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Abstract— In this paper, we perform the first compre-
hensive study of the multicast address allocation problem.
We analyze this problem both within its context as a
classic resource allocation problem and with respect to its
practical use for multicast address assignment. We define
a framework for the problem, introduce complexity
results, and formulate several new allocation algorithms.
Despite the theoretical superiority of these algorithms,
our performance evaluation demonstrates that a com-
mon, prefix-based algorithm is better under a range of
workloads. We conclude by illustrating the conditions
under which dynamic address allocation should be used
and provide insight into how to further improve the
performance of prefix-based allocation.

I. INTRODUCTION

Multicast address allocation is one of several ob-
stacles that has slowed multicast deployment. The
multicast infrastructure built using Deering’s original
IP multicast model [1] – now referred to as Any
Source Multicast (ASM) – requires that applications
share a single, global address space. In this model, a
multicast address identifies a logical group of members
and any source may send data to this dynamic set
of members at any time. No two applications may
share the same multicast address at the same time, or
else the group members may receive unwanted traffic.
While the operating system or the application can easily
screen out the unwanted traffic, this may result in
significant network overhead.

The key problem for ASM multicast address alloca-
tion is to assign a unique address to each application
from a globally-shared address space. Because the
address space is limited, addresses must be re-used over
time. We refer to this problem as the multicast address
allocation or malloc problem.

To help address the malloc problem, Kumar et al.
developed the MASC address allocation architecture
[2], which dynamically allocates addresses along the
provider-subscriber hierarchy that is present in the In-
ternet. In MASC, a domain claims a range of addresses
from its parent, then allocates these addresses to hosts

within its domain as well as to its child domains.
While MASC (and the rest of the hierarchical allocation
architecture) has never been deployed, it represents the
best current solution for allocating addresses with the
current ASM infrastructure.

Separately from these concerns, the malloc problem
remains interesting because it is an instance of a well-
known general resource allocation problem, in which a
block of resources is allocated and de-allocated based
on dynamic requests for sub-blocks of varying sizes.
At this level, the malloc problem is nearly identical to
that of processor allocation in hypercube computing ar-
chitectures. Other related problems arise in the areas of
logic (cube algebras for circuit simplification), memory
management (contiguous memory allocation) and disk
space management (contiguous file block allocation).

The malloc problem thus merits a deep understand-
ing of its complexity, and potential solutions to this
problem require a thorough performance evaluation.

In this paper, we perform the first comprehensive
study of the multicast address allocation problem, us-
ing insights we have gained from studying processor
allocation for hypercubes. There has been very little
activity in this area beyond Handley’s landmark paper
[3] that illustrated the shortcomings of random alloca-
tion and laid the foundation for MASC.

In our study, we use a framework for the malloc
problem that classifies address allocation algorithms
according to their recognition capability: prefix-based,
contiguous, and non-contiguous [4]. While a prefix-
based algorithm is recommended for MASC, con-
tiguous and non-contiguous algorithms offer a more
flexible representation for address blocks and hence
provide a greater ability to recognize free blocks in
a fragmented space.

First, we derive several complexity results for the
malloc problem and explain their implications for
address allocation protocols. These results show that
address allocation is a subtle and difficult problem,
more so than heretofore understood by the networking
community. We then develop several new algorithms
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for address allocation – one contiguous and one non-
contiguous – that use a hypercube model for address
aggregation. These algorithms should theoretically out-
perform prefix-based allocation.

Second, we conduct a performance evaluation to
determine whether our non-contiguous allocation algo-
rithm lives up to its theoretical superiority. Our results
are quite surprising – prefix-based allocation performs
at least as well as, and often better than, non-contiguous
allocation. While our non-contiguous algorithm has a
greater potential for finding free blocks, in practice it
fragments the free space across multiple dimensions,
making it difficult to aggregate the free regions into
large blocks. The prefix-based algorithm does a better
job of consolidating free space as address blocks are
released.

Third, we illustrate the conditions under which
dynamic allocation algorithms will outperform static
allocation. This is an important contribution because
providers have considered using static allocation in-
stead of MASC’s dynamic mechanism.

Finally, we show how to further improve the per-
formance of prefix-based algorithms by eliminating
forced migration and expanding the number of blocks
a domain can hold.

II. BACKGROUND

The malloc problem has driven the evolution of
multicast address allocation from the current Session
Directory tool to the allocation hierarchy defined by
MASC and then to several alternative approaches.

A. Session Directory and MASC

Handley and Jacobson developed the first multicast
address allocation protocol as a part of their Session
Directory tool [5]. The basis of this allocation protocol
is informed, partitioned, and randomized allocation [3].
The tool listens to the allocations made by other users
(informed) and divides the address space according to
session scopes (partitioned) that indicate how many
hops multicast data should travel. Within a scope, a new
address is chosen randomly from among the addresses
that have not already been allocated. Reuse over time
is enforced by requiring an application to return its
addresses when it is done. Handley extensively studied
the performance of the session directory address al-
location mechanism and concluded that a hierarchical
allocation architecture was needed to allocate addresses
from a sufficiently large shared space [3].

Because of this work, a group of researchers at
USC/ISI and Michigan developed the MASC archi-
tecture, which uses the provider-subscriber hierarchy

already present in the Internet to dynamically allocate
blocks of multicast addresses to domains [2]. A domain
running MASC uses a claim-collide protocol to request
blocks of addresses from its parent domain and resolve
conflicts with any sibling domains trying to claim the
same block. A separate set of protocols is used to
allocate addresses from these blocks to hosts within
the domain. The MASC architecture has been shown
to scale to large numbers of domains, with good address
utilization [6].

B. Alternative Approaches

In an attempt to solve or perhaps avoid the malloc
problem, there has recently been considerable interest
in alternative approaches to multicast addressing. The
simplest alternative is to use purely static allocation
with GLOP [7]. Static allocation is useful when a
content provider wants a permanent multicast address
assigned to a particular application, such as a long-
running television show or stock feed. However GLOP
also has a significant limitation – it can allocate only
256 addresses to each domain under IPv4. IPv6 allows
both permanent and transient multicast addresses [8].
Because the transient addresses use 112 bits, GLOP can
be used to give each domain a large pool of available
addresses, and global coordination will not be needed.

A more radical alternative is to switch to an entirely
different multicast architecture that avoids the malloc
problem altogether. One such proposal is SSM [9],
which solves the malloc problem by using source-
specific addressing. This essentially gives each host its
own multicast address space consisting of 16 million
addresses. Finally, pure application-layer approaches
[10], [11], [12], [13] offer simpler deployment, but typ-
ically have worse performance than ASM with respect
to delay, bandwidth, and network stress.

Despite the fact that each of these alternative so-
lutions is readily available, the Internet still uses an
ASM infrastructure. One reason for this is a continuing
commitment to running native multicast, which is more
efficient than application-layer protocols. Another rea-
son why ASM is still run is that there is some resistance
from ISPs to what they perceive as constant changes in
the IETF’s recommended interdomain multicast proto-
cols (having switched from DVMRP [14] to PIM [15],
BGMP [16], and now SSM). Finally, changing to SSM
means adopting a one-to-many communication model
at the network layer, with application-layer protocols
required for many-to-many communication. Some users
and network administrators may prefer the network-
layer many-to-many model defined by ASM.
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III. A FRAMEWORK FOR THE MALLOC PROBLEM

Our framework for the malloc problem begins with
the definition of an address expression, which repre-
sents a block, or set, of addresses. We use the standard
don’t care notation of hypercubes for expressions, e.g.,
the set of four addresses 0000, 0001, 0010, 0011
can be represented as the address expression 00XX, in
which the X’s represent don’t care bits. This notation is
similar to that of address masks, which are commonly
used in Internet routing protocols.

We define the following taxonomy of address expres-
sions, based on the allowable patterns of the don’t care
bits.

• Prefix-Based: Address expressions must have all
all the don’t care bits in the rightmost positions.

• Contiguous: Address expressions must have con-
tiguous don’t care bits, with wraparound allowed.

• Non-Contiguous: Address expressions may have
the don’t care bits in arbitrary positions.

For example, given a block of 24 addresses al-
located from a space of 28 addresses, 0010XXXX
denotes a prefix-based address expression, 01XXXX10
and XX0100XX represent contiguous allocations, and
0X0XX1X0 represents a non-contiguous allocation.
Note that each class is contained in the next, with non-
contiguous being the most general class.

A. Basic MASC Allocation

The MASC address allocation mechanism uses
prefix-based expressions for address blocks and a
worst-fit algorithm for new requests. Figure 1 illus-
trates these basic concepts using a simple two-level
hierarchy. The parent domain has been allocated a
range of 64 addresses given in dotted-decimal notation
as 224.0.0.0/26. Ignoring the first 24 bits, we can
represent this as 00XXXXXX, where the X’s repre-
sent don’t care bits that can be set to either 0 or
1. Because MASC uses prefix-based expressions, this
means that all of the don’t care bits must be in the
rightmost positions. Similarly, child domain A has been
allocated 16 addresses, represented as 224.0.0.0/28
or 0000XXXX. Given this situation, we can represent
the free addresses in two blocks: 001XXXXX and
0001XXXX. When domain B requests 16 addresses,
this request is filled using worst-fit; first, the largest free
block (001XXXXX) is chosen, and then the first sub-
block of the requested size is selected (0010XXXX).
When there are multiple free blocks of the same size,
one is chosen at random.

Step (1) Parent has a free block:
224.0.0.0/26
00XXXXXX

Step (2): Child domain A
is allocated a sub-block:
224.0.0.0/28
0000XXXX

Free List:
(1) 00XXXXXX
(2) 001XXXXX, 0001XXXX
(3) 0011XXXX, 0001XXXX

Step (3): Child domain B
is allocated a sub-block:
224.0.0.32/28
0010XXXX

BA

Fig. 1. MASC Allocation Example

B. The Malloc Problem

At the heart of MASC, and indeed any allocation
protocol, lies the scheme used for allocation and de-
allocation of address blocks. The number of addresses
needed by a domain changes over time, and a domain
must adjust to this need by allocating and de-allocating
addresses to each of its children domains. This funda-
mental, yet difficult problem, what we refer to as the
malloc problem, can be defined as follows for a single
hierarchy composed of a parent domain and m child
domains. The definition is easily extended to a multi-
level hierarchy.

The Malloc Problem: A domain is given a con-
tiguous range of 2n multicast addresses, represented by
binary numbers from 0 to 2n−1. Initially, all addresses
are available for allocation. Child domains C0 through
Cm request blocks of addresses whose sizes are powers
of 2. The challenge of the malloc problem is to allocate
blocks to child domains under heavy demand, as the
address space becomes fragmented over time.

A child domain that requests an additional block of
addresses may be satisfied in three different ways:

• expansion: A child is given a new block in
addition to its current blocks.

• doubling: One of the child’s blocks is combined
with a free buddy block, which has the same
address expression except for one different instan-
tiated bit. For example, the prefix-based block 00X
has one buddy, 01X. Once combined, the block
becomes 0XX.

• migration: A child exchanges one or more of its
blocks for a new block that is as large as all of the
old blocks combined. Migration allows a child to
move a block to a new area where it can expand
by doubling. This helps to keep the total number
of blocks assigned to a child within some bound.
The old space is released and can be allocated to
other children.

A good algorithm can be measured by its ability
to successfully allocate addresses while attempting to
minimize the number of blocks a child domain holds
(to keep routing tables small) and the number of times
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Fig. 2. The correspondence between address allocation and
subcube allocation

a child must change addresses (to reduce routing table
flux). A good algorithm should also maintain a high
level of utilization; that is, it should not waste space
by assigning a large number of addresses to a domain
that does not need them. Thus, doubling is generally
preferable to migration and expansion, but expansion
should be used if doubling will result in low utilization.

C. Hypercube Processor Allocation and the Malloc
Problem

The hypercube is an elegant recursive mathematical
structure that served as the underlying communication
network of the Intel iPSC and N-Cube parallel pro-
cessors back in the late 1980s and early 1990s. In a
hypercube, the 2n processors are each labeled with an
n-bit address; processors whose labels differ in exactly
one bit position are connected.

A subcube is a subset of the nodes and edges of a
hypercube that themselves form a smaller hypercube.
In a hypercube machine, parallel applications request
subcubes, hold them for the runtime of the application,
and then release the subcubes back to the operating
system scheduler. The algorithm used by the scheduler
to handle the requests and releases of the subcubes
is the subcube allocation algorithm and has been the
target of intensive research for many years [17], [18],
[19], [20]

Our key observation is the fact that a subcube is
equivalent to a block of addresses described by a single
address expression. Thus, as shown in Figure 2, a given
subcube — or its equivalent block of addresses – can
be described using prefix-based, contiguous, or non-
contiguous address expressions.

IV. COMPLEXITY OF ADDRESS ALLOCATION

The two crucial operations for an allocation scheme
are doubling and migration. Below, we summarize
complexity results for the three classes of address al-
location schemes – prefix-based, contiguous, and non-
contiguous – and discuss their implications for solving
the malloc problem.

A. Doubling Complexity

In any prefix-based allocation scheme, there is only
one choice for doubling, i.e., doubling can occur only
by converting the rightmost instantiated bit to a don’t
care bit. For example, if child domain C1 holds ad-
dress block 000XX, it can only double into the block
00XXX.

In any contiguous allocation scheme, there are two
choices for doubling, i.e. by converting either the
leftmost or rightmost instantiated bit to a don’t care bit.
For example, if C1 holds block 0XX00, it can double
into either block XXX00 or block 0XXX0.

The complexity of doubling for prefix and contigu-
ous allocation is O(C), where C is the number of child
subdomains associated with a given parent domain. The
algorithm simply generates the address expression for
the candidate buddy block and then tests whether that
block is available by checking for intersection with
the other children’s blocks via bitwise comparison of
address expressions.

In any non-contiguous allocation scheme there are
n − k choices for doubling, where n is the total
number of bits in the full address space and k is
the number of don’t care bits in the current address
expression. Doubling occurs by converting any one of
the instantiated bits to a don’t care.

The complexity of doubling for non-contiguous al-
location is O(C ∗ n) since it may have to examine all
n−k choices for doubling, testing each for intersection
with the other children’s blocks.

B. Migration Complexity

The ability of an allocation scheme to migrate to
a new block in a highly fragmented address space is
a function of its ability to recognize blocks of the
desired size in the free address space. We say that
an allocation scheme can recognize a block if the
scheme can use a single address expression to represent
the addresses in the block. We call this ability an
algorithm’s recognition capability.

Table I shows the recognition capacity for a spec-
trum of subcube allocation schemes all of which can
be invoked for the malloc problem [19]. The table
gives the general formula for the total number of
subcubes/blocks of size 2k that can be recognized
in a hypercube/address space of size 2n. It is clear
that relaxing constraints on the format of the address
expression from prefix-based to non-contiguous vastly
improves the potential recognition capacity. This po-
tential may not necessarily lead to better migration
performance, due to fragmentation. Nevertheless, the
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Recognition for n bit address space, k bit subcube/block
Subcube Total blocks recognized
Allocation Scheme General Formula n = 8, k = 3

Buddy (prefix) 2n−k 32
Gray (non-contiguous) 2n−k+1 64

Double Gray (non-contiguous)











2n if k = 0
4 × 2n−1

− n if k = 1
4 × 2n−k

− 1 if k = 2
4 × 2n−k if 2 < k ≤ (n − 1)

128

Partners (non-contiguous) (n − k + 1) × 2n−k 192
Cyclic (contiguous) n × 2n−k 256
Full (non-contiguous) (n

k ) × 2n−k 1792

TABLE I

RECOGNITION CAPABILITY OF ALLOCATION SCHEMES

increased recognition capability provides strong moti-
vation to explore contiguous and non-contiguous algo-
rithms.

1) Prefix-Based Allocation: Prefix-based allocation
was proved to be polynomial time [18]. Under prefix
schemes, blocks are allocated and deallocated in a rigid
pattern using a free list organized by block size.

2) Contiguous Allocation: We have developed the
first known polynomial time algorithm for contiguous
allocation. Earlier work with hypercubes under this
model focused on parallel algorithms which use an
exponential number of processors [21]. Our algorithm,
which we call Cyclic, exploits the fact that there are
only n classes of cyclic blocks, categorized by the po-
sition of the rightmost don’t care bit. It uses techniques
for logic design that are exponential time for logic
circuits [22], but polynomial time for cyclic address
allocation. In the next section we give an overview of
Cyclic; the algorithm is fairly complex and described
more thoroughly in [23].

3) Non-Contiguous Allocation: Non-contiguous al-
location is not as straightforward because subtly dif-
ferent statements of the problem have been proposed
with different complexity results. In the following, a
feasible set of requests is one in which the sum of the
all the requested blocks does not exceed the full address
space.

Problem 1 : Single-Request Address Allocation.
Given child domains C1 through Cm which have al-
ready been successfully allocated (disjoint) blocks B1

through Bm, respectively, does there exist a free block
of size 2k, k <= n?

Theorem 1 : Single-Request Address Allocation is
NP-hard. We prove this by reduction from the classic
SAT (Satisfiability) problem. We establish a direct cor-
respondence between clauses and subcubes, showing

that a set of clauses is satisfied iff there is a free subcube
of dimension k after the subcubes corresponding to
those clauses are allocated to the child domains. The
full proof can be found in [23].

Theorem 1 implies that it is not sufficient to know the
current allocation state in order to successfully satisfy
a new request in polynomial time. For example, a child
domain that needs a new block of addresses may want
to query its siblings to find out what blocks they hold,
or a parent domain may simply track its allocations. In
both cases, it is not possible for the child or the parent
to find a free block of the desired size in polynomial
time.

Problem 2 : Unordered-Requests Address Alloca-
tion. Given a feasible unordered set of requests for
blocks of sizes s1 through sm, is there an allocation
that satisfies this set of requests regardless of the order
in which they are issued?

Theorem 2 : Unordered-Requests Address Alloca-
tion is NP-hard. This is identical to a problem known
as offline subcube allocation, which seeks to satisfy an
unordered set of requests for subcubes from a larger
complete hypercube. Offline subcube allocation was
proved NP-hard by Dutt and Hayes [17].

Theorem 2 states that there is no polynomial time
algorithm that can satisfy a feasible set of unordered
requests. However, we note that in a realistic setting
requests for blocks may occur in a fixed, ordered
sequence; hence it is not necessary to optimize over
all possible orderings.

Problem 3 : Ordered-Requests Address Allocation.
Given an ordered sequence of requests for blocks of
sizes s1 through sm is there an allocation that assigns
a block to each request if a free block exists at the time
of the request?
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Problem 3 is a more realistic statement of the malloc
problem. We conjecture that it is solvable in polynomial
time and outline an algorithm in the following section.
The reason this problem may admit a polynomial time
solution, while the others do not, lies in the fact that
with ordered requests we know which of the past
requests have been satisfied and which blocks have
been allocated to each child. In other words, past
history and current state are known at the time of
each given request. In contrast, Problem 1 requires that
the algorithm be able to reconstruct the sequence of
requests that led to the current situation.

V. MULTICAST ADDRESS ALLOCATION

ALGORITHMS

Because non-contiguous allocation has a clear advan-
tage in terms of recognition capability, a focal point
of our research has been to design and evaluate the
performance of MaxQ, a non-contiguous allocation al-
gorithm. We lead up to this by first describing a prefix-
based algorithm and then illustrating the operation of
Cyclic, the first known polynomial-time algorithm for
contiguous allocation. Due to space limitations, we give
only a high level description of our algorithms; details
can be found in [23].

Because doubling is a straightforward operation for
all algorithms, we focus here on migration. Recall that
a domain tries to migrate when it is unable to double
one of its current blocks. Migration algorithms can
be characterized by their recognition capacity (prefix,
contiguous, non-contiguous) and by their fit type (first
fit, best fit, and worst fit). Note that we do not discuss
best fit, since it is easy to see how it differs from the
other two; we do examine its performance later.

Our discussion uses a simple example throughout:
a single-level domain hierarchy, an address space of
24 addresses, and the following initial sequence of
requests for addresses (given as block sizes): 2, 1, 1,
2. We examine the ability of each scheme to allocate
more blocks beyond these four initial requests.

A. Prefix-based algorithms: Prefix-FF and Prefix-WF

Prefix-based algorithms can be best understood
through the use of an allocation tree in which the leaf
nodes are labeled left to right with the binary addresses
0 through 2n−1. Left edges are labeled with 0 and right
edges labeled with 1. See Figure 3(a).

It is easy to see that the binary sequence on the path
from the root to any leaf node is precisely the label of
that leaf node. Any interior node in the tree corresponds
to a block of addresses contained in the subtree rooted

(b) The contiguous block 1XX0 in T   above has been transformed
       into a prefix block 01XX in T

0

1

0 1 2 3

0 10 0 01 1 1

0 0 0 0 0 0 0 0 11111111

4 5 6 7 8 9 10 11 12 13 14 15

T0
0

0

1

1

00XX (prefix) 1XX0 (contiguous)

(a) A prefix-based block and a contiguous block in allocation tree T0

01XX (in T ) 1XX0 (in T  )01

0 1 2 3

0 10 0 01 1 1

0 0 0 0 0 0 0 0 11111111

4 5 6 7 8 9 10 11 12 13 14 15

T1
0

0

1

1

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15T0

T1

Fig. 3. Allocation trees for prefix and contiguous allocation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) First Fit:

(b) WF:

(c) Fragmented WF:

Fig. 4. Allocation for requests 2, 1, 1, 2 under Prefix-FF and WF
fits

at that node. The expression for this block is the binary
sequence on the path from the root to that interior node,
followed by don’t cares.

Prefix-FF allocates addresses using first-fit; it is
identical to the Buddy Subcube Algorithm [18]. Prefix-
WF allocates blocks using a worst-fit ordering as
described in Section III-A. Figures 4(a) and (b) show
how Prefix-FF and Prefix-WF would handle the above
sequence of addresses. With Prefix-FF, the requests
are all packed into the low numbered addresses. As a
result, no child block can double into its buddy block,
but migration requests for 2, 4, or 8 addresses can
be accommodated. Under Prefix-WF, the four initial
requests are spaced out so that all children can double.
However, no migration requests of size 4 or 8 can be
satisfied.

B. Contiguous algorithm: Cyclic

Assuming the initial allocations shown in Figure 4(a)
and (b), contiguous allocation improves over prefix-
based allocation: all of the children can double and
migration requests of sizes 2, 4, and 8 can be satisfied
under either FF or WF.

We have developed a polynomial time algorithm for
contiguous address allocation called Cyclic. The key
features of the algorithm are (1) it inspects only n
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allocation trees, (2) it simplifies the task of finding
a k-cube into that of finding a single free node in a
truncated allocation tree, and (3) it uses binary search
and the consensus operation from logic design to locate
a single free node and thus a free k-cube.

Cyclic inspects n allocation trees, one corresponding
to each of the possible bit positions occupied by
the rightmost don’t care bit. Figure 3(b) shows the
representation of block 00XX in T0 and block 1XX0
as they appear in trees T0 and T1.

Within a given allocation tree Ti, Cyclic transforms
the task of searching for a free k-cube into the task of
finding a single free node in two steps. First, the child
holdings are represented as prefix-based holdings in the
current allocation tree Ti via wraparound right-shift of
i bits. Then, the last k bits are truncated from each
child’s holding.

Once a tree is transformed, then Cyclic does a binary
search of the tree to find a free node. If the search
is successful, it yields a free node in tree Ti that
can be translated back to the address expression for
the corresponding free k-cube. If the search is not
successful, there is no free node in the tree, and the
operation must be repeated on the next allocation tree.

To determine whether there is a free node in a given
subtree, Cyclic uses the consensus operation [22]. Con-
sensus is a binary operation from Boolean Algebra that
performs a bit-by-bit comparison of block addresses to
yield a minimum size block that is consistent with the
two original blocks. At the bit level, the consensus of
bit b with X is b; the consensus of b and ¬b is X , and
the consensus of b with b is b, where b ∈ {0, 1}. For
example, the consensus of 01X0 and X111 is 011X.
Notably, if consensus is applied to two buddies, the
result is the combination of the buddies into a larger
block, e.g. the consensus of buddies 0XX0 and 1XX0
is XXX0.

Cyclic starts with a list of the child holdings and
repeatedly applies consensus to all pairs of adjacent
blocks. Any blocks that are covered by a larger block
are removed from the list. This procedure is repeated
until no buddies remain. At most, a block can be
combined with its buddy n times since each buddy
changes an instantiated bit to a don’t care. Thus, we
are guaranteed that the algorithm terminates after n
iterations. These repeated invocations of the consensus
operation will yield the whole subtree iff the subtree is
covered by the children. This indicates a failure to find
a free node in the subtree.

The complexity of Cyclic is O(C ∗ n3).

C. Non-contiguous algorithm: MaxQ

The advantages of non-contiguous allocation can
be seen from the highly fragmented situation in Fig-
ure 4(c). Cyclic can only migrate to new blocks of
size 2, while a non-contiguous algorithm can migrate
to blocks of sizes 2 and 4. For example, a free non-
contiguous block is 0X1X.

We have developed a non-contiguous address alloca-
tion algorithm for the Ordered-Requests problem called
MaxQ. MaxQ uses the consensus operation to maintain
a free list that contains a maximal free subcube. This
free list is a weaker type of free list than that proposed
by [17] which is a maximal free list that is greater than
all other maximal free lists. Our free list only attempts
to find one of all the maximal free blocks of addresses,
of which there may be several, and then the rest of the
list contains a sub-optimal list of free address blocks.
For example, if the free list contains 000, 001, 110,
100, the algorithm in [17] would be guaranteed to find
00X and 1X0 as the maximal free list. While MaxQ
might find this list, it could also find the free list of
001, X00, and 110.

To maintain the free list after an allocation has been
made, MaxQ finds the consensus between all pairs of
elements in the existing free list. Any new consensus
which covers a pair of addresses is kept and the covered
pairs are removed. We apply the consensus operation to
all pairs in the free list repeatedly until there are no new
consensus blocks. As with Cyclic, we are guaranteed
that this will execute at most n iterations. Once we have
a list of maximal free blocks given from the pairs in the
original list, MaxQ chooses one of the largest blocks.
The new free list is then composed of this block and
the subtractions of this block with all the other blocks.

Using a free list allows us to ensure that if a migra-
tion needs a block of size k, then a simple traversal
through the list in search of a k-sized block will reveal
if one exists. Since we know our free list will contain a
maximal free block, then if there is not a k-sized block
in the list, there is not a maximal block of that size in
the address space.

Proving MaxQ is polynomial time consists of prov-
ing that the free list will always remain polynomial in
size. This is a difficult problem and remains open.

Note that a non-contiguous model for address expres-
sions called kampai was developed for unicast routing
[24]. However, the kampai algorithm was restricted to
growth through doubling only.

7
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VI. MODELING ADDRESS ALLOCATION

In order to evaluate the performance of a variety
of allocation algorithms, we have developed a gen-
eral model of the malloc problem that significantly
improves upon the state-of-the-art in this area. Our
contributions in this area include:

• Formulating a general allocation algorithm that
allows us to test prefix, contiguous, and non-
contiguous allocation algorithms.

• Creating a rich set of load scenarios to model
shifting demand between domains.

• Specifying a new set of metrics to accurately cap-
ture the performance of an allocation algorithm.

Previous work in this area consists of a detailed
simulation of the MASC protocol [6]. The focus of
that work is to study address allocation latency using
a claim-collide mechanism, hence it simulates only
prefix-based allocation, with homogeneous load among
domains.

A. General Allocation Algorithm

We have developed an abstract model of the malloc
problem that isolates the allocation algorithm from the
implementation details of the MASC protocol. This
enables us to better study allocation performance and
then apply those results to problems in both networking
and hypercube processor allocation.

In our model, all addresses are initially unclaimed
and held by a single parent domain. Child domains
may then request blocks of addresses from the parent’s
space and later release blocks when they are done. A
block is a group of contiguous addresses, and the size
of a block must be a power of 2.

Address allocation uses blocks (or subcubes) so
that a single address expression represents the entire
group of addresses. Aggregating addresses is highly
desirable for multicast address allocation because it
keeps routing tables small; there is one routing table
entry per block. Likewise, in hypercube computers,
all of the processors must form a subcube so that
efficient parallel computation may occur over this set
of processors.

As practical considerations (and in keeping with the
MASC specification), we place several restrictions on
children. First, domains are allowed to hold up to b
blocks of addresses. Again, this keeps routing table
small, limiting them to at most b entries per child
domain. Second, when a domain seeks to double one
of its current blocks, it can only double if the resulting
utilization of the block remains above a threshold d.
We later relax these restrictions in our experiments to

determine the performance trade-offs of these parame-
ters.

When a child wants to obtain some addresses, our
allocation model takes the following steps:

1) The child checks to see if the request can be
filled internally. For example, a child may hold
a block of 256 addresses. If only 200 addresses
are used, then the child can internally allocate
56 more addresses before requesting additional
addresses from the parent.

2) The child attempts to double one of its current
blocks. If a request cannot be satisfied internally,
the child requests the buddy of any of the blocks
allocated to it. If any of the buddies are available,
and if when doubled, the utilization of the child’s
holdings would remain above d, the parent re-
leases the block to the child and the two buddies
are coalesced into a single block. Requests can
then be filled from this new address space. For
example, consider a child with two filled blocks
of 256 addresses. Assuming the buddy of one of
the blocks is available, the child may double one
of its blocks and obtain 768 total addresses, as
long as its utilization (512/768 = 67%) exceeds
d.

3) The child requests a new block from its parent.
If the child has not reached its maximum block
count, b, then the child may request a new block
large enough to satisfy the request. Children
limit the number of blocks they hold to conserve
routing table space.

4) The child attempts to migrate a block to a
larger block. If the request is still not filled, the
child will try to migrate one or more blocks to
larger blocks from the parent. If successful, the
request will be filled from the newly migrated
blocks. For example, consider a child with two
blocks of 256 addresses, neither of which can
be doubled (because the buddies are held by
some other child). If space is available, the child
can migrate both blocks to a new block of 512
addresses. The child can then gain additional
space either by doubling this new block or by
requesting an additional block. Migration enables
this latter choice if the child already has reached
its allotment of b blocks.

5) The allocation request fails. The child has failed
to allocate new addresses and may not be able to
fulfill the requests of all applications within its
domain.

There are several aspects of the MASC protocol

8
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where
g(t) = (t + to) mod tp, 0 < t1 <= t2 <= t3 <= tp, and 0 <= to < tp.

Fig. 5. Load Function

that this model explicitly does not include, since we
are modeling an abstraction of the malloc problem.
First, we use a simple request-reply protocol, rather
than a claim-collide mechanism. In our model, the
parent domain is in charge of allocating addresses to its
children. Second, we do not model address lifetimes.
Instead, a load function determines when a domain
will request or release addresses. Finally, we assume
that migration can occur instantaneously when it is
successful. In reality, a MASC domain may need to
hold its current block of addresses until they have
expired. Collectively, these assumptions simplify our
model, providing a clean abstraction of the malloc
problem. We believe only the migration assumption
impacts our results, allowing more aggressive use of the
available address space. However, our primary goal is
to compare allocation algorithms, and this assumption
is the same for all of them.

All of our experiments use a single parent domain
with a set of child domains. It is relatively straightfor-
ward to generalize the performance of a single level of
hierarchy to multiple levels. For example, if a domain
is able to allocate on average 90% of its address space,
then in a 3-level hierarchy this would result in overall
utilization of 73%. For more details on hierarchy as it
affects allocation performance, see [6].

B. Load Function

A major focus of our modeling effort has been
determining the type of load function to use. The major
difficulty we face is that dynamic address allocation
has never been deployed on a large scale, and multicast
itself has never been widely used by the general public.
This means we do not know what kinds of load
functions to expect at the domain level.

We explicitly choose not to model individual request
and releases for addresses at the application level.
Based on our previous work [25], we find it is difficult
to correlate this type of model to the macroscopic be-
havior of a domain. For example, a stochastic function
may choose in one time step to request one address and
then in the next step may choose to release one address.

A domain is more likely to have some statistical
knowledge of past demand and plan its requests based
on its estimate of a load curve.

We choose instead to model demand for addresses
at the domain level, using several basic scenarios that
generalize common system-level behaviors. One of our
primary goals in modeling domain-level workloads is to
capture the case where demand shifts between domains.
With a limited address space, the job of an address
allocation algorithm is to provide addresses to a domain
where they are needed, reclaim them when the domain
is finished, and re-assign them to a new domain.

Based on this reasoning, we use a simple, periodic
load function of the form shown in Fig. 5. This function
gives the desired number of address sets at time t for a
child domain. A set is a group of contiguous addresses,
and the size of a set must be a power of 2. All domains
use the same set size, and this size is the minimum
size of a block. If at any given time a domain has
fewer address sets than its desired amount, it requests
the additional sets. Likewise, a domain releases address
sets if it has more than it needs.

The basic shape of the load function is shown
in Figure 6 and is defined by four different regions
given by the parameters t1, t2, t3. Between time 0 and
time t1 a domain requests additional addresses until it
reaches a maximum value. Between times t1 and t2
the domain stays at this level, then releases addresses
between times t2 and t3. Finally, the domain stays at its
minimum allocation level for the duration of the period,
which lasts until tp. This function can be shifted in
time by the offset to, with the maximum and minimum
values defined by kmax and kmin.

This basic load function allows us to increase or
decrease load by adjusting the parameters of the func-
tion. We can also shift demand between domains by
changing the offset of each domain’s load function, so
that one domain is at its maximum allocation while
another is at its minimum. Overall, a parent domain will
see a request pattern based on the additive combination
of its children’s request functions.

We model three general scenarios for load across

9
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Fig. 6. Illustration of Load Function

a domain by forming a composite of the per-child
periodic load functions:

• Ideal Load. In this scenario, the load functions of
the child domains are shifted and their parameters
adjusted so that the overall demand seen by a
parent is flat. To accomplish this, we set t1 = tp/4,
t2 = tp/2, and t3 = 3 ∗ tp/4, then distribute the
offsets of the child load functions across the period
tp. We then adjust the period of the function, as
well as kmin and kmax, until the load is flat. This
is an artificial condition and is meant to represent
a best-case scenario.

• Random Load. For a more realistic scenario, we
use the same settings of t1, t2, and t3 as above,
but randomly choose an offset for each child. The
composite of the load functions under this scenario
is a function with random peaks and valleys spread
across it over time.

• Prime-time Load. For the prime-time load, we
roughly model a bell curve, similar to a function
that represents peak load for a telephone system.
To do this, we set t3 = p < tp, where p is the
duration of prime time. We also set t1 = p/3 and
t2 = 2 ∗ p/3. If we suppose that time is measured
in hours, we can set the load function period to
be 24 hours and then choose prime-time period of
p hours. The actual units of time are not relevant
here – our intention is simply to model a well-
known load function. If multicast addresses are
expensive, then domains will want to match their
allocation requests to this load curve.

C. Metrics

While address space utilization is typically used to
measure the performance of an allocation algorithm,
this can be a misleading metric. It is possible to attain
nearly any level of utilization if the load is driven
high enough. To obtain a more accurate picture of

allocation performance, we monitor the outcome of
each allocation request. When a child makes a request
for a set of addresses, there are five possible outcomes:

1) The request is filled internally in one of the
child’s existing blocks. This occurs when a child
owns a block that has unallocated addresses.

2) The request is filled by allocating a new block to
the child. This can only happen when the number
of blocks currently held by the child domain is
less than b.

3) The request is filled by doubling one of the child
domain’s current blocks. In this case, the buddy
of a held block is available in the free-space and
the block is given to the child domain.

4) The request is filled by migrating one or more
of the child domain’s current blocks. The child
releases the blocks back to the parent and a new,
larger block is allocated to the child.

5) The request fails. If none of the previous results
were possible, the request can not be fulfilled.

We distinguish cases 3 and 4 as growth requests
because these are the requests in which the child’s
current holdings are insufficient and it must obtain
additional addresses. This is the case when the allo-
cation algorithm is exercised, as it needs to meet the
demand by doubling or migration in order to satisfy
the child. Technically, case 2 is also a growth request,
but it happens so rarely that we do not include it in our
analysis below.

A good address allocation algorithm is one that can
fulfill as many requests as possible (i.e., handle a high
load) while migrating and allocating as few new blocks
as possible. Thus, high double rates, low migration
rates and low failure rates are preferable.

VII. EXPERIMENTS

For our experiments, we use a single parent with a
20-bit address space, equivalent to more than 1 million
multicast addresses. Child domains request sets of 256
addresses. For most experiments, the maximum number
of blocks b that a domain can hold is 2 and the doubling
threshold d is 75%. These numbers are identical to
those used in the MASC spec [26], except that our
address space is twice as large.

Using our general allocation model, load functions,
and metrics, we investigate several important problems
that shed new light on the malloc problem, both abstract
and practical.
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A. Does non-contiguous allocation outperform stan-
dard prefix-based allocation?

The most fundamental question arising from the
malloc problem is which type of allocation algorithm
yields the best performance. Prefix-based and non-
contiguous allocation represent two ends of the spec-
trum – prefix-based allocation is the simplest scheme
yet has the lowest recognition capability, while non-
contiguous allocation is the most difficult to achieve
yet has complete recognition capability.

In our experiments, we compare the performance of
our non-contiguous algorithm, MaxQ, with that of a
standard Prefix algorithm such as that used by MASC.

Despite its theoretical advantage, and contrary to
both our own intuition and that of the MASC au-
thors [16], our experiments show that MaxQ does not
perform significantly better than Prefix [27]. Figure 7
shows an experiment using a random load in which
we increase the number of domains in the system and
observe the overall success rate for allocation requests.
The performance for MaxQ and Prefix is similar; in
both cases, the failure rate for growth requests increases
sharply as the load increases beyond 17 domains (about
60% of all addresses are requested). The overall failure
rate increases gradually at this same point.

This result holds for both the ideal and random loads
under a range of operating parameters (varying both
the number of blocks held and the doubling threshold).
Table II summarizes the results for Prefix and MaxQ
with various fit types, listing the number of domains
that can be supported with a maximum failure rate of
20% for growth requests. Growth requests are a small
fraction of all requests; this corresponds to an overall
failure rate of about 2%.

To determine the reason for the strong performance
of prefix-based allocation, we developed a visualization

Algorithm Ideal Random

Prefix Worst-Fit 24 18
Prefix Best-Fit 21 18
Prefix First-Fit 22 18
MaxQ Worst-Fit 22 18
MaxQ Best-Fit 21 19
MaxQ First-Fit 20 19

TABLE II

MAXIMUM NUMBER OF DOMAINS SUPPORTED

tool called address mapper. Address mapper can ani-
mate an entire sequence of allocation actions, which
has helped us to verify in an ad-hoc manner that
our algorithms are allocating addresses correctly. More
importantly, we are able to examine the allocated and
free blocks at any point in the simulation and see
patterns in how space is allocated.

Using address mapper, we see that MaxQ fragments
the free space across multiple dimensions, making it
difficult to aggregate the free regions into large blocks.
Prefix-based allocation, on the other hand, keeps the
free space organized into regular regions. This can be
seen from Figures 8 and 9, which show free blocks
as white space and allocated blocks as colors. Both
algorithms are running at the same point in a simulation
and have the same number of free addresses. However,
Prefix holds a larger free block than MaxQ, which has
greater fragmentation. At this time in the simulation,
one child is requesting more addresses and will not
be satisfied by MaxQ because it cannot migrate or
allocate another block (having reached its maximal
block count). The Prefix algorithm will use the large
block to satisfy the request.

In summary, these experiments demonstrate the su-
periority of a simple prefix-based allocation algorithm.
Using prefix-based allocation (e.g. in MASC) is typ-
ically done because prefix-based expressions are easy
for humans to process and because unicast addresses
are assigned in this manner. From our experiments, we
are able to see that the additional complexity of a non-
contiguous allocation algorithm does not appear to buy
a significant performance improvement.

B. When should dynamic allocation be used?

Dynamic allocation (with MASC) and static allo-
cation (with GLOP) can be seen as complementary
approaches, with static allocation providing permanent
addresses to providers with long-lived applications
and dynamic allocation providing addresses for short-
lived applications. Both approaches are needed in IPv4
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Fig. 8. Visualization of MaxQ First Fit: Allocated Blocks

Fig. 9. Visualization of Prefix First-Fit: Allocated Blocks

because GLOP allocates only 256 addresses to each
domain.

We perform both a theoretical and simulation-based
analysis of these two approaches to illustrate the loads
under which dynamic allocation will be necessary.

1) Theoretical Analysis: Under some basic assump-
tions, we show there is a theoretical maximum number
of domains that a dynamic allocation algorithm can
support using a prime-time load1. Assume the follow-
ing:

1Note that the random load is a special case of the prime-time
load so our results apply to both load functions.

• n is the number of domains that dynamic address
allocation can scale to

• k is the size of the address space
• p is the duration of the prime-time peak, where

0 < p <= tp
• kmin is the minimum number of address sets a

single domain will hold during its life-time
• kmax is the maximum number of address sets a

single domain will request during its peak demand,
where kmax > kmin

We begin by giving the equation for the number of
addresses remaining after the minimum number held
by each domain has been allocated.

r = k − n ∗ kmin (1)

Next, we derive the number of domains that can peak
during period tp:

n =
r

kmax − kmin

∗
tp
p

(2)

This equation takes the remaining addresses r and
divides by the amount of addresses that a domain will
peak to (which is max−min since they have already
been allocated the minimum number of blocks). This
gives the number of domains that can peak in a single
period. Then we multiply by the factor tp/p to find the
number that will peak during the period tp. Note that
this factor is a gross estimate and does not take into
account the startup and slowdown periods surrounding
the peak hours.

By solving for n and reducing, we find that the
number of domains that dynamic address allocation can
scale to is:

n =
tp ∗ k

p(kmax − kmin) + tp ∗ kmin

(3)

The worst case for dynamic address allocation is when
all domains peak simultaneously. This occurs, for ex-
ample, when the peak time is equal to tp or:

n =
k

kmax

(4)

Since this is the same value as the number of domains
that GLOP can scale to, we know that dynamic alloca-
tion should theoretically always be able to handle more
domains than static allocation.

2) Simulation Analysis: The theoretical result we
derive for the scalability of dynamic allocation does not
hold in practice because it assumes that domains can be
allocated any number of blocks of any size. In effect,
this assumes a perfect allocation algorithm that knows
all requests ahead of time and can optimally place them.
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GLOP = maximum 32 domains
Prime-Time Minimum Number of Sets

Duration (hours) 8 16 32

16 36 37 36
8 44 43 43
5 49 48 47
3 52 48 48
2 52 55 52

TABLE III

MAXIMUM NUMBER OF DOMAINS SUPPORTED AS A FUNCTION

OF PRIME-TIME DURATION, MAXIMUM 128 SETS PER DOMAIN.

GLOP = maximum 16 domains
Prime-Time Minimum Number of Sets

Duration (hours) 8 16 32

16 17 17 17
8 20 21 22
5 20 23 23
3 25 25 23
2 25 26 26

TABLE IV

MAXIMUM NUMBER OF DOMAINS SUPPORTED AS A FUNCTION

OF PRIME-TIME DURATION, MAXIMUM 256 SETS PER DOMAIN.

These types of allocation algorithms have been shown
to be NP-Complete [4], [17] and hence do not match
what can be expected from practical algorithms.

As a result of this limitation, we use a set of
simulations to compare dynamic and static allocation,
showing that under the simulated conditions dynamic
allocation outperforms static allocation in most situa-
tions involving a prime-time load function. In this set
of simulations we use a dynamic allocation model that
closely follows the MASC protocol. Specifically, this
means that our dynamic algorithm uses prefix-based
allocation with worst-fit placement, that each domain
can hold at most two blocks, and that the doubling
threshold is 75%.

We examine dynamic allocation under 30 different
load scenarios by varying the minimum and maximum
values of the staircase function and considering a range
of durations (in terms of hours) for a prime-time load
function (with a period of 24 hours). For each sce-
nario, we increase the number of domains (and hence
the load) in the system and determine the maximum
number of child domains a single parent can handle
without any allocation failures. Typically, the failure
rate increases sharply once too many children are
present, since each one requires a minimum allocation
of addresses. The results are shown in Table III and
Table IV.

Not surprisingly, the greatest improvements for dy-
namic allocation (63% to 72%) occur under the con-
ditions of smaller allocations per domain and short
periods of peak demand. The only conditions under
which dynamic allocation performs marginally better
than static allocation (6% to 13%) are when the peak
time is considerably long (16 hours). The minimum
number of addresses allocated to each domain has
little effect on performance – where dynamic allocation
makes sense is when there is a large spread between the
minimum and maximum allocation to a domain and a
relatively short period of time when the peak allocation
is required.

C. How can we improve prefix allocation?

Having illustrated the conditions under which dy-
namic address allocation outperforms static allocation,
we now consider several ways to improve the perfor-
mance of Prefix allocation, and hence MASC.

1) Eliminating Migration: Migrating a domain from
one set of multicast address blocks to another is ex-
pensive – applications may need to change addresses
while transmitting data, and routers will need to update
routing tables. In addition, our simulations indicate that
migrating all blocks to a single new block, as recom-
mended by the MASC authors [16], [26], results in poor
performance. (The model we use in this paper primarily
migrates individual blocks, hence Prefix performance is
not as bad as it otherwise would be.)

Our simulations show that we can achieve better
performance for Prefix by eliminating migration alto-
gether. We do this by reducing the doubling threshold
from 75% to 50%, essentially allowing doubling to
occur whenever it is possible. Figure 10 shows Prefix
with the threshold set to 50%, while Figure 11 shows
Prefix with the threshold set to 75%. As these figures
show, the improved Prefix maintains the same failure
threshold, but handles all growth requests with doubling
rather than migration.

MASC’s original motivation for setting the doubling
threshold to 75% was to increase utilization. Theoret-
ically, a domain holding 1024 addresses and needing
256 more could double its holdings to 2048 addresses,
resulting in a utilization of (1024 + 256)/2048 =
62.5%. However, unless load is very high, these unused
addresses are not needed elsewhere. Under most condi-
tions, it is preferable to hold these unused addresses for
additional growth in the future. If load curves follow
any kind of cyclic pattern, similar to what we are
modeling, then this future growth is likely to occur.
Restricting a domain to a doubling threshold of 75%
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simply forces the domain to migrate earlier than it
should need to.

Eliminating migration does not mean that domain
holdings do not change over time. Instead of forcing
migrations to occur because of utilization requirements,
domains naturally change their holdings as they request
and release addresses. Addresses held by one domain
are released when they are no longer needed and later
claimed by a different domain. This natural style of
migration helps to improve utilization compared to a
purely static algorithm like GLOP.

2) Expanding the Number of Blocks Held: The
original MASC paper [16] indicates that each domain
should hold at most two blocks of addresses, while the
MASC specification [26] states that the recommended
number is three. For a given load, increasing the
number of blocks a domain may hold reduces the
failure rate, while increasing the routing table overhead.
An additional benefit is that more domains can be
supported. For these simulations we use Prefix with
a doubling threshold of 50%.

GLOP = maximum 32 domains
Maximum Number Minimum Blocks Held

of Blocks 8 16 32

1 32 32 32
2 48 48 44
3 48 52 48
4 64 72 68
5 68 72 68
10 92 90 72

Theoretical Max 107 93 73

TABLE V

MAXIMUM NUMBER OF DOMAINS SUPPORTED AS A FUNCTION

OF THE NUMBER OF BLOCKS ALLOWED, PRIME-TIME DURATION

5 HOURS, MAXIMUM 128 SETS PER DOMAIN.

GLOP = maximum 16 domains
Maximum Number Minimum Blocks Held

of Blocks 8 16 32

1 16 16 16
2 21 23 23
3 23 24 24
4 28 30 32
5 30 31 32
10 37 42 40

Theoretical Max 58 54 46

TABLE VI

MAXIMUM NUMBER OF DOMAINS SUPPORTED AS A FUNCTION

OF THE NUMBER OF BLOCKS ALLOWED, PRIME-TIME DURATION

5 HOURS, MAXIMUM 256 SETS PER DOMAIN.

Table V demonstrates that, given a 5 hour prime-
time and 10 blocks per domain, Prefix can scale to 92
domains, very close to the theoretical maximum of 107.
At this level, Prefix performs 186% better than GLOP,
an advantage that must be weighed against a 10-fold
increase in routing table size. At a more reasonable
level of 4 blocks per domain, Prefix can handle an
additional 16-24 domains, or 38% to 57% beyond what
it can do with 2 blocks. Interestingly, there is very
little difference between holding 2 or 3 blocks. Similar
results are seen in Table VI, which allows up to 256
sets of addresses per domain, and with other prime time
durations.

VIII. CONCLUSIONS

Studying the malloc problem has given us insight
into the performance of several basic classes of address
allocation algorithms. We expect the results of our work
to have an impact both in networking and in parallel
computing. In particular, our results indicate that a sim-
ple prefix-based allocation algorithm performs at least
as well as our non-contiguous algorithm. While our
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non-contiguous algorithm should theoretically benefit
from greater recognition capability, it causes greater
fragmentation of the free space, making it difficult
to achieve a performance gain. It is possible that a
different non-contiguous algorithm may achieve better
performance, but no such algorithm has been proposed,
and our experience indicates that this will be difficult
to accomplish.

We have demonstrated that dynamic allocation out-
performs static allocation whenever demand for ad-
dresses varies significantly over time. We also show
how to improve the performance of prefix-based al-
gorithms, such as those used in the existing multicast
infrastructure, by eliminating forced migration and ex-
panding the number of blocks a domain may hold.

Finally, our results indicate that allocation perfor-
mance drops sharply as more domains are added to a
parent. The exact threshold for this drop is difficult to
predict as it depends on the cumulative load functions
of the domains. For parallel computing applications,
the load may be somewhat more predictable or at least
controllable. However, this problem is unavoidable with
ASM multicast address allocation under IPv4, as the
address space is small and must be shared globally.
This lends support to alternative multicast architectures,
such as SSM, GLOP (for IPv6 where address space is
plentiful), or application-layer multicasting. In all of
these cases, the malloc problem is no longer an issue.
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