
Catching the Boat with Strudel:
Experiences with a Web-Site Management System

Mary Fernaindez
AT&T Labs

mff@research.att.com

Daniela Florescu* Jaewoo Kang
lnria Roquencourt Savera Systems

dana@rodin.inria.fr kang@savera.com

Dan Suciu
AT&T Labs

suciu@research.att.com

Alon Levy
Univ. of Washington

alon@cs.washington.com

Abstract

The Strudel system applies concepts from database manage-
ment systems to the process of building Web sites. Strudel’s
key idea is separating the management of the site’s data, the
creation and management of the site’s structure, and the vi-
sual presentation of the site’s pages. First, the site builder
creates a uniform model of all data available at the site. Sec-
ond, the builder uses this model to declaratively define the
Web site’s structure by applying a “site-definition query” to
the underlying data. The result of evaluating this query is
a “site graph”, which represents both the site’s content and
structure. Third, the builder specifies the visual presenta-
tion of pages in Strudel’s HTML-template language. The
data model underlying Strudel is a semi-structured model
of labeled directed graphs.

We describe Strudel’s key characteristics, report on our ex-
periences using Strudel, and present the technical problems
that arose from our experience. We describe our experience
constructing several Web sites with Strudel and discuss the
impact of potential users’ requirements on Strudel’s design.
We address two main questions: (1) when does a declara-
tive specification of site structure provide significant bene-
fits, and (2) what are the main advantages provided by the
semi-structured data model.

1 Introduction

The World-Wide Web (WWW) has become a prime vehicle
for disseminating information. As a result, the number of
large Web sites with complex structure and that serve in-
formation derived from multiple data sources is increasing.
Managing the content and the strzlcture of such Web sites
presents a novel data management problem.

To understand the problem, consider a Web-site builder’s
tasks: (1) choosing and accessing the data that will be dis-
played at the site, (2) designing the site’s structure, i.e.,
specifying the data contained within each page and the links
between pages, and (3) designing the visual presentation of

‘Research done while authors Florescu, Kang, and Levy were at
AT&T Labs.

Permksion to make digital or herd copies of all or psrt of this work for
Personal or Chxmoom Use iS granted without fee provided that
copies arc not made or distributed for profit or commercial advan-
CaOs and that copies bear this notice and the full citation on the first page.
To copy otherwise. to republieh, to post on wrvers w to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMOD ‘98 Seattle. WA, USA
iE3 1998 ACM 0-89791~995-5/98/008...$5.00

pages. In existing Web-site management tools, these tasks
are, for the most part, interdependent. Without any site-
creation tools, a site builder writes HTML files by hand or
writes programs to produce them and must focus simulta-
neously on a page’s content, its relationship to other pages,
and its visual presentation. As a result, several important
tasks, such as automatically updating a site, restructuring a
site, or enforcing integrity constraints on a site’s structure,
are tedious to perform. To support these tasks naturally, we
view the problem from a data management perspective.

We have developed the STRUDEL system [12], which applies
concepts from database management systems to Web-site
creation and management. In particular, STRUDEL supports
declarative specification of a Web site’s content and struc-
ture and automatically generates a browsable Web site from
a specification. STRUDEL’S key idea is separating the man-
agement of a Web site’s data, the management of the site’s
structure, and the visual presentation of the site’s pages.

Using STRUDEL, the site builder first creates an integrated
view of the data that will be available at the site. The
Web site’s raw data resides either in external sources (e.g.,
databases, structured files) or in STRUDEL’S internal data
repository. In STRUDEL’S mediator component, as in all of
its other components, all external and internal data is mod-
eled as a labeled directed graph, which is the model com-
monly used for semistructured data [l, 61. A set of source-
specific wrappers translates the external representation into
the graph model. The integrated view of the data is called
the data graph. Second, the site builder declaratively speci-
fies the Web site’s structure using a site-definition query in
STRUQL, STRUDEL’S query language. The result of evalu-
ating the site-definition query on the data graph is a site
graph, which models both the site’s content and structure.
Third, the builder specifies the visual presentation of pages
in STRUDEL’S HTML-template language. The HTML gen-
erator produces HTML text for every node in the site graph
from a corresponding HTML template; the result is the
browsable Web site.

STRUDEL is based on a semistructured data model of la-
beled, directed graphs. This model was introduced to man-
age semistructured data, which is characterized as having
few type constraints, irregular structure, and rapidly evolv-
ing or missing schema [l, 61. This data model was appeal-
ing for STRUDEL, because Web sites are graphs with irreg-
ular structure and non-traditional schemas. Furthermore,
semistructured data facilitates integration of data from mul-
tiple, non-traditional sources.

414

STRUDEL provides several benefits. Since a Web site’s struc-
ture and content are defined declaratively by a query, not
procedurally by a program, it is easy to create multiple per-
sions of a site. For example, it is possible to build internal
and external views of an organization’s site or to build sites
tailored to novice or expert users. Currently, creating mul-
tiple versions requires writing multiple sets of programs or
manually creating different sets of HTML files. In STRUDEL,
a site builder produces multiple sites by applying different
site-definition queries to the same underlying data or by
creating multiple HTML renderings of the same site graph.
STRUDEL’S architecture also supports evolution of a Web
site’s structure. For example, to reorganize pages based on
frequent usage patterns or to extend the site’s content, we
simply rewrite the site-definition query. Declarative spec-
ification of Web sites can offer other advantages. For ex-
ample, it becomes possible to express and enforce integrity
constraints on the site and to update a site incrementally
when changes occur in the underlying data.

STRUDEL clearly separates the three tasks of building Web
sites and is the first system that supports declarative spec-
ification of a site’s content and structure. Other recent re-
search prototypes support the separation of the three tasks,
but do not support declarative specification of content or
structure [5, 221. Other research projects support declara-
tive specification, but merge the tasks [3, lo]. Commercial
tools such as Vignette’s StoryServer and those provided by
major database vendors separate the management of the
underlying data from its visual presentation. Individual
pages or sets of related pages are constructed dynamically by
evaluating queries that are embedded in HTML templates;
query results are merged into HTML templates to produce
pages. Other products provide graphical user interfaces that
support drag-and-drop editing of individual pages (e.g., Mi-
crosoft’s FrontPage, NetObjects’ Fusion) or of the structure
between individual pages (e.g., Elemental’s Drumbeat).

This intense activity in research and industry indicates that
Web-site management is an important problem, and because
its central issue is management of site content and structure,
it should be of interest to the database community. Given
this, our goal is to gain experience quickly using STRUDEL
so that we may understand which aspects of Web-site man-
agement benefit most from application of database concepts
and identify the critical research issues we should focus on
in this area. In this paper, we describe our experience con-
structing several Web sites with STRUDEL and discuss the
impact of users’ requirements on STRUDEL’S design. Based
on this experience, our study answers two main questions:

l Is separating the three tasks of Web-site creation natural
in practice and under what circumstances does declarative
specification of site structure provide significant benefits?

l Which characteristics of the semistructured data were
most important in STRUDEL and what prevented us from
using a traditional data model?

We first describe STRUDEL'S architecture and our design
choices and present the data management problems that
arise when building complex Web sites. We also describe two
technical problems that arose from our experience and that
we solved in STRUDEL. First, we observed that in some cases
a site’s structure can be encoded either in the site graph or
in the visual presentation. This led us to develop STRUDEL'S
HTML template language, whose functionality overlaps the
STRUQL query language. This overlap permits users to en-

Browsable Web Site

t

IfTML -1 HTMLW 1
Templates

Site Definition

Figure 1: STRUDEL Architecture

code their sites in whatever way is natural. Second, STRUQL
permits the site builder to construct fragments of a Web site
separately using multiple queries. To view a site’s complete,
abstract structure, we generate a site schema from the site’s
STRUQL queries. A site schema represents a STRUQL query
as a labeled directed graph and can be viewed as a schema
of the Web sites that result from evaluating the STRUQL
query. Site schemas allow the user to view the site’s ab-
stract structure during design. More importantly, they are
the basis for an algorithm that verifies whether a given set
of integrity constraints on a STRUDEL-generated site is guar-
anteed to be satisfied [14] and for an incremental-evaluation
algorithm that converts one site-definition query into mul-
tiple queries that are evaluated dynamically when a user
browses the site [15].

2 The STRUDEL System

STRUDEL'S architecture is depicted in Fig. 1; rectangles de-
pict processes and emboldened terms specify the inputs and
outputs of the processes.

2.1 System Architecture

Data model In every level of the STRUDEL system, the
data model is a labeled, directed graph; this model is similar
to OEM, which was developed in the TSIMMIS project [9].
The labeled graph model has been proposed for managing
semistructured data, which often has few type constraints,
a rapidly evolving schema, or missing schema.

In this model, the database consists of objects connected by
directed edges labeled with string-valued attribute names.
Objects are either nodes, identified by a unique object iden-
tifier (oid), or are atomic values, such as integers, strings,
and files. STRUDEL supports several atomic types that com-
monly appear in Web pages e.g., URLs, and PostScript, text,
image, and HTML files. The atomic types are handled in a
uniform fashion, and values are coerced dynamically when
they are compared at run time. Objects are grouped into
named collections, which are used in queries. Objects may
belong to multiple collections, and objects in the same col-
lection may have different representations.

Data repository for semistructured data A Web site’s
data graph and site graph are stored in STRUDEL'S data

415

repository. The repository’s initial data may be obtained
from wrappers that convert data in external sources into
an internal format. Data is exchanged between the data
repository and external sources in a common data defini-
tion language, which in the style of OEM’s data definition
language [9].

STRUDEL’S data repository, unlike those in traditional rela-
tional or object-oriented systems, can store data that lack
schema information. Traditional systems rely on schema in-
formation to physically organize the data on disk, but our
data repository cannot. Without schema information, we
fully index both the schema and the data. For example,
one index contains the names of all the collections and at-
tributes in the graph; other indexes contain the extensions
for each collection and attribute. In addition, indexes on
atomic values are global to the graph, not built per collec-
tion or attribute. Obviously, maintaining these indexes is
expensive, but they provide many benefits to our query lan-
guage, which can also query the schema.

Mediator STRUDEL’S mediator supports data integration
by providing a uniform view of all underlying data, irrespec-
tive of where it is stored. When designing the mediator, we
addressed two problems: whether to warehouse data from
external sources or to access the external sources on demand
at query time (see [20] for a comparison); and how to spec-
ify the relationship between the attributes and collections in
the mediated schema and those in the data sources (see [24]
for a discussion of possible approaches).

In STRUDEL’S prototype, we implemented warehousing; the
result of data integration is stored in STRUDEL’S data repos-
itory. This simplified our implementation and sufficed for
our applications, which have small databases. STRUDEL’S
architecture, however, can accommodate either approach.

Recent research addresses the problem of specifying the re-
lationship between the mediated view of the data and the
external data sources. Global as vievr (GAV) [2, 9, 17, 19, 231
and Local as view (LAV) [ll, 18, 211 are two techniques. In
GAV, the relationship between the two relations is specified
by a set of queries. For each relation R in the mediated
schema, a query over the source relations specifies how to
obtain R’s tuples from the sources. The LAV approach is
the inverse: for every information source S, a query over the
relations in the mediated schema describes how R’s tuples
can be found in S. GAV provides finer control over how to
combine the data from the sources; in contrast, LAV simpli-
fies adding and deleting sources and accommodates sources
with overlapping data [24]. We found the GAV approach was
suitable for STRUDEL, because it was immediately extensible
to STRUQL’ and because the number of data sources we in-
tegrated was small and did not change frequently, although
the data in the sources may change frequently. Therefore,
we did not have to change the mappings between the medi-
ated schema and the source relations frequently.

Query processor STRUDEL provides a declarative language,
STRUQL, for querying and restructuring semistructured data.
Since both data graphs and site graphs are represented as la-
beled graphs, STRUQL queries can be applied to any graph,
whether produced by a wrapper, a mediation query, or a
site-definition query. As in traditional query processing, a
query is first translated by the query optimizer into an effi-
cient physical-operation tree. In STRUDEL’S first implemen-

‘Extending the LAV approach to our context would require solving
the problem of rewriting queries using views for the STRIJQL language.

tation, we built a simple heuristic-based optimizer. Later,
we developed a more comprehensive cost-based optimisa-
tion algorithm [16]. The new optimizer can enumerate plans
that exploit indexes on the data and the schema in order to
choose the best plan. The optimizer is also well suited for
accessing data in external sources when only limited access
patterns are supported. Limited access patterns are com-
mon for semistructured-data sources, (e.g., they often re-
quire that some inputs be given to access the data) and pose
novel challenges to query optimization. STRUDEL’S query in-
terpreter includes conventional physical operators as well as
those necessary to query the schema (e.g., scan all the at-
tribute names in a graph).

HTML generator To produce the HTML code for every
page in the Web site, we associate an HTML template with
every node in the site graph. HTML templates can be asso-
ciated with collections of objects or with individual objects.
Given an object and its HTML template, the HTML gen-
erator interprets the HTML template, replacing template
expressions by the HTML values of the object’s attributes.
The resulting pages are the browsable HTML Web site.

2.2 The STRUQL Query Language

In STRUDEL, we need to query graphs and create new graphs
at the mediation level, when data from different external
sources is integrated into a data graph, and at the site-
definition level, when site graphs are constructed from a
data graph. We use a common query and transformation
language, STRUQL (Site TRansformation Und Query Lan-
guage) [13], at both levels. A query in STRUQL’S core frag-
ment has the form:

where cI,...,ck,

[create NI, . . , IV,]

[link Ll,...,L,]

[collect GI, . . . , Gq]

A STRUQL query has two parts. The query part depends
only on the where clause and produces all bindings of node
and arc variables to values in the data graph that satisfy
all conditions C; in the where clause; its result is a relation
with one attribute for each variable. The construction part
(the create, link, and collect clauses) constructs a new graph
from this relation to create nodes, arcs, and collections in
the output graph. The result of the complete STRUQL query
is a new graph.

For example, the following query returns all PostScript pa-
pers directly accessible from home pages:

where HomePages(p),p -+ “Paper” + q, is.PostScript(q)
collect PostscriptPages

HomePages is a collection, “Paper” is an edge label, and
isPostScript tests whether node q is a PostScript file. The
distinction between collection names and external predicates
is done at a semantic, not syntactic, level. The condition
p -+ “Paper” + q means that there exists an edge labeled
“Paper” from p to q. The query constructs a new collection,
PostscriptPages, consisting of all answers.

In general, each condition Cl,. . . , Ck in a where clause either
(1) tests collection membership, e.g., HomePages(or (2)
is a regular path expression, e.g., p -+ “Paper” -+ q, or
(3) is a built-in or external predicate applied to nodes or

416

edges, e.g., isPostScript(A condition of type (2) has the
general form z + R + y or x + L -+ y; the former means
there exists a path from node z to node y that matches the
regular path expression R, and the latter means there exists
a single edge from node z to node y whose value is bound to
the variable L. Regular path expressions are more general
than regular expressions, because they permit predicates on
edges and nodes. For example “isName*” is a regular path
expression denoting any sequence of labels such that each
satisfies the isName predicate. In particular, true denotes
any edge label, and true’ any path; we abbreviate the latter
with *. Other operators include path concatenation and
alternation; the grammar for regular path expressions is:
R ::= Pred 1 (R.R) 1 (RIR) 1 R*.

The create and link clauses create new graphs from existing
graphs. The following query produces a site graph called
TextOnly, that excludes any nodes that contain image files?

where Root(p), p + * -+ q, q -+ 1 -+ q’,
not(isImageFiZe(q’))

create New(p), New(q), New(q’)
link New(q) -+ 1 + New(q’),

collect TextOnlyRoot(New(p))

New is a Skolem function that creates new object oids; by
definition, a Skolem function applied to the same inputs
produces the same node oid, so for some constant value of
p, New(p) always produces the same object. The query
first finds all nodes q reachable from the root p (including
p itself) and all nodes q’ that are directly accessible from
q by one link labeled 2 and that are not image files. For
each node q and q’, it constructs new nodes New(q) and
New(q’). This query effectively copies all nodes accessible
from the root once. The query adds a link 1 between any
pair of nodes that were linked in the original graph and adds
a new link that points to the new root. Finally, it creates
an output collection TextOnlyRoot that contains the new
graph’s root.

STRUQL has an active-domain semantics and can be de-
scribed in two stages, which correspond to the query and
construction parts of a STRUQL query. The meaning of the
where-clause is a relation defined by the set of assignments
from variables in the query to oid and label values in the
data graph that satisfy all conditions in the where clause.
The meaning of the create, link, collect clauses is as follows.
For each row in the relation, first construct all new node
oids, as specified in the create clause. Assuming the latter
is create Nl,...,N,, each Ni is a Skolem function applied
to node oids and/or label values. Next, construct the new
edges, as described in the link clause. We require that each
node in link or collect is either mentioned in create or is
a node in the data graph. We also require that edges are
added from new nodes to new or existing nodes; existing
nodes are immutable and cannot be extended. Strategies
for efficient evaluation and optimization of STRUQL queries
are described elsewhere [12].

‘This example is inspired by an inconsistency in the CNN Web site
http://wvw.cnn.com. The site provides a link to a text-only version,
but only for the root page. Surprisingly, the following links point to
pages with images.

collection Publications {
abstract text
postscript ps

1
object pub1 in Publications {

title “Specifying Representations.. .”
author “Norman Ramsey”
author “Mary Fernandez”
par 1997
month “May”
journal “Transactions on Programming.. .‘I
pub-type “article”
abstract “abstracts/toplas97.txt”
postscript “papers/toplas97.ps.gz”
volume “19 (3)”
category “Architecture Specifications”
category “Programming Languages”

1

object pub2 in Publications {
title “Optimizing Regular.. .‘I
author “Mary Fernandez”
author “Dan Suciu”
year 1998
booktitle “Proc. of ICDE”
pub-type “inproceedings”
abstract “abstracts/icde98.txt”
postscript “papers/icde98.ps.gz”
category “Semistructured Data”
category “Programming Languages”

1

Figure 2: Fragment of data graph for example site

2.3 Example Web Site

The following example shows how one author’s homepage
is generated by STRUDEL.~ The main source of data for
this homepage is the author’s Bibtex bibliography file. The
homepage site has four types of pages: the root page con-
taining general information, an “abstracts” page containing
all paper abstracts, “year” and “category” pages contain-
ing summaries of papers published in a particular year or
category, respectively. We describe the first two steps of
the site-definition process: creating the data graph from a
Bibtex file and defining the site graph in STRUQL.

Fig. 2 contains a fragment of the site’s data graph and was
generated by a Bibtex wrapper; the wrapper converts Bibtex
files into a STRUDEL data graph. Both objects are members
of the Publications collection. Because STRUDEL supports a
semistructured data model, the names, types, and cardinal-
ity of attributes need not be identical. For example, pub1 has
a month attribute but pub2 does not; pub2 has a booktitle at-
tribute, whereas pub1 has a journal attribute. The collection
directive specifies the default types of attribute values that
would otherwise be interpreted as strings, e.g., abstract is a
text file and postscript is a PostScript file. These directives
are not constraints and can be overridden in the input file.

The site graph for the example homepage is defined by the
query in Fig. 3. The first clause creates two new objects
called RootPage and AbstractsPage and creates a link be-
tween them. The second clause (lines 7-8) creates two new
objects, AbstractPage and PaperPresentation for each

3We encourage the reader to visit the STRUDEL-generated sites at
http://vvv.rssaarch.att.com/~{mff,suciu} and
http://vuv.cs.vashington.sdu/homss/alon/.

417

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

INPUT BIBTEX
// Create Root & Abstracts Page and link them
CREATE RootPageO, AbstractsPage
LINK RootPage()->“AbstractsPage”->AbstractsPageo

// Create a presentation for every publication x
WHERE Publications(x), x->l->v // PI
CREATE PaperPresentation(AbstractPage
LINK

AbstractPage -> 1 -> v,
PaperPresentation -> 1 -> v,
PaperPresentation(x)->“Abstract”->AbstractPage(x),
AbstractsPage ->“Abstract” -> AbstractPage

{ // Create a page for every year
WHERE 1 = “year” // 92
CREATE YearPage
LINK

YearPage -> “Year” -> v
YearPage(>“Paper”->PaperPresentation(x),

// Link root page to each year page
RootPage () -> “YearPage” -> YearPage

)

C // Create a page for every category
WHERE 1 = “category” // 93
CREATE CategoryPage
LINK

CategoryPage -> “Name” -> v,
CategoryPage(>“Paper”->PaperPresentation(x),

// Link root page to each category page
RootPage -> "CategoryPage" -> CategoryPage

OUTPUT HomePage

Figure 3: Site definition query for example homepage site

member z of the Publications collection; these presentation
objects contain the publication’s information that will ap-
pear in different parts of the site. For example, the expres-
sions on lines lo-11 copy all of z’s attributes and values into
the new objects. The link clause also encodes inter-page
structure. On line 13, the general abstracts page is linked
to the abstract page of each publication (AbstractPage(
The nested where clause (lines 15-24) creates a page for
each year associated with a publication; the link clause asso-
ciates each PaperPresentation object with its corresponding
YearPage. Lastly, the root page is linked to each year page.
A similar clause creates a page for each publication category
and links category pages to PaperPresentation objects.

Fig. 4 depicts a fragment of the generated site graph; for
clarity, it excludes the result of the last nested clause that
produces category pages. Note that the site graph encodes
both the site’s content and its structure. For example, the
Paper-Presentation objects have links to paper titles and to
their associated abstract pages. All leaf objects contain page
content, e.g., the titles of publications. Declarative specifi-
cation of the site graph is powerful, because the site builder
can specify its structure in any order he chooses. For exam-
ple, he can define the pages “top down” from the root, or
first define each group of related pages and then link them.

RootPa&)

YearPage(lYY5) AbstractsPage

“YUd’
J\,

“PUptV”
‘Abstract” “Absrrucr”

/\

“‘Puper ”
A

“YeW”

IYYX PaperPresentation(pub2) PaperPresentation(pub1) lYY7

“t,r/e”

c

‘Absrrucf” “Ab.srracr”
\ J

“title ”

AbstractPage(pub2) AbstractPage(pub1)

“‘tttlr” . . .
t/L

‘kutepry” “C&ROry” . . .
J\ >

“tide ”

“oprimrrin~... ” “Sumistrucrurrd.. ” ‘Arch;recfure... ” “~p’cifying. ”

Figure 4: Fragment of site graph for example homepage site

2.4 HTML-Template Language

One premise of STRUDEL’S design is that designing and chang-
ing the visual presentation of a site is separable from the
management of the site’s content and structure. Although
HTML generation is not our central concern, we want STRUDEL
users to be able to easily produce visually consistent and at-
tractive sites. The result is a template language that extends
plain HTML with three simple expressions: a format expres-
sion (SFMT), a conditional expression (SIF), and an enumera-
tion expression (SFOR), each of which produces plain HTML
text. This design evolved from our experience of represent-
ing sites in a semistructured data model. Fig. 5 contains the
language’s grammar.

The HTML generator takes as input a site graph and a
set of HTML templates. For every internal object, the
generator selects a HTML-template file for the object: ei-
ther (1) an object-specific file, (2) the value of the object’s
HTML-template attribute, or (3) the template file associated
with the collection to which the object belongs. Given an
object and its HTML template, the HTML generator eval-
uates all expressions in the template, concatenates them to-
gether, and produces plain HTML text. It either emits the
HTML value as a page or embeds the value in pages that
refer to that object. The resulting pages contain the brows-
able Web site. Fig. 6 contains the HTML templates for
the example site. The RootPage, AbstractsPage, YearPage,
CategoryPage and AbstractPage are realized as pages.

The choice to realize internal objects as pages or as page
components is delayed until HTML generation; our choice
of Skolem function names (e.g., AbstractsPage) hints that
some objects are realized as pages, but this is not required.
For example, when referenced from the PaperPresentation
template, an AbstractPage object is realized, by default,
as a separate HTML page, but when referenced from the
AbstractsPage template, the EMBED directive overrides this
default and the AbstractPage object is embedded in the gen-
erated HTML page.

Associating an HTML template with a collection of objects
allows the user to produce the same “look and feel” for re-
lated pages. Our technique for ternplating is much simpler
than writing CGI programs to produce related pages; our
plain template text is plain HTML with programmatic ex-
tensions, not a program that produces HTML text.

The template language provides three extensions to plain
HTML. The format expression (<SFMT. . . >) maps an at-
tribute expression into an HTML value. An attribute ex-
pression is either a single attribute, e.g., Paper, or a bounded
sequence of attributes that reference reachable objects, e.g.,

418

Templ + { (Ed 1 Plain HTML Text)} Delim + DELIM=STRING

Ext =+ <SFMT AttrExpr [Format] > Expr 3 (AttrEzpr 1 Constant)
1 <SFOR ID IN AttrExpr [Order] [D&m] > Templ </SFOR>

) <SIF CondExpr > Templ [<SELSE> Templ] </SIF> Cond~~~~ + ~~~~ [op ~~~~~

AttrExpr + [Q] ID {. ID}
1 CondExpr (AND 1 OR) CondExpr
1 NOT CondExpr

Form,at 3 (EMBED 1 [LINK [= Tag]])
) (CondExpr >

Tag rj { (STRING) AttrExpr) } Constant =+ (BOOL 1 IiVT 1 FLOAT 1 STRING 1 NULL)

Order + ORDER=(ascend 1 descend) [KEY=AttrExpr] Op++I<I>I<=I>=I!=)

Figure 5: EBNF Grammar for HTML-Template Language

RootPage template:

<html><!-- Raw HTML text omitted -->
<h2><SFMT AbstractsPage LINK="All Paper Abstracts"></hl>
<h2> Publications by Year </h2>
GFMT YearPage LINK=YearPage.Yaar UL

ORDER=ascend KEY=Year>

<h2> Publications by Topic </h2>
<SFMT CategoryPage LINK=CategoryPage.Name UL

ORDER=ascend KEY=Name>
<!-- More raw HTML text omitted --></html>

AbstractsPage template:

<html><Hl>Paper Abstracts</Hi>
GFMT Abstract EMBED UL></html>

YearPnge template:

Chtml><hl> Publications from <SFMT Year> </hl>
<SFMT Paper UL></html>

CategoryPage template:

<html><hl> Publications on <SFMT Name> </hl>
<SFMT Paper UL></html>

PaperPresentation template:

GFMT postscript. LINK=title>.
By GFMT author ENUM DELIM=” , I’>.
<i> <SIF booktitle> GFMT booktitle>

<SELSE journal> <SFMT journal>
</SIF>, <SFMT year>. C/i>

<SFMT Abstract LINK="Abstract">

AbstractPage template:

<SFMT postscript. LINK=title>.
By <SFMT author ENUM DELIM=", ">.
<i> <SIF booktitle> GFMT booktitle>

GELSE journal> <SFMT journal>
</SIF>, <SFMT year>.</i>

<SFMT Abstract EMBED>tbr>

Figure 6: HTML Templates for example homepage site

Paper. Name. We found that limited traversal of the site
graph is useful when writing HTML templates even though
this feature overlaps with STRUQL’S regular path expres-
sions, which support both bounded and recursive traversal.
Without limited traversal, the user is forced to encode all
information to be displayed about an object in the object
itself, which bloats site-definition queries and destroys their
modularity.

Format expressions are concise, because the HTML gen-
erator uses type-specific rules to determine an attribute’s
HTML value. For most atomic values (integers, strings,
URLs, HTML and text files), the attribute’s HTML value
is converted to a string and is embedded in the HTML
template. For example, in the YearPage template, <SFMT
Year> is replaced by the object’s Year attribute, which is
an integer. Some values, such as PostScript files, should not
be realized as strings. For these values, the HTML gener-
ator produces an appropriate link to the value. For exam-
ple, in the PaperPresentation template, <SFMT postscript
LINK=title> is replaced by a link to the object’s postscript
attribute, which is a PostScript file, and the object’s title
attribute is emitted as the link tag. When an attribute ex-
pression refers to an internal object, the HTML generator
replaces the expression with the object’s HTML value; if the
internal object is a page, a link to its HTML file is emitted,
otherwise its HTML value is embedded in the current page.

Because the semistructured data model permits objects in
the same collection to have different representations, it is of-
ten necessary to test for the existence of an object’s attribute
or test its value in a template. The expression SIF evaluates
a condition and if it is true, evaluates the first template ex-
pression, otherwise it evaluates the optional second expres-
sion. A condition can test whether an attribute expression is
non-null and can apply relational operators to attribute ex-
pressions and constants. In the PaperPresentation template,
for example, attributes common to all objects in the collec-
tion (e.g., author, postscript, year, and Abstract) are
emitted directly. The object-specific attributes (booktitle
and journal) are emitted conditionally.

The semistructured data model also permits an object to
have multiple instances of the same attribute, e.g., RootPage
has multiple YearPage attributes. The same attribute can
refer to object values of different types. The iteration expres-
sion SFOR iterates over all values of the attribute expression,
binds the variable ID to each value, and evaluates the nested

419

template is equivalent to the expression above. Attributes
are often emitted in ordered and unordered lists. For ex-
ample, <SFMT Abstract EMBED UL> in the AbstractsPage
template is shorthand for:

<SFOR a IN Abstract><SFMT @a EMBED></SFOR>

It is not possible to specify order of attributes in our data
model; however, we often want to display attributes in a spe-
cific order. The ORDER directive sorts an attribute’s values
in either lexicographically increasing or decreasing order; if
the attribute’s values are internal objects, the optional KEY
value specifies the object’s attribute that should be used as
the key. For example, the expression <SFMT YearPage UL
lJRDER=ascend KEY=Year> in the RootPage template sorts
all the YearPage values in ascending order, uses their Year
values as a key, and emits them in an unordered list.

2.5 Site Schemas

STRUQL permits the site builder to construct fragments of a
Web site separately using multiple queries. To view a site’s
complete, abstract structure, we generate a site schema from
the site’s STRUQL queries; site schemas are a refinement of
graph schema [7]. Because STRUQL’S query and construc-
tion stages are separate, a simple analysis of the query can
infer the site schema of the site graph. Given a query Q,
a site schema is an equivalent reformulation of Q in terms
of a graph, which specifies the possible paths in a Web site
generated by Q. Formally, the site schema for a query Q is
a labeled graph GQ. GQ has one node NF for every Skolem
function symbol F in the query, plus one additional spe-
cial node, NS, corresponding to non-Skolem nodes in the
site graph. The graph has one edge NF + NG for ev-
ery link expression F(X) -+ L + G(Y) in Q, and one edge
NF -+ NS for every link expression F(X) -+ L -+ V, where
V is a variab_le. Each edg_e in GQ corresponding _to a link ex-
pression F(X) -+ L -+ G(Y) is labeled (Q, L, X, Y), where Q
is the query in the where-clause associated with that link
expression; each edge corresponding to a link expression
F(x) -+ L -+ V is labeled (Q, L, X, [VI).

The site schema is equivalent to the original query, i.e., we
can recover the query from the site schema. Fig. 7 depicts
site schema that corresponds to the query in Fig. 3; for
clarity, edges to the NS node are excluded. The link ex-
pression YearPage (v> -> “Paper” -> PaperPresentation
corresponds to the edge YearPage + PaperPresentation la-
beled (Ql A Q2, “Paper”, [v], [z]). Note that the query that
governs creation of this link is the conjunction of the where
clauses Ql and Q2.

We use site schemas in several ways. Site schemas serve as
a visual summary of the site graph, which is valuable dur-
ing the iterative definition of a Web site’s structure and al-
lows visual verification of a site’s integrity constraints (e.g.,

template expression for each binding. The variable may ref-
erence an internal object or an atomic value. If it refer-
ences an internal object, it may be used in attribute expres-
sions. For example, the following expression binds a to every
value of the attribute author and embeds each of a’s values:
<SFOR a IN author DELIM=“, “><SFMT @a EMBED></SFOR>.

Enumerating all values of an object’s attribute is common,
so we abbreviate common idioms. For example the expres-
sion <SFMT author ENUM DELIM=” . “> in the Paverpresentation

RootPage

PaperPresentation

Figure 7: Site schema for query in Fig. 3

connectedness, reachability of nodes.) They are also the
basis for an algorithm that enforces integrity constraints
on STRUDEL-generated sites [14] and for an incremental-
evaluation algorithm that converts one site-definition query
into multiple queries that are evaluated dynamically when
a user browses the site [15]. We briefly outline their appli-
cation to these problems.

Verification of integrity constraints Visual verification
is adequate for simple constraints, but verifying arbitrary
integrity constraints requires automation. We often want to
enforce constraints that refer to the site graph, e.g., “All pa-
per presentation pages are reachable from a category page”.
We define the verification problem as an entailment problem
of a STRUQL query and a logical sentence describing the in-
tegrity constraint. Integrity constraints are logical sentences
built from expressions of the form C(X) and X + R +
Y using logical connectives and quantifiers, e.g., the con-
straint above is expressed by (VX)PaperPresentation(X)
Ij CategoryPage + * --f X. In general, constraint for-
mulae can refer to the data and site graphs, but we can only
reason about formulae that refer to the data graph. Site
schemas allow us translate constraint formulae on the site
graph into formulae on the data graph.

Dynamic computation of site graph In STRUDEL’S pro-
totype, STRUQL queries are evaluated statically, i.e., com-
plete site graphs are computed before users browse them.
This approach is feasible for sites whose data changes infre-
quently, but it is infeasible for sites that are updated fre-
quently. Moreover, completely materializing a site graph is
often impossible, for example, when pages depend on user
input derived from forms. In these cases, some nodes in
a site graph must be created dynamically. To dynamically
create a site, STRUDEL must evaluate at “click time” the in-
cremental query that computes the data required to display
the next page. Site schemas specify, for each node in the
site graph, the queries that must be evaluated to compute
the node’s contents, i.e., its outgoing edges. Naive evalua-
tion of these queries is costly, because they often recompute
information derived for already browsed pages; consider, for
example, all the edges in Fig. 7 labeled Ql A Q2. For a
particular node, we can optimize its incremental query us-
ing contexts derived from the paths that reach the node and
also precompute “lookahead” results for queries of reachable
nodes. Site schemas specify the queries for paths that begin
and terminate at nodes in a site graph.

3 Related Systems

STRUDEL is one of several systems that support restructur-
ing and creation of Web sites. Whereas STRUDEL’S focus is

420

on integrating data from various types of data sources and
on generating new sites, other systems focus on extract-
ing structure from existing Web pages and on producing
a new view. Both the WebOQL [3] and Araneus [5] sys-
tems support querying of existing Web sites and can produce
views of sites as restructured graphs. WebOQL is similar in
spirit to STRUDEL. Like STRUDEL, WebOQL provides a uni-
form, se&structured data model (called a hypertree), and
its query language supports regular path expressions, can
restructure graphs, and is compositional; unlike STRUDEL,
its data model supports records and ordering. Also, We-
bOQL expresses the HTML rendering of pages in queries.

Like WebOQL, Araneus converts existing Web pages into
an abstract data model (ADM), which is a graph of strictly
typed page schemes that specify the content of related pages.
Araneus provides a query language (ULIXES) for defining a
relational view of an ADM graph; multiple data sources are
integrated by relational queries over these relational views.
A second query language (PENELOPE) transforms an inte-
grated, relational view back into an ADM graph; a final step
renders an ADM graph as a browsable site. Like STRUDEL,
Araneus separates data integration, site definition, and vi-
sual presentation, but it requires two data models, its page
schemes must be specified explicitly, and its two query lan-
guages cannot be composed naturally.

The Autoweb [22] system is based on the hypermedia de-
sign model (HDM), a design tool for hypermedia applica-
tions. Like STRUDEL and Araneus, Autoweb separates site-
management tasks: the “hyperbase schema” describes the
site’s content in HDM, which is based on the entity rela-
tionship model; the “access schema” specifies how the hy-
perbase is navigated and accessed in a browsable site; and
the “presentation schema” specifies how objects and paths
in the hyperbase and access schemas are rendered. Although
the hyperbase and access schema are distinct, the naviga-
tion paths in an access schema are tightly coupled to the
entity relationships in a hyperbase schema. Autoweb does
not support querying or data integration.

4 Questions Answered in Our Study

After implementing STRUDEL’S first prototype, we wanted
to evaluate STRUDEL’S methodology and our choice of the
semistructured data model. First, we considered whether
our premise that the three tasks of Web-site creation can
and should be separated holds in practice. Specifically,

Is there always a clear separation between these tasks? If
not, in which cases do their mutual dependencies make
separating them counter productive?

For what kinds of Web sites is STRUDEL most effective?
How useful is the ability to explicitly and declaratively
manage a Web site’s structure?

Regarding STRUDEL’S data model and STRUQL’S support
for querying semistructured data, we asked:

l What characteristics of semistructured data were most
important in STRUDEL? Conversely, why could we not ef-
fectively implement STRUDEL in a traditional data model?

l Are STRUQL’S features, e.g., regular path expressions and
restructuring capabilities, necessary for site definition?
What features are missing from STRUQL that might sim-
plify site definition?

5 Experiences with STRUDEL

We have had both practical and exploratory experiences
with STRUDEL. In our practical experience, we used the
STRUDEL prototype to create sites for individual users and
for two organizations and to create a version of the CNN
Web site for demonstration purposes. In our exploratory ex-
perience, we described our methodology and demonstrated
our prototype to several potential commercial users. We de-
scribe this experience, addressing the above questions wher-
ever relevant.

5.1 Practical experience

Our largest examples to date are the internal and exter-
nal Web sites of AT&T Labs-Research. We built versions
of these sites that are identical to those built by our Web
masters *. This site is typical of an organization’s site: it in-
cludes home pages of individual members, pages on projects,
demos, research areas, and technical publications. The in-
ternal site is similar to the external site, but includes orga-
nizational and proprietary information. The data sources
for this site are small relational databases that contain per-
sonnel and organizational data, structured files that contain
project data, and existing HTML files. The wrappers are
simple AWK programs that map structured files and rela-
tional databases into objects in a data graph. The wrappers
for plain HTML pages are hand written.

The internal site generated by STRUDEL contains the home
pages of approximately 400 users and pages for organizations
and projects. The internal site is defined by a 115-line query
and 17 HTML templates (380 lines). STRUDEL’S power is
revealed in the definition of the external site: no new queries
were written for that site. Both the internal and external
sites share the same site graph and many HTML template
files. Only five HTML template files differ for the external
site and these either exclude or reformat information that
cannot be viewed externally.

Our own home pages are examples of small sites generated
by STRUDELS. The main data sources for these sites are our
bibliographies. A simple wrapper maps BIBTEX files into
data graphs; other information is stored in files in STRUDEL’S
data definition language. The mff example shows how to
generate internal and external versions of the same home-
page. The example contains data from two sources: a Bib-
tex file and a STRUDEL data file, which contains personal
information, such as address, phone, projects, professional
activities, patents, and is defined by a 48-line query and thir-
teen HTML templates (202 lines). The HTML templates for
the external version exclude patents, and any publications
and projects that are proprietary. The suciu example illus-
trates how to integrate data from multiple sources. Its site
graph is built in several successive steps by multiple, com-
posed STRUQL queries; for example, the last step copies the
entire site graph and adds a navigation bar to each page.
This example also shows how to define multiple views with
STRUQL instead of with HTML templates.

We are also working on a STRUDEL-generated version of the
INRIA-Rodin Web site, which is similar to the AT&T Re-
search site. Its main feature is that the site has two views:
one English and one French. The two sites are cross-linked

4The official external site is at http://vuv.sasaarch.att.com and
is generated using a large set of CGI-BIN scripts.

‘See http://vvv.research.att.com/{Nmff ,-levy,-suciu}.

421

so that each English page is linked to the equivalent page in
the French site and vice versa. One STRUQL query defines
both views and creates the links between them.

Our first example was a demonstration version of the CNN
Web site (http://www.cnn.com). On any day, one article
may appear in various formats on multiple pages in the CNN
site. Because we did not have access to CNN’s databases of
articles, we mapped their HTML pages into a data graph
containing about 300 articles. Our version of the CNN site
is defined by a 44-line query and nine templates. To demon-
strate STRUDEL'S ability to generate multiple sites from one
database, we also generated a “sports only” site that has
the same structure as the general site, but contains articles
on sports subjects6. The sports-only query is derived from
the original query and only differs in two extra predicates in
one where clause. Both sites use the same templates.

5.2 Exploratory experience

We have described our methodology and demonstrated our
prototype to several potential users, including the Web-site
managers for AT&T’s internal organizations, the Web-site
management team at CNN, a company that designs and
publishes sites, and a company that creates Web-based in-
terfaces and data-integration technologies for business ap-
plications. Each group identified benefits of using STRUDEL
that we did not anticipate and problems that must be ad-
dressed in an industrial quality implementation.

One unanticipated but important benefit is that STRUDEL
could be used to generate sites tailored to individual users.
CNN currently provides a custom-news site; a user selects
those news categories that he would like in his personal site,
and the server generates pages that contain articles from
those categories. The user has no control over the gener-
ated site’s structure. A custom STRUQL query would allow
the user to organize his news as he wanted and allow CNN
to generate pages that contain advertisements targeted to
that user. STRUDEL'S separation of site management and
visual presentation make this feasible. Another application
of user-specific sites is producing custom interfaces for differ-
ent types of users (e.g., marketing, customer care, analyst)
that require access to the same databases, but that want to
view the information in different ways.

Potential users uniformly agreed that the ability to inte-
grate information from multiple sources while building a
Web site is valuable. They also agreed that managing the
structure of Web sites is a problem of growing importance.
Both the CNN team and Web-site design firm indicated,
however, that they would need to edit both the structure
and content of the generated pages and that these changes
should be propagated automatically back into the HTML
templates, site-definition query, or underlying data. Sev-
eral customers noted that a graphical interface for specify-
ing STRUQL queries in the spirit of Query By Example [26]
would be necessary.

6 Evaluation

We describe the lessons we learned from our experience using
STRUDEL and evaluate its methodology, its query language,
and its semistructured data model.

'The versions of the CNN general and sports-only sites are at
http://vuv.research.att.com/Nmff/presentation/strud~l-d~mo.html.

6.1 The STRUDEL Methodology

Separating the management of the underlying data from
other Web-management tasks is’ the basis for several com-
mercial products, e.g., most commercial relational and object-
oriented databases provide Web interfaces to their systems.
STRUDEL provides two other important features: the abili-
ties to integrate data from multiple sources and to incorpo-
rate unstructured sources (e.g., structured files). The AT&T
Research site, for example, integrated five data sources.

Isolating the management of a site’s structure was also im-
portant. For example, CNN’s Web-site group is building a
specialized tool for managing site structure. We also found
that building complex Web sites is an iterative process in
which the site structure evolves over time. For example, cre-
ating the AT&T and Rodin sites required several iterations.
Declarative specification of the site’s structure enables easy
changes to a site. Finally, STRUDEL is most effective when
multiple versions of a site are built from the same underlying
data. For instance, once we built AT&T’s internal research
site, building the external version was trivial.

Separating management of the site’s structure and its visual
presentation is more subtle. This separation simplifies cre-
ating multiple versions of a site especially when the site’s
structure is the same in all versions, but its visual presen-
tations differ. In this case, all versions share one site graph,
but each version has its own HTML templates. It is not
always clear, however, which aspects of a site should be en-
coded as structure or as visual presentation. For example,
the AT&T external site is derived from the internal site by
excluding the attributes of some objects in the generated
pages; in this case, it is easier to create HTML templates
that omit these attributes than it is to create a new site
graph that explicitly excludes those attributes. Consider
the order of articles or the placement of images in a page
at the CNN site. Such information could be encoded in
the visual presentation or in the site’s structure. For CNN,
managing this information is crucial, because they consider
these editorial elements a primary value of their site.

To characterize the sites for which STRUDEL is most use-
ful, we consider two criteria: the amount of data they con-
tain and their structural complexity (see Fig. 8). Measuring
the amount of data in a site is straightforward. One possi-
ble measure of structural complexity is the number of link
clauses in the site-definition query. In current practice,
an analagous measure of site complexity is the number of
CGI-BIN scripts required to generate a site.

We observed that STRUDEL is most useful for sites that have
complex structure and whose structure is dependent on the
underlying data. For example, the CNN Web site contains
a large number of articles. Although the disposition of an
article in a site is complex (i.e., it appears in several formats
on different pages and is linked to many other pages), the
structure is uniform for all articles in the site. This uni-
formity also applies to all people in the AT&T site and all
publications in the example homepage sites.

Fig. 8 categorizes the suitability of different Web-creation
tools for various kinds of sites. When a site has simple
structure and little data (lower left), WSYWIG tools suchas
Microsoft FrontPage or NetObjects Fusion are appropriate.
When a site contains large amounts of data, but has simple
structure, then a tool that provides a Web-based interface
to a database is appropriate. When the data is large and
the site structure is complex, STRUDEL is most appropriate.

422

High

Complexity

of Structure

STRUDEL

Low

:

FrontPage RDBMS +

Fusion Web interface

Small Large

Quantity of Data

Figure 8: Suitability of Web-site management tools

6.2 STRUQL Query Language

We were surprised by how well STRUQL was suited for the
application. STRUQL’S most important feature is separa-
tion of the query (where) and construction (create, link, and
collect) stages. This separation is natural, because it is
clear conceptually to separate extraction of data from ex-
ternal sources and site construction. Another benefit is that
the query stage is independently extensible; for example,
we could extend it to include grouping and aggregation.
This separation also simplifies query optimization, because
all where clauses can be evaluated by an optimizer at once.
It should be noted that other languages (e.g., WebOQL [3],
UnQL [8]) do not separate selection and restructuring.

STRUQL’S declarative semantics were also important. A site
builder often designs related parts of a site’s structure in-
dividually then links them together. The ability to specify
link clauses in whatever order is natural makes this pos-
sible. More importantly, STRUQL’S declarative semantics
allow us to perform more complex site-management tasks
such as guaranteeing that integrity constraints are satisfied
by STRUDEL-generated sites and automatically converting a
complete site-definition query into multiple queries that can
be evaluated statically or dynamically at “click time”.

We found that the STRUQL queries for sites with complex
structure tend to be long. To simplify writing queries, we
introduced nested queries, and we allowed queries to add
nodes and arcs to a graph, instead of creating a new graph in
every query. This allows different queries to create different
parts of the same site. Finally, we built a tool to view a
query’s site schema, which provides a visual map of the site
being specified.

Arc variables, which are bound to arc labels in the graph
and, hence, to elements of the graph’s schema, were an im-
portant feature, because they carry over irregularites in the
data to the site graph. In the example in Fig. 3, the expres-
sion on line 11 copies every attribute of a Publication object
into a Paper-Presentation object; this set of attributes will
differ for each Publication object.

Because our applications’ data sources were mostly struc-
tured, the site-definition queries rarely used the Kleene star
in STRUQL’S regular path expressions. Regular path ex-
pressions are useful when the possible sequences of attribute
names in the data are not known in advance. This did not
occur in our examples. Regular path expressions are useful
in other applications of STRUQL. For example, they can ex-

press integrity constraints on a site graph, e.g., “all pages are
.reachable from the site’s root” or “every department mem-
ber is reachable from a department page”, and they may be
useful for querying a STRUDEL-generated site.

6.3 Semistructured Data

Our experience indicates that the semistructured model was
the right choice for STRUDEL. We describe its most impor-
tant features, in particular, the ability to easily evolve the
schema and to manage irregular data.

The semistructured data model does not require that the
schema be defined before the data, which simplifies modify-
ing the schema. This was an important feature in STRUDEL.
Creating both the data and site graphs was an iterative pro-
cess, so the ability to modify their schema was important.
We first wrote wrappers for the external data sources and
generated the integrated data graph; then we wrote a site-
definition query, applied it to the data graph, and generated
the site graph. We repeated this process until we discov-
ered all the information from the external sources that we
wanted displayed in the site. For example, the AT&T data
graph integrated data from several structured and unstruc-
tured sources. While writing the wrappers for these sources,
the data graph’s schema changed frequently, e.g., several at-
tributes were added to the schema on-the-fly.

Defining a site graph requires even more flexibility, because
its structure is not defined explicitly by a schema, but im-
plicitly by a STRUQL query. Even after the site is con-
structed, we often want to change its structure, and there-
fore its schema as well. During definition of the AT&T site,
for example, we discovered similarities between pages that
were not explicit in the site graph. The information about
lab and department directors initially was modeled by two
different collections; over time, we discovered that objects
in these collections shared many common attributes, so we
merged the two collections. Because of the dynamic nature
of site and data graph schemas, we conclude that traditional
relational and object-oriented model are not appropriate.

In STRUDEL, we associate sets of objects with collections.
A collection is like a class, except that objects need not
have identical representations, i.e., the same attributes or
the same attribute types. This model supports irregular
structure in the data. We encountered several kinds of ir-
regularity in our data, such as missing or extra attributes.
There are several sources of such irregularities. First, at-
tribute values may be missing because they were omitted
during data entry. In the AT&T site, for example, some
projects omitted the “synopsis” attribute. Second, no val-
ues may exist for some attributes at a given time. Not all
projects in AT&T are sponsored, and therefore have no value
for the “sponsor” attribute. Third, some attributes are not
meaningful for certain objects. In the Publications collec-
tion, the “journal” attribute is meaningful for journal pa-
pers, but not conference papers. Finally, even when objects
have the same attribute, they may not be of the same type.
For example, an address may be a string in one object, but
a structure with address, city and zipcode fields in another
object. Although we did not encounter this irregularity in
our examples, we expect that such irregularity will arise for
sites that integrate overlapping data from multiple sources.

Modeling irregular data in an object-oriented model would
require either building an artificial class hierarchy (where
each class had exactly the same set of attributes), or con-

423

strutting a maximal schema, where each object has all at-
tributes. Furthermore, handling attribute values of different
types would be cumbersome.

A recurrent issue was how much structure should be pro-
vided by a semistructured data model. In our initial design,
we found that we needed collections, but we did not an-
ticipate the need for ordered lists. For example, objects
in the Publications collection have an associated list of au-
thors. Maintaining order among authors is necessary when
displaying the object in a Web page. Supporting lists in the
data model, however, increases the complexity of query eval-
uation and optimization. Instead, we developed a solution
(associating an integer key with each author) that allows us
to preserve order in specific, but common, cases.

7 Future Research

Our experience helped us identify research problems of prac-
tical and theoretical interest. They address issues of STRUDEL’S
applicability to dynamically generated sites, its scalability to
larger sites, its usability as an end-user tool, and its inter-
operability with existing tools.

In STRUDEL’S prototype, we precompute a Web site by com-
pletely materializing its site graph. Most Web sites, how-
ever, cannot be precomputed, because they depend on user
input that is not available statically or because the underly-
ing data sources are too large. Currently, STRUDEL does not
support dynamically generated sites. In practice, dynamic
generation is supported by often large sets of loosely related
CGI programs. Supporting dynamic evaluation would elim-
inate writing such programs by hand.

Although we can decompose a site-definition query into mul-
tiple, dynamic queries, and we have theoretical techniques
for optimizing these queries, implementing dynamic evalua-
tion requires significant systems-design effort. For example,
our optimization techniques cache query results to reduce
“click time” for future queries; these results essentially en-
code state required by the STRUDEL query processor. An
open problem is how and where this state should be stored:
in a client-side browser and/or a server-side query processor.
To solve this problem, we expect to use existing systems and
techniques that support stateful Web services [4].

Although adequate for a prototype, STRUDEL’S warehous-
ing mediator is inadequate for sites whose data sources are
large or change frequently. To support large-scale sites, we
need to solve the problem of incremental view updates for
semistructured data, which is an open problem. An alterna-
tive approach is translating a query on a mediated schema
into a set of queries on the relevant data sources. Although
this problem has been addressed for (unions of) conjunc-
tive queries and some forms of recursive queries, it has not
been addressed for languages over semistructured data. In
particular, arc variables, i.e., querying the schema, and the
restructuring operators create and link introduce difficulties.

Traditional database systems rely heavily on schema infor-
mation to organize data on disk. An important problem is
developing analogous techniques for semistructured data in
which schema information is missing or changes frequently.
This problem is related to the problem of dynamic object
reclustering in object-oriented databases. Traditional sys-
tems use query patterns to choose indexes to build. In
STRUDEL, however, identifying query patterns is compli-
cated by STRUQL’S features that permit querying schema.

Not surprisingly, many potential users of STRUDEL asked
whether we can provide a friendly visual interface for spec-
ifying queries, instead of having to write STRUQL queries
by hand. Clearly, a better interface is needed, probably in
the spirit of Query By Example [26]. One research issue is
what subset of STRUQL can be expressed using a graphi-
cal interface. A similar issue has arisen for other graphical
query languages such as Hy+ [25].

Many commercial tools exist for Web-site creation and man-
agement. We do not presume that STRUDEL will replace all
of them, therefore an important practical issue is how to in-
tegrate STRUDEL with existing tools. Developing the appro-
priate API to STRUDEL may be the best way to incorporate
it into tools that Web-site builders currently use.

8 Conclusions

This work makes several important conceptual and practi-
cal contributions. First, we identified Web-site creation and
management as data-management problems that can ben-
efit from database technologies, and in particular, benefit
from declarative specification of a site’s content and struc-
ture. We also recognized that separating the management of
a site’s data, the management of its structure, and the visual
presentation of its pages, facilitates many site-management
tasks, such as integrating data from multiple sources, gen-
erating multiple views of a site, modifying a site’s structure
over time, and enforcing integrity constraints on sites.

Second, we identified STRUDEL as an ideal application of
the semistructured data model, because that model sup-
ports data integration and can handle data with irregular
structure and rapidly evolving schema. We also provided a
detailed description of the characteristics of semistructured
data that were most relevant to our application and explain
why traditional models proved inadequate.

Third, we built a prototype of STRUDEL that supports the
semistructured data model and provides a query processor
for STRUQL, which handles graph querying and restruc-
turing. This required us to solve several technical prob-
lems, such as designing a data repository for semistructured
data and designing optimization algorithms for queries over
semistructured data. We also developed a simple yet pow-
erful HTML-template language that supports HTML pre-
sentation of objects in our data model. Our prototype also
provides an implementation platform for future research on
semistructured data and query optimization.

Finally, our experience using STRUDEL to build several Web
sites validated our key assumptions that separation of the
three site-management tasks is natural in practice and that
declarative specification of site content and structure effec-
tively supports the tasks described above. Our experience
also identified the problems that would have to be solved in
a production quality implementation of STRUDEL and that
require additional research. The practical problems include
designing a graphical user interface to STRUQL and integrat-
ing STRUDEL’S functionalities with existing Web-management
tools. Other problems, such as computing incremental up-
dates of site graphs, decomposing queries to support dy-
namic computation of sites, and designing efficient storage
representations for semistructured data, have broader impli-
cations in the field of semistructured data and pose harder
challenges. We have already begun addressing these prob-
lems and plan to investigate practical solutions in future
versions of STRUDEL.

424

References

PI

PI

[31

[41

151

PI

171

PI

PI

PO1

PI

PI

P31

P41

I151

S. Abiteboul. Querying semi-structured data. In Pro-
ceedings of the ZCDT, 1997.

S. Adali, K. Candan, Y. Papakonstantinou, and V. Sub-
rahmanian. Query caching and optimization in dis-
tributed mediator systems. In Proceedings of SZGMOD-
96, 1996.

G. Arocena and A. Mendelzon. WebOQL: Restructur-
ing documents, database and webs. In Proceedings of
International Conference on Data Engineering, pages
24-33, 1998.

D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox,
P. Mataga, and K. Rehor. Experience with a domain
specific language for form-based services. In Proceedings
of Conference on Domain-Specific Languages, pages 37-
49, 1998.

P. Atzeni, G. Mecca, and P. Merialdo. To weave the
web. In Proceedings of VLDB, pages 206-215, 1997.

P. Buneman. Semistructured data. In Proceedings
of the 16th ACM SZGACT-SZGMOD-SZGART Sympo-
sium on Principles of Database Systems, Tucson, Ari-
zona, pages 117-121, 1997.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Adding structure to unstructured data. In ICDT, pages
336-350, Deplhi, Greece, 1997. Springer Verlag.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for un-
structured data. In Proceedings of SIGMOD-96, pages
505-516, 1996.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The
TSIMMIS project: Integration of heterogenous infor-
mation sources. In proceedings of IPSJ, Tokyo, Japan,
October 1994.

S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your
mediators need data conversion. In To appear in Pro-
ceedings of SIGMOD, 1998.

0. M. Duschka and M. R. Genesereth. Answering
recursive queries using views. In Proceedings of the
16th ACM SZGACT-SZGMOD-SZGART Symposium on
Principles of Database Systems, Tucson, Arizona.,
1997.

M. Fernandez, D. Florescu, J. Kang, A. Levy, and
D. Suciu. System demonstration - STRUDEL: A web-site
management system. In ACM SIGMOD Conference on
Management of Data, 1997.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu.
A query language for a web-site management system.
SZGMOD Record, 26(3):4-11, September 1997.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Rea-
soning about Web-site structure, 1998. Submitted for
publication.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu.
Warehousing and incremental evaluation for Web-site
management, 1998. Submitted for publication.

WI

1171

WI

P91

PO1

WI

P21

[231

PI

[251

WI

D. Florescu, A. Levy, and D. Suciu. A query opti-
mization algorithm for semistructured data. Technical
report, AT&T Labs, 1997.

D. Florescu, L. Raschid, and P. Valduriez. A method-
ology for query reformulation in CIS using semantic
knowledge. Znt. Journal of Intelligent & Cooperative
Information Systems, special issue on Formal Methods
in Cooperative Information Systems, 5(4), 1996.

M. Friedman and D. Weld. Efficient execution of in-
formation gathering plans. In Proceedings of ZJCAZ,
1997.

L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Op-
timizing queries across diverse data sources. In Pro-
ceedings of the 23rd VLDB Conference, Athens, Greece,
1997.

R. Hull. Managing semantic heterogeneity in databases:
A theoretical perspective. In Proceedings of the
16th ACM SZGACT-SZGMOD-SZGART Symposium on
Principles of Database Systems, Tucson, Arizona,
pages 51-61, 1997.

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source descrip-
tions. In Proceedings of the 22nd VLDB Conference,
Bombay, India., 1996.

P. Paolini and P. Fraternali. A conceptual model and
a tool environment for developing more scalable, dy-
namic, and customizable web applications. In Proceed-
ings of EDBT Conference, Valencia, Spain, 1998.

A. Tomasic, L. Raschid, and P. Valduriez. A data
model and query processing techniques for scaling ac-
cess to distributed heterogeneous databases in Disco.
IEEE Transactions on Computers, special issue on Dis-
tributed Computing Systems, 1997.

J. D. Ullman. Information integration using logical
views. In Proceedings of the International Conference
on Database Theory, 1997.

P. T. Wood. Queries on Graphs. PhD thesis, Univer-
sity of Toronto, Toronto, Canada, M5S lA1, December
1988. Available as University of Toronto Technical Re-
port CSRI-223.

M. Zloof. Query-by-Example: a data base language.
IBM Systems Journal, 16:4:324-343, 1977.

425

