Canada while
Table 1b shows the breakdown by states in the United States. Note that only two countries contributed
more than 10% of the population, the U.S. and Canada. We conclude that the primary result of our
server location being in the MST time-zone is simply that most users are from the U.S. and Canada.
Generally, server location affects the user locations due to latency issues, but given the wide-spread
locations of users within the continental U.S. and Canada, our data is not biased towards a particular
area within these two countries, except to follow natural populations.

4.2. OVERALL SERVER TRAFFIC

The first set of measurements we present are the overall traffic seen by the server during an
average day. Figure 1 shows the averages, averaged per hour on the x-axis and the number of packets
sent and received on the y-axis. Thus, this figure is an indication of the volume of traffic seen by the
TeamSpeak server. Incoming voice packets are always 155 or 205 bytes while outgoing voice packets
are always 161 or 211 bytes respectively.

This result shows that server input doubled and server output increased by an approximate factor
of 4 during the evenings (approximately 7pm-9pm MST‖). This indicates that more users are online
using multiparty voice communication during the evenings.

¶http://www.maxmind.com/app/geolitecountry
‖Throughout this paper, times are listed as MST, but this is only as a convenience indicating the time-zone the server is
located in and has no bearing on the measurements or results.
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Figure 1: Server Traffic: Average voice server traffic
over a 24 hour period (times shown are MST). Server
input doubled while server output quadrupled during
evening hours. The peak is around 7pm-9pm whereas
the most quite period is around 4am.

We also observed that during the peak pe-
riod (7pm-9pm) the traffic rate is also almost
constant. In other words, the number of ses-
sions started is the same as the number of ses-
sions finished during this period and thus resem-
bles a balanced birth-death process.

We hypothesized that traffic was actually
higher on weekends, and therefore we divided
our averages into individual days so that we av-
eraged all Mondays separately, all Tuesdays sep-
arately, etc. Figure 2 shows the inbound server
traffic from users. From this figure, we see that
most days are very similar with a small amount
of variance, though in terms of total input, Fri-
days and Sundays have the highest amount of
inbound traffic.

In Figure 3, we can more clearly see that
the server output has more traffic on weekends than on weekdays. In addition, Sunday traffic increases
earlier than on any other day, starting at 1pm MST while the peak of traffic is highest late on Friday
evenings at approximately 130k packets/hour. Interestingly, Saturdays have a lower peak traffic than
Sundays or Fridays, but have a higher average traffic during the early hours of the day. This difference
is most likely due to people who are on late Friday continuing to use TeamSpeak into the early hours
of Saturday morning (and then probably sleep late that day).
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Figure 2: Server Input: Average voice server input
traffic over a 24 hour period (times shown are MST).
Server input is similar on all days, with a peak dur-
ing evening hours.
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Figure 3: Server Output: Average voice server
output traffic over a 24 hour period (times shown
are MST). Server output is higher and extends over
more hours during the weekends, and in particular
on Sundays.

A final interesting trend is that Monday also seems to have a high outbound traffic peak that
is similar to Friday. The primary difference appears to be that the traffic is shifted about two hours
earlier, probably because game players start earlier so that they can go to bed earlier.

Given the TeamSpeak architecture, which unicasts packets to other players in the same channel,
these results provide an insight into the size of the group that is talking to each other in the same
channel. First, on Fridays, the output is approximately 4 times the size of the input. This implies that
for each voice packet that is input, TeamSpeak is replicating it 4 times, for a group size of 5. On a



day such as Tuesday, the traffic is 2 to 3 times that of the input, indicating group sizes on average of
3 to 4. We conjecture that on Fridays and Sundays, game players are more likely to use multiparty
communication to converse with a larger group of other people than on other days. Most likely this is
because players have more free time on those days and are able to coordinate getting together online
with other players more readily.

When we look at this data in conjunction with the general server traffic, we see an interesting
trend. Even though group sizes may increase, the amount of incoming traffic does not increase at
the same rate as the outgoing traffic. Given these traffic patterns we believe that while many people
may be able to talk at the same time in a large group, human protocols prevent this from occurring.
Typically, only one person can talk at a time and they take turns during the sessions. In essence, if
more than one person begins talking, the speakers stop to allow only one person to talk so that the
conversation can be understood.

We expect our results to be similar to traffic patterns seen on game servers. Indeed, simi-
lar diurnal patterns and weekly patterns have been observed in related game traffic measurement
work [17, 7, 14, 16]. There is clearly a peak, a local minimum each day, a strong correlation between
days and a higher load on the weekends.

4.3. GROUP SIZES

We next examine group sizes to gain an insight into the size of a group that is typical in mul-
tiparty voice communication when used with games. As we noted previously, the ratio between the
inbound and outbound traffic is an indicator of the average group size.
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Figure 4: Group Sizes: The number of groups of a
given size, categorized by days over the measurement
period. We see that, on average, the most groups are
between 2 to 8 people talking, with a maximum of 24
people in a group.

To perform this measurement, we looked
at the trace logs and determined the sender ID
for all the outgoing packets. The number of out-
going packets with the same ID and the same se-
quence number is one less than the actual group
size. We binned all data according to how many
people it was duplicated to, allowing us to exam-
ine the data based on the size of the group. Thus,
we can determine the effect of the groups with
different sizes on both the incoming and outgo-
ing traffic on the server. Note that, neither the
server log file nor the TeamSpeak packet format
provides information about the used channel and
thus it is impossible to identify the actual groups
based on the packet alone. The results are seen in
Figure 4. The solid line indicates the incoming
traffic and the dashed line indicates the outgoing
traffic that is simply the incoming traffic multiplied by the number of players that the particular packet
is replicated.

The results on group sizes show that the most active groups are the ones that are formed by
5 people. It can also be concluded that these groups generate the most outgoing traffic among all
the groups. It is also worth mentioning that the amount of incoming packets from groups formed by
pairs is almost as high as it is by these groups, but because of the replication the outgoing traffic is
much less affected. Similarly, the counter effect can be seen in case of groups that contain 19 people;



although the amount of incoming traffic is low, the amount of outgoing traffic is high due to the large
amount of replication necessary. The largest group we observed was 24 people.

We believe that a correlation between using TeamSpeak and the game being played exists.
Currently, one of the most popular online games being played is World of Warcraft. In this game,
players are often limited to 5 people in special areas, biasing the data towards a small group of
people talking and playing the game together. On the other hand, a large class of multiplayer games,
called first-person shooters, tend to group players into two groups, each between 8 and 16 players.
Multi-party voice communication has also become very important for this class of games. If our
TeamSpeak server was used by players of these kinds of games, we would expect the group sizes to
correlate. Thus, we concluded that our server was mostly used by players on games which promoted
small groups. However, because determining the game being played is impossible from our logs,
and because the server was advertised to a wide variety of sources, we believe our results are general
enough to at least apply to MVC for games in general.

4.4. SESSION CHARACTERISTICS

We define a session as the period from when a user logs into the server until they log out of
the server. These can be determined finding the login and logout entries in the TeamSpeak log file.
Note that entries where the user was seen logging in more than once without logging out were not
considered in our measurements.
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Figure 5: Sessions Length CDF: We see that of the
7,749 sessions we recorded, half of these sessions were
less than 5000 seconds (1.3 hours). A small fraction
of these (a few hundred) were over 30,000 seconds (8
hours).

We recorded 7,749 sessions, including the
packets that were sent to and from the server and
how long users were logged into TeamSpeak. On
average, we observed 86.1 logins per day from
826 individual users. To understand this data
further, we calculated the session times and gen-
erated a CDF as shown in Figure 5.

Our calculations show that the shortest ses-
sions were less than one second while the longest
session was over 69 hours! However, as Figure 5
shows, for 20% of the sessions, users stayed less
than 1/2 hour. In addition, for 20% of the ses-
sions, users stayed for more than 5 hours. Thus,
60% of the sessions fell somewhere between 1/2
hour and 5 hours.

For the small fraction of sessions that were
greater than 8 hours, we hypothesize that users
simply did not log out of the TeamSpeak server when they were done. In the future, we would like to
look at the correlation of session time with input traffic to see if long lived or very short sessions are
actually sending and receiving voice traffic.

The characteristic of our curve is similar to both that can be found in [7] and in [16]. How-
ever, both of these papers analyze network traffic in on-line games, one of them focuses on a First
Person Shooter (FPS) game whereas the other one focuses on a Massively Multiplayer Online Game
(MMOG). On the one hand this fact validates our results but on the other it shows that it is nearly
impossible to conclude what type of game is played by the users analyzing only the characteristics of
the data and not the content of it.



Table 2: Cleaning the data sets: The effect of removing extreme outliers with the cleaning procedure on
inter-talkspurt, talkspurt, and silence periods data sets.

Inter-talkspurt arrival Talkspurt Silence
Original data size 188,225 (100%) 188,313 (100%) 186,626 (100%)
Filtered data size 187,884 (99.82%) 188,158 (99.92%) 186,626 (100%)
Deleted data size 341 (0.18%) 155 (0.08%) 0 (0.00%)
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Figure 6: Login Count CDF: 40 % of all the IP ad-
dresses that logged to our server were unique. This is
probably due to the fact that DHCP was used to assign
their addresses. 17% appeared to log into the server at
least once a week on average.

In the next measurements, we matched IP
addresses with sessions to determine how many
unique IP addresses logged into the system. In
essence, we would like to determine how fre-
quently a user logs into and uses the TeamSpeak
server. We calculated the CDF of the ratio of lo-
gins versus the number of logins as illustrated in
Figure 6.

Our results indicate that 40% of the users
logged into the TeamSpeak server only once,
while only 17% logged into it regularly (i. e.
at least once every week on average). However,
this result might be biased due to the fact that
some users may be using DHCP to receive their
IP addresses when they use the Internet. Thus,
multiple IP addresses may refer to the same user
and the total number of users we saw may be fewer. Although broadband Internet users usually keep
their IP addresses for several days or even weeks, we are currently investigating ways to determine
the correct identity of users.

4.5. MEASURED VOICE PATTERNS

Voice patterns in multiparty voice communication consist of talkspurts (on periods) and silence
(off periods). We measured these and the inter-talkspurt arrival time to characterize voice patterns.
TeamSpeak uses 100ms long frames, therefore the shortest talkspurt in our case is 100ms. To be
consistent, the smallest measureable silence period must also be 100ms. The inter-talkspurt arrival
time is measured as the time between any two in-sequence talkspurts observed by the server. Since the
smallest talkspurt is 100ms and the smallest silence period is 100ms, then any inter-talkspurt arrival
time that is at least 200ms for a given user is interpreted as silence. Note that, if we have multiple
users using the server at the same time the talkspurts can overlap and thus the inter-talkspurt arrival
time can be shorter than the talkspurt itself.

In order to measure the voice patterns, we captured the voice packets during the peak periods
(7pm–9pm). After sorting and analyzing the data we realized that our data points did not fit on a
linear curve. Therefore, we identified the extreme outliers using the method described in Section 3.2
and removed them from our data set. When we applied the cleaning procedure to the inter-talkspurt
arrival times, we removed 341 data points. Table 2 shows the results of cleaning the inter-talkspurt
arrival times.
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Figure 7: Inter-talkspurt arrival time: The majority
(90%) of the inter-talkspurt arrival times are less than
7.65 sec. The resulting CDF appears to be exponential
in nature.

Figure 7 plots the inter-talkspurt arrival
times seen at the server during the peak periods.
The majority (90%) of the inter-arrival times is
less than 7.65 sec. However, the remaining 10%
of the data forms a tail which stretches to 536.83
seconds. Note that we only include the first 100
seconds and use a log-log scale in the graph so
that the CDF can be seen more clearly.

We collected the talkspurts and silence pe-
riods for each of the users during the peak pe-
riod. We then merged these sets into a single
data set and found that the data was non-linear.
We transformed it and deleted the extreme out-
liers with the results listed in Table 2.

In Figures 8 and 9, we plot the CDFs of the
talkspurts and silence periods, respectively. Both CDFs appear to follow an exponential distribution,
which we explore further in Section 5. The expected value of the talkspurts is much lower than the
expected value of the silence periods. 90% of the talkspurts are shorter than 5.40 sec, whereas the
same measure for the silence periods is 70.11 sec, which is around an order of magnitude higher.
This implies that the users tend to listen more than they talk. After the filtering process, our lowest
talkspurt value was .1 sec and our highest value was 96.46 sec. This can be seen in Figure 8.

When we analyzed the silence periods, the filtering process did not affect our data set (see
Table 2). This is due to the fact that the expected value of our exponential-like curve was higher and
thus the IQR was broader. In addition, because our measurements were only performed during the
peak period, the silence periods have an upper bound of 3 hours (or 10,800 secs). The silence period
data set ranged from .1 sec (the minimum possible silence period) to 7036.95 sec (almost 2 hours).
However, in order to examine the curve of the CDF better, we only include the first 1000 seconds
in Figure 9. In the next section, we model the data sets mathematically and discover that both the
talkspurt and silence periods are better modeled by Weibull distributions.
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Figure 8: Talkspurts: The majority (90%) of the
talkspurts are less than 5.40 sec.
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Figure 9: Silence periods: The majority (90%) of
the silence periods are less than 70.11 sec, which is
much higher than the talkspurts.



5. MODELING MULTIPARTY VOICE COMMUNICATION

We now model multiparty voice communication. We have three primary factors that we need to
model mathematically: talkspurts, silence and group sizes. With these models, we can simulate and
predict the characteristics of multiparty voice communication, regardless of whether a client/server,
peer-to-peer or hybrid architecture is used.

5.1. METHODOLOGY

Initially, we thought that the data appeared to follow some kind of exponential distribution, but
as we analyzed the data further, we discovered that it fits a Weibull distribution better. Note that this
differs from previous research in classical telephony and VoIP conversations which showed that the
data followed an exponential distribution.

In order to model the conversations, we first estimated the parameters of the exponential and
Weibull distributions. We looked at other distributions, but found that these two distributions had the
best fit with our data. We then validated our estimation by calculating the mean and standard deviation
of the residuals and by using the λ2 test.

5.2. PARAMETER ESTIMATION AND ERROR CALCULATION

For parameter estimation, we used the least-squares method to minimize the square of the sum
of the residuals for both the Exponential and Weibull distributions.

In order to justify the correctness of our estimation, one could perform a goodness-of-fit test.
However, traditional tests, such as Chi-square (χ2) and Kolmogorov-Smirnov (KS) are not suitable
for data from Internet traffic [12]. Moreover, these tests are biased against large data sets [6], such as
the ones that we have.

We use two methods to determine if the data fits a particular distribution. After we have used the
least squares method to estimate the parameters for a distribution, we plot the residuals and examine
their mean and standard deviation. These values give us an idea of how well our model predicts the
data. In addition, we use the λ2 method as a discrepancy tool [13]. We describe how we used the λ2

method and how we binned our data in Subsection 5.3. With the λ2 method, we can compare the fit
between two possible distributions.

5.3. USING λ2 FOR NETWORK MODEL EVALUATION

The quantity λ2 is the discrepancy between an actual and an assumed statistical model, which
is the measure of the goodness-of-fit of the estimated curve. However, this method can be applied to
data in different ways. Here, we present the details of how we applied it.

The λ2 metric is defined as follows:

λ2 =
χ2 −K − df

n− 1
(2)

where n is the total number of datapoints and df is the number of degrees of freedom of the test.

χ2 =
∑

i

(Oi − Ei)
2

Ei

(3)



and

K =
∑

i

|Oi − Ei|
Ei

(4)

Since this discrepancy is based on Pearson’s χ2 test, it requires the binning of the data. Here Oi

is the observed number of datapoints in bin i and Ei is the estimated number of datapoints in bin i.
Please note that not just χ2 but K is also dependent on the number of bins and therefore determining
this parameter can be crucial. If the parameter is too large, the estimate will be too rough; on the
other hand if the parameter is too small than the distribution of the datapoints will be too smooth,
equivalent statistically to imprecise estimation.

In our paper we used 1 + 2× 2× log10 n equiprobable bins [9]. If this was not a whole number
we took the floor of it. This method ensures that if we have at least one datapoint the denominator of
neither χ2 nor K can be zero. Our experience is that these parameters were accurate and worked well
with our data because they were in accordance with what we expected based on the graphs.

5.4. MODELING TALKSPURTS AND SILENCE

To model the talkspurts and silence periods, we looked at the packets sent and received during
the peak period on the server (from 7pm to 9pm). We focus on this period because the model needs
to be able to predict the behavior under peak loads. After looking at the data, graphed in Figure 8, we
hypothesized that the data followed the exponential distribution.

Table 3: Experimental values: The Mean, Min and Max are calculated from the data sets. Using our parameter
estimation methods, we calculated the parameters for the CDFs of the exponential and Weibull distributions.
The λ2 values are the results of using the λ2 test to determine the accuracy of our fit (smaller is better). For
both the talkspurt and silence data sets, the Weibull distribution is a better fit.

Talkspurt Silence
Mean 2.74s 35.90s
Min 0.1s 0.1s
Max 96.46s 7036.95s
Exponential esti-
mated parameters

λ = 0.4185 λ = 0.0877

Weibull estimated λ = 2.3002 λ = 13.5275
parameters k = 1.1846 k = 0.6168
λ2−test for exponential0.0999 0.2739
λ2−test for Weibull 0.0769 0.0636

Table 4: Residuals from Model: The max, min, and standard deviation of the residuals between the modeled
CDFs and the talkspurts and silence periods.

Talkspurt Silence
Max 0.0401 0.0269
Min -0.0350 -0.0382
Std.Dev. 0.0190 0.0180
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Figure 10: Modeling talkspurts: Visually, we see
that the Weibull CDF (k = 1.1846, λ = 2.3002)
slightly overestimates the number of short talkspurts
around the 10s range but otherwise it is a better fit
than the exponential (λ = 0.4185).
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Figure 11: Modeling silence: We model the si-
lence period using a Weibull CDF (k = 0.6168, λ =
13.5275). We see that like the talkspurts, the
Weibull distribution fits better than the exponential
distribution (λ = 0.0877).

Our first attempt at modeling the talkspurt and silence periods was to try an exponential distri-
bution. Table 3 lists the means and parameters we estimated using the least-squares method for the
exponential distribution.

We then tried the Weibull CDF which is a generalization of the exponential distribution. We
estimated the parameters for the Weibull distribution for both the talkspurts and silence periods (Ta-
ble 3). We then plotted the talkspurt and silence data sets along with both exponential and Weibull
CDFs using their estimated parameters. The talkspurt graph with its models can be seen in Figure 10.
Visually, the Weibull CDF appears to be a better fit for the talkspurt data set. We plotted the residuals
(not shown) to examine their mean and standard deviations and summarize them in Table 4.

We then used the λ2 test on the CDFs and validated that the Weibull CDF fits better than the
exponential as shown in Table 3. Thus, unlike prior results which showed that an exponential distribu-
tion better modeled talkspurts, we found that the Weibull CDF more accurately models the talkspurts
of multiparty voice communication.

For the silence periods, we repeated our method of plotting the data set with both the exponential
and Weibull CDFs and their estimated parameters, as shown in Figure 11. To further validate the
results, we plotted the residuals (not shown), which are the differences between the predicted values
and observed values. The residuals shows us that the model is off by at most 4%, with a standard
deviation less than .02 as shown in Table 4. Using the λ2 test, we see that our estimated Weibull CDF
is indeed a better fit than the exponential distribution (Table 3). Thus, the silence periods are more
accurately modeled with Weibull CDF for multiparty voice communications.

5.5. GROUP EFFECTS ON TALKSPURT AND SILENCE

Besides the talkspurt and silence distributions, we wanted to understand how group sizes affect
these distributions. We hypothesized that as the number of people in a group increased, the mean
talking time decreased while the mean silence time increased. To study this, we plotted the mean
talkspurt and silence times versus the group sizes observed during our measurement period.

As TeamSpeak does not use a group identifier in the messages, it is impossible to identify the
groups with 100% accuracy. However, for modeling the behavior of the groups with different sizes
it is not essential to associate the messages to a particular group. Simply knowing the size of the
group that a message was sent to would be sufficient if this method was also capable of grouping the



silent periods based on the group size. Thus, we counted the number of replications for each of the
incoming messages from a given user. Next, we used this group size to determine the group size for
the following silence period. This way we could associate a group size to both the talkspurts and the
silence periods. The only time when our method fails is when a player leaves or joins a group during a
silence period. However, this event is very unlikely and therefore our solution is capable of providing
an accurate result.
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Figure 12: Talkspurts and silence periods among
groups: Note that the mean talkspurt and silence times
are fairly constant.

Figure 12 shows the mean talkspurt and
silence times versus the group size. We only
show groups of up to 8 people due to the fact
that while we did observe groups with up to 24
people, the number of data points in these larger
groups were too few to be statistically meaning-
ful.

Looking at this graph, we see that the mean
talking and mean silence time do not change sig-
nificantly, regardless of the group size, contra-
dicting our hypothesis. To investigate this un-
expected result, we ran a script which looked
at the number of people talking in a group and
found that as the group size increases, the num-
ber of completely silent people increases (e.g.,
they only have headphones, but not a mic to speak on). In essence, a single group appears to support
a maximum amount of conversation, regardless of the group size. We expect that future architectures
and codecs may be able to take advantage of this information.

6. CONCLUSION AND FUTURE WORK

We have presented the first work that examines the characteristics of multiparty communica-
tion for games. While VoIP has been successful for point-to-point communication, and research has
looked at the feasibility of VoIP over the Internet, our work is the first to address multiparty voice
communications on the Internet.

Our results show familiar and new trends. First, as we modeled the talkspurts and silence
periods, we found that both types of data fit a Weibull CDF, which differs from previous work on
traditional telephony and VoIP that shows talkspurts following exponential distribution. Moreover,
we showed that the length of the talkspurts and silence are always the same regardless either of the
game played or the group size. On the other hand, the distribution of our daily traffic was similar
to other works in both games and VoIP, where server usage peaked during evening hours and on
weekends.

Finally, human protocols seem to be at work here as our measurements indicate. The increase in
group sizes does not increase the amount of input traffic linearly, though output traffic is necessarily
linear in the number of packets received. This is simply due to the fact that humans best process voice
information when only one person is talking at the same time. Thus, if more than one person starts
talking, other speakers naturally back-off and wait for their turn.

As for future work, we plan on using our models for simulation of client/server and peer-to-peer
multiparty voice communication systems.
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