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The exponential family of random graphs is among the most
widely-studied of network models. A host of analytical and
numerical techniques have been developed in the past. We show
that any exponential random graph model could be alternatively
viewed as a lattice gas model with a finite Banach space norm.
The system could then be treated by cluster expansion methods in
statistical mechanics. In particular, we derive a convergent power
series expansion for the limiting free energy in the case of small
parameters. This hopefully would help with the application of
renormalization group ideas to exponential random graph models.
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Pioneering work on the independent case: Erdős-Rényi graph
G (n, p),

Pβn (G ) = eβE(G)−ψn = pE(G)(1− p)

(n
2

)
−E(G).

Include edges independently with paramter p = eβ/(1 + eβ).
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Extremal Graph Theory (Turán)—Maximize number of edges
without triangles. Unique solution: complete bipartite graph with
equal parts.

More general statements...
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Exponential random graph: Dependence between the random edges
is defined through certain finite subgraphs, in imitation of the use
of potential energy to provide dependence between particle states
in a grand canonical ensemble of statistical physics. By varying the
activity parameters, one could analyze the extent to which specific
values of the subgraph densities interfere with one another.
Estimation can be based on construction of a Markov chain that
has the exponential random graph model as equilibrium
distribution. Large deviation principle comes into play.
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• Holland and Leinhardt studied the directed case.

• Frank and Strauss related random graph edges to Markov
random field.

• Häggström and Jonasson examined phase transition in the
random triangle model.

• More developments: Wasserman and Faust, Snijders et al.,
Rinaldo et al.

• Recent survey: Fienberg, Introduction to papers on the
modeling and analysis of network data I & II. arxiv: 1010.3882
& 1011.1717.
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Relevance to Gibbs measures:

• Ising model on complete graph: Curie-Weiss model. (Ellis and
Newman, The statistics of Curie-Weiss models.)

• Ising model on sparse graph: No finite-dimensional structure.
Distance between vertices. Phase transitions and coexistence
phenomena are related to Gibbs measures on infinite trees.
(Dembo and Montanari, Gibbs measures and phase transitions
on sparse random graphs.)

• Ising model on lattice: Disordered limiting Gibbs state (with
zero effective field) is pure up to the spin-glass critical
temperature. (Bleher et al., On the purity of the limiting
Gibbs state for the Ising model on the Bethe lattice.)
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• Graph homomorphism hom(H,G ) is an edge-preserving map.
Examples: H triangle, G triangle, |hom(H,G )| = 6; H 2-star,
G triangle, |hom(H,G )| = 12.

• Homomorphism density t(H,G ) = |hom(H,G)|
|V (G)||V (H)| .

• β1, ..., βk are k real parameters. H1, ...,Hk are finite simple
graphs. Each Hi has mi vertices (2 ≤ mi ≤ m) and pi edges
(1 ≤ pi ≤ p). In particular, H1 is the complete graph on 2
vertices (i.e., a single edge).

• Gn is the set of simple graphs G on n vertices. Probability for
G ∈ Gn is given by:

P{βi}
n (G ) = en2(β1t(H1,G)+...+βk t(Hk ,G)−ψn) := en2(T (G)−ψn).

• ψn is the normalization constant:

ψn =
1

n2
log

∑
G∈Gn

en2T (G).
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limψn is crucial for carrying out maximum likelihood and Bayesian
inference.

• Park and Newman tried the technique of mean-field
approximations.

• Monte Carlo schemes: Geyer and Thompson (MCMLE),
Gelman and Meng (bridge sampling), Kou et al. (equi-energy
sampler)

• More approaches: Besag, Comets and Janžura, Chatterjee,
Snijders
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Consider the space W of all symmetric measurable functions from
[0, 1]2 into [0, 1]. For H ∈ Gk , let

t(H, h) =

∫
[0,1]k

∏
(i ,j)∈E(H)

h(xi , xj)dx1...dxk .

Lovász et al. developed graph limits (graphons): A sequence of
graphs {Gn}n≥1 is said to converge to h if for every finite simple
graph H,

lim t(H,Gn) = t(H, h).

Example: Erdős-Rényi graph G (n, p), h(x , y) = p.
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• Chatterjee and Diaconis gave the first rigorous proof of
singular behavior in a specific exponential random graph
model, the edge-triangle model. They also suggested that,
quite generally, models with repulsion exhibit a transition
qualitatively like the solid/fluid transition. (Estimating and
understanding exponential random graph models. arXiv:
1102.2650.)

• Radin and Y derived the full phase diagram for a large family
of 2-parameter exponential random graph models, each
containing a first order transition curve ending in a second
order critical point, qualitatively similar to the gas/liquid
transition in equilibrium materials. (Phase transitions in
exponential random graphs. arXiv: 1108.0649.)
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Optimization problem: Suppose β2, ..., βk are nonnegative. Then

limψn =

sup
0≤u≤1

(
β1u

E(H1) + ...+ βkuE(Hk ) − 1

2
u log u − 1

2
(1− u) log(1− u)

)
.

(2.1)

Behavior of G ∈ Gn:

min
u∈U

δ�(G̃n, ũ) → 0 in probability as n →∞,

where U is the set of maximizers of (2.1).
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The phase transition curve β2 = q(β1) in the (β1, β2) plane. H1 is
a single edge and H2 has 3 edges.
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Fix H ∈ Gm. Let G ∈ Gn.
Proposition: The homomorphism density t(H,G ) has a lattice gas
representation

∑
X J(X )σX .

• σij = σji is an element of the adjacency matrix of G .

• X is any set of vertex pairs (i , j) of G .

• σX =
∏

(i ,j)∈X σij .
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Proof: Number of possible (connected) image shapes of H in G
under the graph homomorphism is finite. Consider such an image
shape Y . Denote the corresponding homomorphism density by
tY (H,G ). Define J(X ) = tY (H,G ) for any X whose relative
vertex positions are the same as in Y . This map becomes a
homomorphism only when σX = 1, i.e., all corresponding edges
between vertices in X exist.
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Each edge, (A,B), (A,D), (B,C ), (B,D), carries weight 2/43.

Each 2-star, (A,B,C ), (A,B,D), (C ,B,D), (B,A,D), (A,D,B),
carries weight 2/43.
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Proposition: Fix a vertex pair (i , j), denote by tij(H,G ) the part of
the homomorphism density t(H,G ) that depends on σij , we have

tij(H,G ) =
∑

X :(i ,j)∈X

J(X ) ≤ m(m − 1)

n2
.

Note: Sharp bound. Example: H and G are both a single edge.
Proof: The image of V (H) in V (G ) consists of vertices i and j of
G . To count these homomorphisms, we regard such a mapping as
consisting of two steps. Step 1: We choose the vertices of G that
the vertices of H are mapped onto. Step 2: We check whether
these vertex-maps are valid homomorphisms (i.e., edge-preserving).
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Graphs in the same exponential random graph family correspond to
equilibrium ensembles.
Hamiltonian:

H(σ) = −n2
k∑

i=1

βiJi (X )σX = −
∑
X

K (X )σX

Note: K (X ) = 0 for |X | > p.
Banach space:

||K || = sup
(i ,j)

∑
X :(i ,j)∈X

|K (X )| ≤ m(m − 1)
k∑

i=1

|βi |.

The limiting free energy (random graph model) ψ and the limiting
free energy (lattice gas model) φ are related by ψ = 1

2(log 2 + φ).



Introduction and Background Framework and Notation Alternative View Cluster Expansion

• Hypergraph Γ = (X ,E ).

• X is a set of sites, E (hyper-edge or link) is a set of nonempty
subsets of X .

• Two links are connected if they overlap.

• Support of hypergraph: ∪Γ.

• Connected hypergraph Γc : ∪Γ is nonempty and cannot be
partitioned into nonempty sets with no connected links.
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W =
∑

σ e−H(σ) =
∑

σ e
∑

X K(X )σX . Let V be the set of all vertex
pairs (i , j) of G ∈ Gn.
Cluster representation for W : W =

∑
∆

∏
N∈∆ wN .

• ∆ is a set of disjoint subsets N’s of V .

• wN =
∑

∪Γc=N

∑
σ

∏
X∈Γc

(eK(X )σX − 1).

• |wN | ≤ vN =
∑

∪Γc=N

∏
X∈Γc

(e |K(X )| − 1).



Introduction and Background Framework and Notation Alternative View Cluster Expansion



Introduction and Background Framework and Notation Alternative View Cluster Expansion

Proof: We rewrite e
∑

X K(X )σX as a perturbation around zero
interaction:

W =
∑
σ

∑
Γ

∏
X∈Γ

(
eK(X )σX − 1

)
.

The support of each hypergraph Γ on V would break up into
connected parts ∆. We have

W =
∑
∆

∏
N∈∆

∑
∪Γc=N

∑
σ

∏
X∈Γc

(
eK(X )σX − 1

)
.
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To apply standard results on cluster expansion, notice that

∑
∆

∏
N∈∆

wN =
∞∑

n=0

1

n!

∑
N1,...,Nn

∏
(i ,j)

(1− c(Ni ,Nj))wN1 · · ·wNn

=
∞∑

n=0

1

n!

∑
N1,...,Nn

∑
G

∏
(i ,j)∈G

(−c(Ni ,Nj))wN1 · · ·wNn ,

where G ∈ Gn and

c(Ni ,Nj) =

{
1 if Ni and Nj overlap;
0 otherwise.
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Cluster representation for log W :

log W =
∞∑

n=1

1

n!

∑
N1,...,Nn

C (N1, ...,Nn) wN1 · · ·wNn ,

where
C (N1, ...,Nn) =

∑
Gc

∏
(i ,j)∈Gc

(−c(Ni ,Nj)) ,

and Gc ∈ Gn is a connected graph.
Proof: The effect of taking the logarithm is that the sum over
graphs is replaced by the sum over connected graphs.
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Kotecký-Preiss: Fix M > 1. Suppose that for each vertex pair
(i , j), we have ∑

N:(i ,j)∈N

vNM |N| ≤ log M. (4.1)

Then the pinned free energy has a convergent power series
expansion:

∞∑
n=1

1

n!

∑
N1,...,Nn:∃iNi=N

|C (N1, ...,Nn)| |wN1 | · · · |wNn | ≤ vNM |N|.
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How is K-P applicable here? Consider the coupling constants K
with the Banach space norm ||K ||. Suppose

∑k
i=1 |βi | is small:

||K || ≤ m(m − 1)
k∑

i=1

|βi | ≤
log M(p − 1)p

2(Mp)p (1 + (p − 1) log M)
.

Then (4.1) holds for every vertex pair (i , j).
The maximal region of parameters {βi} is obtained by setting

log M =
−p +

√
5p2 − 4p

2p(p − 1)
.
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Main result: Fix M > 1. Consider the coupling constants K with
the Banach space norm ||K ||. Suppose

∑k
i=1 |βi | is small. Then

we have convergence of the cluster expansion for the limiting free
energy φ = limV→∞

1
|V | log W .

| log W | ≤
∑
N⊂V

∞∑
n=1

∑
N1,...,Nn:∃iNi=N

1

n!
|C (N1, ...,Nn)| |wN1 | · · · |wNn |

≤
∑
N⊂V

vNM |N| ≤
∑

(i ,j)∈V

∑
N:(i ,j)∈N

vNM |N| ≤ |V | log M.
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Proof: We notice that when |K || is small (say ||K || ≤ 1
2),

e |K(X )| − 1 ≤ 2|K (X )| by the mean value theorem. For ∪Γc = N,
|N| ≤

∑
|X | with X in Γc . We have∑

N:(i ,j)∈N

vNM |N| ≤
∑

N:(i ,j)∈N

∑
∪Γc=N

M |N|
∏

X∈Γc

2|K (X )|

≤
∑

Γc :(i ,j)∈∪Γc

∏
X∈Γc

2|K (X )|M |X |.
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A hypergraph Γc is rooted at the vertex pair (i , j) if (i , j) ∈ ∪Γc .
Let an(ij) be the contribution of all connected hypergraphs with n
links that are rooted at (i , j),

an(ij) =
∑

(i ,j)∈∪Γc :|Γc |=n

∏
X∈Γc

2|K (X )|M |X |. (4.2)

Then ∑
N:(i ,j)∈N

vNM |N| ≤
∞∑

n=1

sup
(i ,j)∈V

an(ij) :=
∞∑

n=1

an.

To be continued...
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Lemma: Let an be the supremum over (i , j) of the contribution of
connected hypergraphs with n links that are rooted at (i , j). Then
an satisfies the recursive bound

an ≤ 2||K ||Mp
p∑

k=0

(p
k

) ∑
an1 ,...,ank

:n1+···+nk+1=n

an1 · · · ank

for n ≥ 1, where
(p
k

)
is the binomial coefficient.
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Proof: We linearly order the vertex pairs (i , j) in V and also
linearly order the subsets X of V . For a fixed but arbitrarily chosen
(i , j) in V , we examine (4.2). Write Γc = {X1} ∪ Γ1

c , where X1 is
the least X in Γc with (i , j) ∈ X1. Then

an(ij) ≤ 2||K ||Mp
∑
Γ1

c

∏
X∈Γ1

c

2|K (X )|M |X |.

The remaining hypergraph Γ1
c has n − 1 subsets and breaks into

k : k ≤ p connected components Γ1, ..., Γk of sizes n1, ..., nk , with
n1 + · · ·+ nk = n − 1.

an(ij) ≤ 2||K ||Mp
p∑

k=0

(p
k

) ∑
an1 ,...,ank

:n1+···+nk+1=n

an1 · · · ank
.

Finally, take the supremum over all (i , j) in V .
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Clearly,
∑

N:(i ,j)∈N vNM |N| will be bounded above by
∑∞

n=1 ān, if

ān = 2||K ||Mp
p∑

k=0

(p
k

) ∑
ān1 ,...,ānk

:n1+···+nk+1=n

ān1 · · · ānk
(4.3)

for n ≥ 1.
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Lemma: Consider the coefficients ān that bound the contributions
of connected and rooted hypergraphs with n links. Let
w =

∑∞
n=1 ānz

n be the generating function of these coefficients.
The recursion relation (4.3) for the coefficients is equivalent to the
formal power series generating function identity

w = 2||K ||Mpz(1 + w)p. (4.4)
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Proof: (1 + w)p =
∑p

k=0

(p
k

)
wk , thus

w = 2||K ||Mpz

p∑
k=0

(p
k

)
wk .

Writing completely in terms of z ,

∞∑
n=1

ānz
n = 2||K ||Mp

p∑
k=0

(p
k

) ∑
ān1 ,...,ānk

:n1+···+nk+1=n

ān1 · · · ānk
zn.

Compare term-by-term.



Introduction and Background Framework and Notation Alternative View Cluster Expansion

Lemma: If w is given as a function of z as a formal power series by
the generating function identity (4.4), then this power series has a

nonzero radius of convergence |z | ≤ (p−1)p−1

2||K ||(Mp)p .
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Proof: Without loss of generality, assume z ≥ 0. Set
z1 = 2||K ||Mpz . Solving (4.4) for z1 gives

z1 =
w

(1 + w)p
.

As z1 goes from 0 to (p − 1)p−1/pp, the w values range from 0 to
1/(p − 1).
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Going back...
We notice that in the above lemma, w =

∑∞
n=1 ānz

n = 1/(p − 1)
corresponds to z1 = 2||K ||Mpz = (p − 1)p−1/pp, which implies
that for each n,

ān ≤ (2||K ||(Mp)p)n (p − 1)−(1+(p−1)n) .

Gathering all the information we have obtained so far,

∑
N:(i ,j)∈N

vNM |N| ≤
∞∑

n=1

(2||K ||(Mp)p)n (p − 1)−(1+(p−1)n)

=

2||K ||(Mp)p

(p−1)p

1− 2||K ||(Mp)p

(p−1)p−1

≤ log M.
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Thank You!
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