
Multimedia Systems
DOI 10.1007/s00530-012-0291-z

Match+Guardian: A Secure Peer-to-Peer Trading Card Game Protocol

Daniel Pittman · Chris GauthierDickey

Received: 30 Nov 2011 / Accepted: 5 June 2012
Original publication available at: http://www.springerlink.com

Abstract In trading card games (TCGs), players create a
deck of cards from a subset of all cards in the game to com-
pete with other players. While online TCGs currently exist,
these typically rely on a client/server architecture and re-
quire clients to be connected to the server at all times. In-
stead, we propose, analyze and evaluate Match+Guardian
(M+G), our secure peer-to-peer protocol for implementing
online trading card games. We break down actions com-
mon to all TCGs and explain how they can be executed be-
tween two players without the need for a third party referee
(which usually requires an unbiased server). In each action,
the player is either prevented from cheating or if they do
cheat, the opponent will be able to prove they have done so.
We show these methods are secure and may be shuffled into
new styles of TCGs. We then measure moves in a real trad-
ing card game to compare to our implementation of M+G
and conclude with an evaluation of its performance on the
AndroidTM platform, demonstrating that M+G can be used
in a peer-to-peer fashion on mobile devices.

Keywords Games · Peer-to-peer network protocols ·
Distributed systems

1 Introduction

Trading card games (TCGs), also known as collectible card
games, are a type of card game where players purchase,
collect, or trade cards, allowing them to create a playing

D. Pittman · C. GauthierDickey
University of Denver
Department of Computer Science
Denver, CO, USA
E-mail: dpittman@cs.du.edu

C. GauthierDickey
E-mail: chrisg@cs.du.edu

deck from their collection which can be used to compete
with other players. Cards in the game have different features
or abilities and may be used strategically and in conjunc-
tion with other cards in their deck. Recently, TCGs have
started to move to the computer game realm and typically
use client/server architectures primarily because a central-
ized system is needed for handling game transactions and
because servers can act as a referee for game play, thereby
preventing players from cheating. The question naturally a-
rises: can TCGs be played without cheating in a purely peer-
to-peer fashion? We present a protocol showing that this is
indeed possible.

In designing a protocol for online TCGs, player expec-
tations must be considered. Two players competing against
each other typically have several expectations. First, they
expect to be able to play their TCG wherever and when-
ever they want. One can imagine starting up a game on a
bus or train while commuting, but while being disconnected
from the internet. Players should be able to create an ad-
hoc network and play the TCG. Second, they expect that
games which other people play do not affect their ability to
play. Thus, Alice and Bob’s game should not be adversely
affected by any other game currently being played. Further,
Alice and Bob should be able to play when they desire, with-
out having to worry about overloaded servers. Third, they
expect that the other player cannot easily cheat without be-
ing caught. Last, they expect to be able to play instant-type
cards, which are cards played in response to an opponent’s
card(s) and are usually played in rapid succession between
players.

From these requirements, we have designed a peer-to-
peer protocol called Match+Guardian which:

1. Allows players to play with ad-hoc network connections
since they do not rely on internet connectivity to a server;

http://www.springerlink.com

2 Daniel Pittman, Chris GauthierDickey

2. Is extremely scalable since servers are not required to
arbitrate the games;

3. Either prevents an opponent from cheating in the game
or at minimum detects and provably shows the opponent
has cheated;

4. Provides low-latency communication, which facilitates
TCGs with instant-type cards.

Peer-to-peer protocols typically introduce the problem
of cheating when used with games and further due to net-
work address translation (NAT), peers may have difficulty
connecting to each other. Modern trading card games may
in fact consist of several styles of play, including sealed-
deck tournament games, draft games, and constructed deck
games. We decompose these types of games into a primary
sets of actions: from randomly and fairly generating decks
of cards, to ensuring that any card played came from a deck
that was fixed prior to when play commenced. We then show
how to securely perform these steps in a peer-to-peer man-
ner so that all styles of play can be supported. While NAT
issues with peers are beyond the scope of this paper, we dis-
cuss work in this area in Section 2.

One might assume that the problems in TCGs are exactly
those in the game of mental poker [12], a fictional game
where two people can play poker without seeing each other’s
cards (e.g., over a phone without a built-in video camera).
However, TCGs are different in that the deck of cards is not
shared between players, which nicely side-steps the impos-
sibility results of mental poker. Further, TCGs typically have
different types of rules of play and therefore require differ-
ent techniques to prevent cheating.

As with many card games, most TCGs do not have spe-
cific time limits for playing individual cards to resolve a
turn, except those limits associated with social norms. While
players do expect to be able to play instant cards quickly in
response to another card, in general the timeframe for play-
ing an individual card is longer than that in most other types
of games. This gives TCGs some advantage in preventing
cheating since certain types of cheats no longer apply when
time constraints are not as tightly bound as other genres of
games. For example, research in the past has looked at cheat-
ing in specific types of games such as role-playing, first-
person shooters, and real-time strategy games [1, 5, 7]. How-
ever, this prior work does not address cheating within the ac-
tual game such as by not actually shuffling cards, or choos-
ing your most desired card instead of the next one from the
top of your deck. In particular, we see that many of the is-
sues related to cheating in TCGs can be solved by securely
and fairly generating random numbers. This is mainly be-
cause TCGs rely on random generation of decks and the fair
shuffling of those decks for play.

For M+G to be viable as a P2P protocol for TCGs, its
performance must allow a game to be played at the same
pace that players using a physical TCG would play. We com-

pare the performance of our implementation of M+G on the
AndroidTM platform to real-world measurements of a pop-
ular TCG and we also benchmark its performance in terms
of latency and time. Our results show that M+G works well
on modern mobile devices and would allow players to play
P2P TCGs.

2 Background

Most modern trading card games have their roots in Magic:
The GatheringTM, which was released in 1993. The game
consists of a complete library of cards where players build
their own collection by purchasing packs of cards. Each in-
dividual card has some level of rarity such that the more rare
a card is, the fewer copies are produced and randomly dis-
tributed in card packs. Each card pack has some guarantee of
containing a set ratio of very rare, rare, and common cards.
For example, a card pack may be guaranteed to contain at
least one very rare card, three rare cards, and the rest com-
mon cards. As one may guess, the rarest cards tend to be
the most valuable and are often the most powerful in terms
of gameplay, thereby creating an economy around collecting
the rarest cards. Other well-known examples of trading card
games include PokémonTM, the World of Warcraft Trading
Card GameTM, and the Yu-gi-oh! Trading Card GameTM.

2.1 Mental Poker and Distributed Random Number
Generation

The idea of playing cards in a distributed fashion without
cheating, termed mental poker, was first discussed by Shamir
et al. [12]. The authors show that its impossible to deal from
a shared deck of cards without one player knowing what
card another player received. They then described a protocol
that relies on commutative encryption to solve this problem.
Note that their impossibility result still holds: if one could
break the encryption in a reasonable amount of time, deal-
ing from a shared deck of cards without revealing who re-
ceived which card to the other player is still impossible. The
primary difference between this problem and our problem is
that in our case, the deck of cards between players are not
shared. Without a shared deck, our solution can avoid using
commutable encryption. As with their solution, we rely on
the encryption not being easily breakable, where easy means
within the span of time it takes to complete a game.

The protocol in this paper relies on being able to gen-
erate a random number between two or more players fairly.
In this case, we define fairly as either player not being able
to influence the outcome of the generated random number
and this is solvable by the well-known coin flipping by tele-
phone protocol [3]. With this method, Alice picks a random
number rA, cryptographically hashes it and sends the hash,

Match+Guardian: A Secure Peer-to-Peer Trading Card Game Protocol 3

Cheat Level P2P Client/Server
Denial of Service Network X ?

Fixed Delay Protocol X ?
Timestamp Protocol X ?

Suppressed Update Protocol X
Inconsistency Protocol X

Collusion Protocol & App X X
Secret revealing App X ?

Bots/reflex enhancers App X X
Breaking game rules Game X ?

Table 1 A Taxonomy of Cheating: Check marks indicate whether this
type of cheat is possible under the listed architecture. Stars indicate
cheats which are partially possible.

H(rA) to Bob. Bob picks a random number, rB, signs it and
sends it to Alice. Alice then XORs rA and rB to determine
the final value. Alice can then reveal the result later by giv-
ing Bob her private number allowing Bob to compute the
same value. Note that since Alice has no idea what number
Bob will pick, she cannot influence the final random value.
Furthermore, Bob cannot influence the final value since he
has no idea what initial value Alice chose. Expanding this to
n players requires that each player generates a private num-
ber and 1 public number to share with the other n−1 players.
Each player then XORs their private number with the n−1
other public numbers.

2.2 Cheating in Games

We define cheating as any action by a player that circum-
vents the normal course of actions in an game that gives
the player an unfair advantage in the game or over another
player. Cheats are primarily possible due to security flaws
in an application, protocol, or network. We can taxonomize
cheats into categories based on the layer which they oc-
cur [7], which is useful when we are considering what we
can and cannot prevent at a particular layer. We note that
Yan and Randell also created a classification of cheating in
games [13], which differs in classification technique. Table 1
lists several common types of cheats and the layers they oc-
cur at.

Cheats occurring in the first category, the network level,
allow players to gain an advantage in the game by exploit-
ing security flaws in network and routing protocols. Cheats
occurring at the application level occur from applications
modified from their original intent. Typically network and
application level cheats both occur through modifying the
application, though network cheats specifically target secu-
rity flaws with the network protocols. Last, cheats occurring
at the game level are cheats that occur in the game by break-
ing game rules (possibly by exploiting bugs or sidestepping
rules in some way). These may also occur by modifying the

application, such as adding new beneficial cards to a deck
during play.

Much of the research in cheat prevention in games has
looked at preventing protocol or application level cheats,
i.e., those cheats which occur by modifying network pro-
tocol behavior or altering the application in order to gain an
unfair advantage. For example, Baughman and Levine de-
veloped asynchronous synchronization, one of the first pro-
tocols that prevented some network level cheats [1]. Cronin
et al. added pipelining to the simple lockstep protocol and
secured it from several types of cheats introduced by adding
a pipeline to actions [6]. GauthierDickey et al. developed the
NEO protocol as a replacement for a simple lockstep proto-
col that further prevented network level cheats [7].

At the application layer, Li et al. describe information
dissemination strategies that limit state information expo-
sure to clients [9]. Chambers et al. showed how to prevent
maphacks, a type of information exposure cheat [5] in real-
time strategy games. Schluessler et al. showed how to detect
when players were using bots, which fall under application-
level cheats [11].

In this paper, we focus specifically on avoiding or de-
tecting game level cheats in Online TCGs, which are those
cheats that occur by breaking the rules of the game, specif-
ically centered around preventing players from inserting/re-
moving cards, seeing the opponent’s cards, or not fairly shuf-
fling a deck of cards. The original protocol for detecting and
preventing cheating was described in [10].We detail this fur-
ther in Section 5.

2.3 NAT and P2P Protocols

As a peer-to-peer protocol, users invariably have to deal with
the problem of network address translation (NAT). Using
consistent endpoint translation in the NAT and TCP hole-
punching, 80-90% of the peers can successfully connect to
each other [4]. However, this does not account for the case
where two users are behind the same NAT trying to connect
to other users. In this case, a 3rd party would need to be
used for relaying port numbers prior to TCP hole-punching.
Our architecture addresses the problems introduced by NAT
through the use of a relay.

3 An Architecture for P2P TCGs

In order for Match+Guardian to work properly, our proto-
col relies on some services which are typically provided by
a centralized authority. Of course, in an ideal design, one
would have a purely peer-to-peer framework without the
need for a centralized server, and this could eliminate the
major hardware and network costs required for provisioning
the game. But to date, researchers have not come up with

4 Daniel Pittman, Chris GauthierDickey

Fig. 1 A High-level Architecture for P2P TCGs: Match+Guardian is
used for gameplay between players, but connects to a centralized server
for card purchases and trades. In addition, M+G connects to P2P ser-
vices for matchmaking.

reasonable solutions for some of the services required in
a P2P TCG, and therefore our architecture requires a cen-
tralized server. The high-level architecture for P2P TCGs is
shown in Figure 1.

3.1 The Central Server

In our design, the central server is used for any player action
that requires global connectivity or a trusted authority. How-
ever, these player actions involve creating an initial account,
purchasing cards in the game, trading cards with other play-
ers, and connecting between players when both are behind
non-traversable NAT. In other words, the most common ac-
tions, which are finding other players and actually playing
the TCG, occur in a completely decentralized fashion.

First in our architecture, the server acts as a signature
and purchasing authority. When players purchase the game,
or a set of cards in the game, they are given the digital
certificate of the central server so that they can verify any-
thing signed by the server even when not online. Whenever a
card is purchased, the server digitally signs it with informa-
tion described in Section 5. Because players need to verify
card ownership, all purchases must go through the central
server. On a practical note, purchases must also go through
the central server since credit cards need to be processed and
records of purchases need to be kept.

Second, the server is used to generate unique identifiers
for cards and players. When cards are added to the set of
cards in the TCG, the server generates a new and unique
identifier for them. This identifier is then used in all transac-
tions involving the cards. The server also generates unique
identifiers for the players. This identifier is created when the
player first creates an account to play the game. The identi-

Responsibility Description
Signature and Pur-
chasing Authority

The server will act as a trusted signature
and purchasing authority to allow play-
ers to purchase and verify ownership of
new cards

UUID Generator The server will generate unique identi-
fiers for cards and players

Trade Broker The server will act as a trusted trade bro-
ker between players

Communications
Broker

The server will act as a trusted relay for
communication between peers if they are
unable to traverse NAT

Table 2 Centralized server responsibilities in the high-level architec-
ture.

fier is then digitally signed by the server so that players can
exchange identities (i.e., certificates) to show that they are
valid players in the game.

Third, the central server acts as a trade broker. Because
cards are digitally signed by the server when purchased,
trades must be handled by the server since it must digitally
re-sign each card to show that the trade occurred–player A
cannot use player B’s cards which have signed player B IDs
associated with them. This re-signing of the cards shows that
the trade was legal.

The major difficulty that arises from trades in a peer-to-
peer system is that even though a player may trade a card,
he or she can keep a digital copy of the card and may still at-
tempt to use it. This problem is not much different than digi-
tal certificate revocation, except that we are trying to prevent
the use of a card after it has been traded. The problems can
be mitigated somewhat by using expirations on the signa-
tures, requiring players to periodically re-sign cards. How-
ever, we plan to further investigate handling trades in TCGs
in our future work.

Fourth, the central authority is used as a rendezvous point
for clients who need to play their game, but who are both
behind NAT. Players can connect to this server, which in the
worse case can simply act as a relay, or in the best case, can
help both players traverse their NAT.

3.2 Peer-to-Peer Services

As the high-level architecture in Figure 1 shows, game-play
with M+G, matchmaking and data caching occur as peer-to-
peer services. First, the primary purpose of M+G is to pro-
vide distributed cheat-proof game play of the TCG. Once
a player has created their account (and therefore received
a digitally signed unique identifier) and purchased cards,
they can play games with other players while being com-
pletely disconnected from the server. As long as two players
can connect to each other, whether through the internet or
through ad-hoc networking, they can play their TCG using

Match+Guardian: A Secure Peer-to-Peer Trading Card Game Protocol 5

M+G since all cards and moves can be validated via down-
loaded or exchanged signatures.

For matchmaking, players can join a peer-to-peer pub-
lish/subscribe service as long as some type of range queries
are possible. For example, Mercury [2] and SkipNet [8] both
allow ranges to be searched via internal ordering of the data.
SkipNet, based on the concept of skip-lists, orders the nodes
by content and then provides pointers in the list to jump
quickly to farther nodes in the data. Since content is or-
dered, one can search for the start of your query and then
walk through adjacent nodes to locate all content that is in
the range of your query. Mercury provides multi-attribute
range queries in a publish subscribe system. In either case, to
provide matchmaking, players can insert match information
into the system so that other players can search and locate
possible competitors. For the more simple case of two play-
ers competing directly over perhaps an ad-hoc connection, a
simple service can be created to locate each other.

4 Play Styles

In modern trading card games there are multiple styles of
play. For each style, there are different steps and techniques
associated with them. When referring to the different game-
play steps, play styles, and card selection techniques, it is
important to be clear on the terminology involved.

4.1 Definitions

1. Universe deck (Du) - The set of all cards that exist in the
game. This set is defined by the publisher of the trading
card game.

2. Base deck (Db) - The set of all cards a player owns and
is therefore authorized to use during a gameplay session.
Note that, Db ⊆ Du, since any card outside of the uni-
verse deck cannot exist. Each player has their own base
deck, determined by their purchases or trades.

3. Play deck (Dp) - The set of cards from their base deck a
player has selected to use during this gameplay session.
The play deck must be a subset of the base deck, thus
Dp ⊆ Db ⊆ Du. The play deck is typically constructed
ahead of time based on the synergies of using particular
cards together.

4.2 Styles of Play

In modern trading card games, play styles can be divided
into the following common forms:

1. Sealed deck, where each player begins with a fresh ran-
dom set of cards. The random set of cards becomes the
player’s base deck for the duration of the session.

2. Draft deck, where each player drafts, or picks, cards
from a random set of cards. The drafted cards become
the player’s base deck for the duration of the session.

3. Constructed deck, where each player has already pur-
chased, collected, or traded cards to create their base
deck from which a subset of cards are chosen to con-
struct a play deck.

Although the gameplay styles of these three forms are
unique, the individual steps that compose these styles have
significant overlap. By decomposing these styles into dis-
crete securable steps, we can reduce the problem space, al-
lowing us to present a common solution for each kind of
problem faced by these different play styles. Note that from
these common steps, new gameplay styles can be crafted.

4.3 Sealed Deck Play

In a sealed deck game, each player is given an unopened
deck of cards which is used to strategically construct a play
deck prior to the actual match. This set of cards represents
the player’s base deck. Sealed deck games come from tour-
naments, where the idea is that if the decks are chosen ran-
domly (consisting of some distribution of common, rare and
very rare cards), then the matches are more representative of
the skills of the players. Beyond this initial step in creating
the play deck, sealed deck games are similar to constructed
play styles. In the online equivalent of this type of game,
a randomly generated deck of k cards (from the entire uni-
verse of cards) must be chosen fairly for each player. The
securable steps needed to play this game can be described
as:

1. Randomly generate a set of cards from the universe deck
to represent each player’s base deck. Typically a server
would perform the random deck generation, but in a peer-
to-peer system, the protocol must handle this step.

2. Have each player select a play deck from their base deck
in a verifiable manner.

3. Draw a card at random from the play deck. This simu-
lates the step of shuffling cards.

4. Verify when a card is played that it came from the set of
that players’ play deck.

4.4 Draft Deck Play

In draft deck play, each player participates in N draft steps.
In each draft step, a player starts with draft deck consisting
of a small number of random cards from the universe deck.
The player then selects one card from this deck and then
passes the deck to the next player. This “select and pass” step
repeats until all cards are selected, at which point the next
draft step starts except with the order of passing reversed.

6 Daniel Pittman, Chris GauthierDickey

After all draft steps have completed, each player uses their
drafted cards as their base deck and then constructs a play
deck from it. The securable steps needed to play this style of
game are:

1. Randomly generate N sets of cards from the universe
deck to represent each player’s starting draft deck each
draft round. Note that this problem can be reduced to
holding N rounds of the random base deck generation
step used in the sealed deck play style.

2. Pass a player’s draft deck to another player in a verifiable
manner. This verification is similar to the verification of
a card during gameplay. The main difference is that all
cards are verified at once instead of one at a time as they
are played.

3. Have each player select a play deck from their base deck
in a verifiable manner.

4. Draw a card at random from the play deck. This simu-
lates the step of shuffling cards.

5. Verify when a card is played that it came from the set of
that players’ play deck.

4.5 Constructed Deck Play

Constructed play is a game where each player creates a play
deck by strategically choosing a subset of cards from their
base deck and then plays according to the card game rules.
Their base deck consists of all cards which they have pur-
chased or traded with other players and verification that a
player owns a particular card can be achieved by verify-
ing the signature from a purchasing authority. Constructed
games represent those games where players or friends com-
pete with each other. The securable steps needed to play this
game can be described as:

1. Have each player select a play deck from their base deck
in a verifiable manner. Selecting a play deck from a play-
er’s collection is no different than the problem of select-
ing a play deck from a randomly generated deck, so this
problem can be solved similarly.

2. Draw a card at random from the play deck. This simu-
lates the step of shuffling cards.

3. When a card is played, verify that it came from the set
of that players’ play deck.

4.6 Uniform Deck Play

In many online games which have tournaments, players are
given identical equipment or gear so that player skill is tested
on a fair playing field. This can be simulated in a TCG by
giving both players identical base decks of cards. Players
then construct their play decks and compete according to the
card game rules. The securable steps are then:

1. Have each player select a play deck from the uniform
deck in a verifiable manner. Selecting a play deck from
the uniform deck is no different than the problem of se-
lecting a play deck from a randomly generated deck, so
this problem can be solved similarly.

2. Draw a card at random from the play deck. This simu-
lates the step of shuffling cards.

3. When a card is played, verify that it came from the set
of that players’ play deck.

4.7 Securable Steps

Now that we have enumerated the popular play styles and
their individual steps, we can create a master list of secur-
able play steps for online trading card games:

– Randomly generate a set of cards from the universe deck
to represent each player’s base deck (or draft deck).

– Pass a player’s base deck (or draft deck) to another player
in a verifiable manner.

– Have each player select a play deck from their base deck
in a verifiable manner.

– Draw a card at random from the play deck.
– Verify when a card is played that it came from the set of

that player’s play deck.

With this common securable framework, game design-
ers could mix and match game steps to create completely
new styles of play, allowing flexibility in the game style.
We acknowledge that while this list may not be completely
comprehensive for creating all possible game styles, it may
be possible to add new securable steps using similar ideas to
those presented here.

5 Protocols

For each of the play steps which must be secured, we have
developed an appropriate method to ensure that a player can-
not cheat in that step. Composing a game from these steps
leads to a particular play style. We begin by describing our
assumptions, notation, the list of threats we are attempting
to prevent, and then detail the protocols individually.

5.1 Preliminaries

In order for our protocols to work successfully, we make a
few important but reasonable assumptions. First, each player
has a unique identifier. Second, the size of the universe deck
in the TCG is n. Without a loss of generality, we assign the
numbers 1...n as unique identifiers for each card. Third, we
assume that since duplicates of each card in the set of cards
can exist in a player’s deck of cards, each valid card has a

Match+Guardian: A Secure Peer-to-Peer Trading Card Game Protocol 7

Field Purpose
cuid Card ID: each card must be distinguished from another

card by an ID
sn Sequence number: each duplicate card a player owns

has an increasing sequence number
pid Player ID: each player has a unique identifier, which is

attached to the card on purchase
Sc Company digital signature: each card is signed, after a

purchase, by the game company

Table 3 Fields in a digital version of a trading card for our protocol.

second number from 1...m. When a player purchases a card
from a company, this card first has its unique identifier, and
second has this monotonically increasing sequence number
(1...m) depending on how many of that card the player owns.
Cards are then signed by the company with both numbers
and with the player’s unique identifier to prove that they
were purchased legally.

5.1.1 Notation

We use the letter U to indicate the entire universe of cards in
the trading card game, where |U | is the number of cards in
the set. H(i) is the cryptographically secure hash of i while
EA(i) is i encrypted by A (usually Alice in this case). A
digital signature of i is noted as SA(i). Recall that SA(i) =
EA(H(i)). As such, SA(i) does not reveal any information
about i but can be held as proof that i was the value when i is
either revealed (i.e., if using a public-key cryptography sys-
tem) or if the key KA was revealed with i since KA(SA(i)) =
H(i) and the cryptographic hash functions are known to all
parties.

Sc(cuid,sn, pid) indicates a card which is digitally signed
by the company (Sc), with its card unique identifier (cuid),
its purchased sequence number (sn) and the player’s unique
identifier (pid). sn is not a unique number, but the signed tu-
ple Sc(cuid,sn, pid) is a unique tuple. Table 3 lists the con-
tents of a digital trading card. Note that the functionality of
a card is distributed by the game company with the purchase
of a game, so it need not be included.

5.2 Threat Model

For our threat model, we assume a typical computationally-
bounded adversary, capable of injecting packets and passive
listening. We assume standard cryptography will prevent the
attacker from decrypting packets in a reasonable amount of
time (i.e., before the end of the game). Peer-to-peer TCGs
are susceptible to the following types of threats:

1. Unfairness in Card Selection - We must be sure that
while cards are being generated for a player that the
player cannot unfairly influence the outcome of that op-
eration. For example, during the generation of a random

deck for a sealed deck game, we must prevent a player
from influencing the set of cards generated for the ran-
dom deck.

2. Discovery of Private Information - We must ensure
that an opponent cannot garner private data concerning
which cards another player has during the information
exchanges needed in the setup and running of a game-
play session.

3. Changing Cards at Playtime - As with a real TCG,
players cannot be allowed to add or remove cards from
their play deck during game play. Thus, any played card
must be able to be verified during game play that it was
actually a card from the player’s play deck.

4. Collusion - The mechanism developed for generating
and verifying cards must be resistant to collusion. Group
operations (such as generating a random base deck) must
be performed in such a way as to mitigate the case where
some, but not all, of the players in the game are attempt-
ing to influence the outcome.

5. Replay - We must be able to prevent an adversary from
replaying moves they eavesdropped on so that they can-
not fool another player into thinking that the replayed
packet is a cheating attempt by the originator of the move.

To verify if specific game rules (such as how cards be-
have) are broken or not, each player must keep a log of the
game. Since each card is identified and digital signatures are
used with moves, one can prove if a player cheats by their
signed invalid actions during gameplay. However, for a log
system to work, an additional sequence number is required
for each move in a match so that a total ordering on the TCG
moves can be identified.

5.3 Securely Generating a Base Deck

We begin by describing how Alice and Bob fairly generate a
random base deck from a universe deck in a purely distribu-
tion fashion. This deck forms the basis for providing a sealed
deck for the sealed deck game style and the base decks for
the draft play styles.

1. Alice randomly generates a private number iA and a pub-
lic number jA.

2. Alice signs her private number and only sends the sig-
nature SA(iA,nonce) to Bob. Recall from our notation
that this is simply Alice’s digital signature of the tuple
(iA,nonce) and does not include the actual values.

3. Bob randomly generates a private number iB and a public
number jB.

4. Bob signs his private number and gives SB(iB,nonce) to
Alice.

5. Alice and Bob exchange the tuples (jA,SA(jA)) and (jB,

SB(jB)). In other words, they exchange their public num-

8 Daniel Pittman, Chris GauthierDickey

xor(bob_num,++
alice_num)+Bob+ Alice+

Card+10+ Card+11+ Card+12+ Card+13+

sign(H(bob_num))+

sign(H(alice_num))+

Bob’s+
Number+

Alice’s++
Number+

Fig. 2 Random Card Selection: This diagram shows how Bob and Al-
ice can participate in random number selection in a verifiable manner
while not revealing information about their random number to each
other

bers and sign those numbers (so that they cannot later
argue that they gave different public numbers).

6. Alice XORs jB with iA to create a new random number,
kA, while Bob XORs jA with iB to create kB.

7. kA mod |U | is the unique identifier of Alice’s card from
U , while kB mod |U | is Bob’s first card from U .

At any step, either of the players may refuse to continue.
For example, after Alice gives Bob her SA(iA) for a partic-
ular card, she may wait for Bob’s SB(jB) in step 5, but not
give her SA(jA) to Bob. If so, Bob can simply refuse to con-
tinue playing as nothing (but time) has been lost. As with the
coin-flipping protocol, Alice cannot choose her iA in such a
way so that the resulting kA is a card that she wants because
she does not know jB before she has encrypted and sent iA
to Bob. The same holds for Bob’s choice of jB—he cannot
influence kA so that Alice gets a poor card from the deck
because he has no idea what iA is. Thus, Alice and Bob can
fairly and randomly choose a card from U to be part of their
tournament deck.

The above sequence of steps can be repeated k times
so that each player has an base deck of k cards. However,
the players can speed up the processes by generating a se-
quence of private and public numbers. In the first step, Al-
ice generates k private numbers i1A...ikA and public numbers
j1A... jkA. Bob does the same thing for private and public
numbers. In the second and fourth steps, each private num-
ber is signed individually (instead of encrypting the entire
sequence) since the values and nonces are revealed as the
cards are played to show that they indeed came from the
base deck of k cards.

At this point, Alice and Bob have base decks consisting
of k cards. Figure 2 diagrams the flow of steps for random
card selection.

5.4 Play Deck Creation

Once a base deck of k cards has been selected, Alice and
Bob must typically choose a subset of s cards from the base
deck to form their play deck. Note that Alice and Bob choose
cards for their play deck strategically as certain cards may
work better with other cards. Further, the play deck does not
have a specific size (i.e., Alice and Bob need not have ex-
actly the same sized play deck) since for strategic reasons
they may choose to construct a larger (for more variety) or
smaller (for a higher probability of certain cards) deck.

The primary rule for creating the play deck is that it must
be done entirely before the game begins. One cannot add
cards to the play deck from the base deck during gameplay.
Thus, the following steps must occur to fairly choose the
play deck:

– Alice chooses a card for her play deck. Recall that Bob
sent her k public numbers for each of the k cards in her
base deck. Alice sends (p,SA(p)) where p corresponds
to the order of the 1...k values Bob sent her. For exam-
ple, if the card she chose for her play deck was selected
by XORing her 5th private number with his 5th pub-
lic number, she sends (5,SA(5)) to Bob. Alice repeats
this for every card she adds to her play deck from her
base deck. This prevents Bob from knowing Alice’s play
deck, though he knows her base deck.

– Bob chooses a card for his play deck, sending Alice the
tuple (p,SB(p)) for his chosen card, where p is the order
of the public values corresponding to the card he chose.
Bob repeats this step for every card he adds to his play
deck from his base deck.

Choosing the play deck must occur before gameplay be-
gins and both Alice and Bob may create their decks simul-
taneously, though order does not matter in this case. When
Alice or Bob play a card from their play deck, they reveal
the associated private number and the order value (which
they sent to represent each card). For example, when Alice
plays the card that was chosen by Bob’s 5th public number,
Alice sends the tuple (5, i5,SA(5, i5)) to Bob. As Bob knows
his 5th public value and was previously sent the hash of Al-
ice’s 5th private value, he can calculate the hash of i5 to see
if it matches the previously sent hash. Further, he can XOR
i5 with his 5th public number to determine the cuid of the
card and verify that the correct card was played.

A diagram describing the process of selecting a card
from the base deck is shown in Figure 3.

5.5 Drawing a Card from the Play Deck

Once a play deck has been created, we need to ensure that
when a player chooses a card randomly from their deck dur-
ing gameplay that the card they chose is truly random. In

Match+Guardian: A Secure Peer-to-Peer Trading Card Game Protocol 9

Bob$

Alice$

Card10 Card11 Card12 Card13

Fig. 3 Play Deck Selection: This diagram shows how Alice can be
informed what cards Bob is selecting for his deck ahead of time without
revealing the value of the card

a physical game, the decks are shuffled and opponents may
even cut the cards to introduce additional randomness. Play-
ers in fact typically want their cards shuffled so that they get
an even distribution of various types of resource cards while
playing as they cannot predict how the game will unfold.
However, since the players cannot observe each other dur-
ing play, we have to ensure that we get the equivalent of a
deck shuffle without cheating. The protocol for this scenario
is described below:

1. Alice’s play deck, consisting of p cards are shuffled. Re-
call that she has already told Bob which cards are in her
play deck by referring to them by their pth order value.

2. For each card in her deck, Alice sends SA(p,nonce) to
Bob.

3. Bob further shuffles the deck to ensure that Alice shuf-
fled it properly. When Alice needs a card, she simply
asks Bob for the next one, which he sends.

Bob repeats the procedure for his play deck so that Alice
can ensure his cards are shuffled. When either player plays a
card, they can reveal the values (p,nonce) so that the other
player can verify that the card is not still in his or her deck
from which cards are being dealt.

5.6 Playtime Verification of Cards

Playtime verification of cards is a two step process. First, the
card has to be determined to be legitimately selected from
the base deck. Second, the card has to be verified as a card
that exists in the play deck.

Base deck verification depends on how the cards were
generated, either randomly or user-selected. If the card comes
from a user-selected base deck, the verification step is sim-
ply verifying the purchasing authority’s signature on the card
to ensure that the player has legitimately purchased that card.

xor(bob_num,++
alice_num)+

Bob+ Alice+Card+10+

(bob_num)+

Bob’s+Number+for+Card+10+

Plays+

Verify+

Fig. 4 Card Verification: This diagram shows how Alice can verify a
card played by Bob during gameplay, allowing for real-time verifica-
tion of correctness in gameplay

In the randomly generated base deck, since both Alice and
Bob know the set U , and hence all the cards have unique
identifiers, it suffices for a player to reveal the kth private
value with its associated nonce to the other player which the
other player can then XOR with the kth public value and
match the unique identifier with the card just played. For
example, Alice plays a card that was generated from the 5th
public number, (j5B,SB(j5B)), Bob gave to her. When she
plays the card, she also sends (i5,nonce5),SA(i5,nonce5) to
Bob. Using i5 and nonce5, Bob can check to see if this was
the same value that Alice gave to him previously. If not, he
knows she is cheating and has proof of it since he already
has her hash of HA(i5,nonce5) that she sent in step 2.

A diagram describing the process of verifying that a card
came from a player’s base deck is shown in Figure 4.

Play deck verification occurs when Alice needs to play a
card from her play deck. Alice sends the tuple (p, ip,SA(p, ip))
where p indicates the order value of the public and private
numbers for generating the card. Since she has already told
Bob what order values she was using previously, he can eas-
ily verify if she is lying or not about its real value.

5.7 Passing a Base Deck to Another Player

When a base deck (or draft deck) is passed amongst play-
ers, it is important to make sure that the deck of cards be-
ing passed is not changed. Assuming the decks being passed
were generated using the algorithms described above, veri-
fication occurs when the private values used to choose the
base deck are revealed. Note that this occurs only when us-
ing the Draft Deck or Sealed Deck play styles. For example,
Alice who generated a random base deck would reveal all
the k private numbers i1A...ikA.

With multiple players, revealing the private numbers for
the randomly generated base decks does not leak informa-
tion as all players must know all finalized base decks before

10 Daniel Pittman, Chris GauthierDickey

play begins. Furthermore, a player cannot insert a new card
for this exact same reason.

6 Evaluation

In order to better understand the performance characteristics
of our protocol we have designed a realistic set of success
criteria under which M+G must perform. First, we observed
people playing Magic the GatheringTM, a popular TCG, and
modeled the time it took players to perform certain actions.
These results serve as a benchmark to compare the perfor-
mance of M+G against. Second, we designed a simulation
environment using the AndroidTM development platform.
Given the proliferation of mobile games, and the very likely
scenario that someone might be in an environment in which
they have access to a mobile device but no Internet connec-
tion (such as on a bus, train, or in a remote location), we
thought this platform appropriate. By comparing the perfor-
mance of our simulation with real measurements of a popu-
lar TCG, we demonstrate that M+G can indeed be used for
peer-to-peer trading card games.

6.1 Observed Behavior

There is little work done to date in the area of modeling
player behavior in TCGs, so we decided to start with the
most basic sample set we could: real-life behavior. While
observing players, our goal was to focus on the time it took
to perform the following activities:

– Draw a card from their deck
– Play a card from their hand
– End their turn

To gather these times, we video-recorded people play-
ing Magic the GatheringTM. After the game was complete,
we played back the recordings and measured the time of
the players’ actions to derive a model for comparison with
our simulations. To measure the time to draw a card from
their deck, we found the difference between when they first
touched a card they were about to draw from their deck and
when they placed the card they drew in their hand. To mea-
sure the time to play a card, we measured the difference
from when they first touched a card they were going to play
to when the card was placed on the table. To measure the
length of a turn, we measured the time from when a player
first started performing actions (for example, moving cards
or drawing new cards) to when they played their last card on
the table, if any. In other words, we tried to eliminate, as best
as we could, all time which was spent talking, thinking, re-
ordering cards, or any other action that was not specifically
an action we were measuring.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

P
ro

b
a
b

ili
ty

Time for a player to complete their turn (seconds)

Fig. 5 Observed turn times: This graph shows the CDF of turn lengths
throughout the observed gameplay session.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20

T
im

e
 (

se
co

n
d

s)

Sample number

Fig. 6 Observed card drawing times: This graph of all measured times
for drawing a card from the play deck.

The cumulative distribution function of the measured
turn lengths is shown in Figure 5. From this we can see
that even short turns last close to 20 seconds, while 80% of
the turns are between 30 and 140 seconds long. This length
implies that background processing of information, such as
signature validation, could easily be done while the player
decided what to do in the game.

Figures 6 and 7 show the lengths of drawing cards and
playing cards. From these figures we see that drawing a card
typically ranges from 1 to 4 seconds in duration while play-
ing a card ranges from just over .5 seconds to 5 seconds.
Note that the fidelity of measurements were at 1/30th of a
second (i.e., we could advance frame by frame), though the
margin of error was likely several video frames due to the
subjectiveness of determining when a player was starting
or finishing the drawing or playing of a card. These much
shorter times imply that card verification and move signa-
tures must occur relatively quickly since we must also in-
clude network latency into any networked game.

6.2 Simulation

Once we had a set of evaluation criteria we designed a Peer-
to-Peer simulation using the AndroidTM platform to bench-

Match+Guardian: A Secure Peer-to-Peer Trading Card Game Protocol 11

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30

T
im

e
 (

se
co

n
d

s)

Sample number

Fig. 7 Observed card playing times: The graph of all measured times
for playing a single card.

mark our protocol. The AndroidTM environment uses Java
and has a large user community, which made it ideal for us to
develop a reference implementation that can be distributed
widely.

The simulation was run under an AndroidTM emulation
environment in which each client’s OS reported a BogoMIPS
(an artificial benchmark of system performance) of 287.53.
By comparison, the Motorola Droid RazrTM reports a Bo-
goMIPS of 1996.68. Therefore, we consider the emulation
environment to be representative of a low-end smart phone
with worse-case performance characteristics. In testing on
Motorola Droid RazrTM, we found that the required calcula-
tions were at least order of magnitude faster. For asymmet-
ric encryption and signatures we used SHA-256 and an RSA
1280-bit key. For symmetric encryption we used AES with
a 128-bit key.

6.3 Results

After running the simulation and processing the video data,
we produced combined graphs of two of the performance
metrics we were interested in: card draw time and card play
time.

In the card draw time graph shown in Figure 8 you can
see that our simulation clearly beats the performance re-
quirements of the observed data, in most cases by over a
full second. In particular, 90% of the samples from our sim-
ulation were able to complete the card drawing operation in
under 1.5 seconds. In comparison, only about 30% of the
observed card drawing occurred quicker than 1.5 seconds.

In the simulation, draw times were measured as all of
the calculations, including signatures, that were required to
draw a card from the deck. Play times were measured as
all of the calculations that were required to play the card,
including signing moves and card verification.

In the play time graph displayed in Figure 9 once again
our simulation was able to outperform the observed behav-
ior, in some cases by several seconds. When players actually

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

P
ro

b
a
b

ili
ty

Time to deal a card (seconds)

Simulation
Observed

Fig. 8 Card deal/draw time comparison: A comparison of the distri-
bution of times to draw (or deal) cards between our simulation and
observed play behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
ro

b
a
b

ili
ty

Time to play a card (seconds)

Simulation
Observed

Fig. 9 Card play time comparison: A comparison of the distribution
of times required to play a card

played cards, 95% of the time, they took between 1 and 5
seconds. However, M+G was able to complete its operation
in 1 second or less approximately 95% of the time.

However, an interesting affect of playing an online game,
versus a real-life game, is that player expectations may be
different. For example, when we play other people in real-
life, we often take real-life social cues into consideration.
We can tell, for example, when they’re concentrating on the
cards in their hand trying to decide how to play a move. In an
online game, those cues are lost and instead the player must
just wait for their turn. Are players less patient in online
games? Thus, while our results reflect performance versus
real-life measurements, this may not be a completely accu-
rate methodology for comparison and future work is defi-
nitely needed.

The results of our analysis is promising and shows that
it is possible, given the current state of technology, to im-
plement the encryption required by our protocol while still
realizing a performance model that is consistent or better
than what players expect in real life.

12 Daniel Pittman, Chris GauthierDickey

7 Conclusions and Future Work

In this paper we have demonstrated how using a set of com-
mon peer-to-peer protocols, one can develop multiple TCGs
using different play styles while ensuring cheat-proof play.
This common framework for peer-to-peer based card games
enables the community to develop new styles of play with-
out having to resolve the common problems facing games of
this genre.

In order to measure the ability of our peer-to-peer proto-
col for actually playing a P2P TCG, we implemented M+G
in Java using the AndroidTM development environment and
emulated a low-end smart phone. For a benchmark, we mea-
sured players playing a real TCG and categorized their ac-
tions into playing cards and drawing cards. We then com-
pared the timings measured from our simulation with the
observed timings and found that indeed M+G worked well
even in a constrained mobile environment.

We believe there is a connection between generating seal-
ed decks for online TCGs and automatically generating the
monsters, treasures and maps for a game level. One could
apply these ideas for fairly generating game content between
players, especially if those levels are of a competitive nature.
We plan on further exploring these connections. We also
plan to design and evaluate an entire architecture around P2P
TCGs, including many important elements such as match-
making, rankings, and trading.

References

1. Baughman NE, Liberatore M, Levine BN (2007) Cheat-
proof playout for centralized and peer-to-peer gaming.
IEEE/ACM Trans Netw 15:1–13

2. Bharambe AR, Agrawal M, Seshan S (2004) Mer-
cury: supporting scalable multi-attribute range queries.
In: SIGCOMM ’04: Proceedings of the 2004 confer-
ence on Applications, technologies, architectures, and
protocols for computer communications, ACM, New
York, NY, USA, pp 353–366, DOI http://0-doi.acm.org.
bianca.penlib.du.edu:80/10.1145/1015467.1015507

3. Blum M (1983) Coin flipping by telephone a proto-
col for solving impossible problems. SIGACT News
15(1):23–27

4. Bryan F, Srisuresh P, Kagel D (2005) Peer-to-peer com-
munication across network address translators. In: Pro-
ceedings of the USENIX Annual Technical Conference

5. Chambers C, Feng WC, Feng WC, Saha D (2005) Mit-
igating information exposure to cheaters in real-time
strategy games. In: Proceedings of ACM NOSSDAV, pp
7–12

6. Cronin E, Filstrup B, Jamin S (2003) Cheat-proofing
dead reckoned multiplayer games. In: International

Conference on Application and Development of Com-
puter Games

7. GauthierDickey C, Zappala D, Lo V, Marr J (2004) Low
latency and cheat-proof event ordering for peer-to-peer
games. In: Proceedings of ACM NOSSDAV

8. Harvey N, Jones MB, Saroiu S, Theimer M, Wol-
man A (2003) Skipnet: A scalable overlay network
with practical locality properties. In: In proceedings of
the 4th USENIX Symposium on Internet Technologies
and Systems (USITS ’03), Seattle, WA, URL http://
citeseer.ist.psu.edu/harvey03skipnet.html

9. Li K, Ding S, McCreary D (2004) Analysis of state ex-
posure control to prevent cheating in online games. In:
Proceedings of ACM NOSSDAV

10. Pittman D, GauthierDickey C (2011) Cheat-proof peer-
to-peer trading card games. In: Proceedings of the 10th
international Workshop on Network and Operating Sys-
tem Support for Games (NetGames’11)

11. Schluessler T, Goglin S, Johnson E (2007) Is a bot at the
controls?: Detecting input data attacks. In: Proceedings
of the 6th ACM SIGCOMM workshop on Network and
system support for games (NetGames’07), pp 1–6

12. Shamir A, Rivest RL, Adleman LM (1981) Mental
Poker. The Mathematical Gardner pp 37–43

13. Yan J, Randell B (2005) A systematic classification of
cheating in online games. In: NetGames ’05: Proceed-
ings of 4th ACM SIGCOMM workshop on Network
and system support for games

http://citeseer.ist.psu.edu/harvey03skipnet.html
http://citeseer.ist.psu.edu/harvey03skipnet.html

	Introduction
	Background
	An Architecture for P2P TCGs
	Play Styles
	Protocols
	Evaluation
	Conclusions and Future Work

