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Research Statement

My main research areas are probability and mathematical physics (with emphasis on statistical
physics). A continuing theme of my research is applying renormalization group ideas to study relevant
problems arising in physics and probability, and in particular to develop a quantitative theory of phase
transitions. Besides extending my dissertation research on the spectral properties of the renormalization
group for Ising systems, my postdoctoral research has branched out to examine the phase structure of
exponential random graphs. I am also interested in establishing the connection between random graphs
and Ising systems and in introducing renormalization group ideas to random graph models.

My work on renormalization focuses on the existence and properties of the renormalization group
linearization for Ising-type lattice spin systems. A renormalization group transformation consists of
averaging over short distance lattice blocks, followed by a rescaling that maps each block into a single
lattice site. There is the astonishing empirical fact that certain exponents associated with critical
phenomena are universal, and are related to eigenvalues of the linearized renormalization group map
near the nontrivial fixed point. The renormalization group transformation may be thought of as a map
of potentials that define the Gibbs state. The linearization then should be a linear transformation acting
on such a Banach space. The first part of my work carries out some explicit calculations of the spectrum
of the linearization of the renormalization group at infinite temperature and discovers that it is of an
unusual kind. The second part treats the rigorous definition of the renormalization group map in the
infinite volume limit at high temperature by a cluster expansion approach. The third part justifies the
differentiability of the renormalization group map in the infinite volume limit at the critical temperature
under a certain condition.

My work on random graphs centers on the structure and behavior of the exponential family of random
graphs, which is among the most promising class of network models. Dependence between the random
edges is defined through certain finite subgraphs, in imitation of the use of potential energy to provide
dependence between particle states in a grand canonical ensemble of statistical physics. By adjusting the
specific values of these subgraph densities, one could analyze the influence of various local features on the
global structure of the network. Loosely put, a phase transition occurs when a singularity arises in the
limiting free energy, as it is the generating function for the limiting expectations of all thermodynamic
observables. The first part of my work derives the full phase diagram for a large family of 2-parameter
exponential random graph models with attraction, each containing a first order transition curve ending
in a second order critical point. The second part extends the phase picture to the 3-parameter case and
shows that it consists of a first order surface phase transition bordered by a second order critical curve.
The third part examines the asymptotic structure of 2-parameter exponential random graph models
with repulsion and observes quantized behavior along general straight lines. The fourth part considers
generic k-parameter families of exponential random graphs from a lattice gas (Ising) perspective, making
the exponential random graph model treatable by cluster expansion techniques.

The following sections describe my research in more detail.

Spectral properties of the renormalization group at infinite temperature [22] Israel [13] found
the operator bound of the linearization of the renormalization group map at infinite temperature (zero
interaction) corresponding to decimation and majority rule in a Banach algebra setting, but did not go
into detail about the spectral type of this transformation. We delve more into this matter and analyze
the spectrum of these renormalization group operations completely. It is of an unusual kind: dense point
spectrum for which the adjoint operators have no point spectrum at all, but only residual spectrum.
This may serve as a lesson in what one might expect in more general situations.

A cluster expansion approach to renormalization group transformations [23] We treat the
rigorous definition of the renormalization group map at high temperature. A cluster expansion [4, 11, 15]
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is used to justify the existence of the partial derivatives of the renormalized interaction with respect to
the original interaction. This expansion is derived from the formal expressions, but it is itself well
defined and convergent. Suppose in addition that the original interaction is finite range and translation
invariant. We show that the matrix of partial derivatives in this case displays an approximate band
property. This in turn gives an upper bound for the renormalization group linearization.

Renormalization group transformations near the critical point: Some rigorous results [24]
The real interest of the renormalization group is to define the transformation at the critical tempera-
ture [9]. With the help of the Dobrushin uniqueness condition [8] and standard results on the polymer
expansion, Haller and Kennedy [12] provided a sufficient condition for the existence of the renormalized
Hamiltonian in a neighborhood of the critical point. By a more complicated but reasonably straightfor-
ward application of the cluster expansion machinery, we show that their condition would further imply
a band structure on the matrix of partial derivatives of the renormalized interaction with respect to the
original interaction.

Phase transitions in exponential random graphs [18] In their recent paper [6], Chatterjee and
Diaconis gave the first rigorous proof of singular behavior in a specific exponential random graph model,
the edge-triangle model, using the emerging tools of graph limits as developed by Lovász and coworkers
[16]. We extend their result both in the class of models and parameter values under control and con-
centrate on the phenomenon of phase transitions. By carrying out a detailed analysis of a maximization
problem, we derive the full phase diagram for a large family of 2-parameter exponential random graph
models with attraction, each containing a first order transition curve ending in a second order critical
point, qualitatively similar to the gas/liquid transition in equilibrium materials.

Critical phenomena in exponential random graphs [25] One of the key motivations for studying
exponential random graphs is to develop models that exhibit transitivity and clumping (i.e., a friend of
a friend is likely also a friend). However, as seen in experiments and through heuristics [17], it is often
not enough to have only 2 subgraphs as sufficient statistics. To accurately model the global structure of
the network, more local features of the random graph need to be captured [6]. We therefore incorporate
the density of one more subgraph into the probability distribution and extend the phase picture of the
attractive exponential model to the 3-parameter case. We find that it consists of a first order surface
phase transition bordered by a second order critical curve. This phase picture may be further extended
to a k-parameter setting, and the parameter space is expected to comprise a single phase with first
order phase transitions across one (or more) hypersurfaces and second order phase transitions along
their boundaries.

Asymptotic quantization of exponential random graphs [26] The phase transition in the repulsive
exponential random graph model may also be characterized by solving a maximization problem. How-
ever, due to its complicated structure, this maximization problem is not always explicitly solvable. For
the edge-triangle model, Chatterjee and Diaconis [6] showed that the graph becomes roughly bipartite
when the edge parameter is fixed and the triangle parameter is large and negative, i.e., when the two
parameters trace a vertical line downward. In hope of observing more interesting extremal behaviors,
we investigate the asymptotic structure of this classic model along general straight lines. We show that
as we continuously vary the slopes of these lines, the graph exhibits quantized behavior, jumping from
one complete multipartite graph to another, and the jumps happen precisely at the normal lines of an
infinite polytope. More intriguingly, this quantized behavior in the repulsive region could be further tied
to the jump discontinuity in graph density in the attractive region [6, 18]. Similar results are expected
for more general repulsive models.

A cluster expansion approach to exponential random graph models [27] We show that any
k-parameter exponential random graph model may alternatively be viewed as a lattice gas model with
a finite Banach space norm. The system may then be treated by cluster expansion methods [15] from
statistical physics. In particular, we derive a convergent power series expansion for the limiting free

2



Mei Yin

energy in the case of small parameters. Since the free energy is the generating function for the expectation
values of other random variables, this characterizes the structure and behavior of the limiting network
in this parameter region.

Ongoing & future research
(1) Concerning renormalization: We have shown the existence of the renormalization group lineariza-

tion for Ising systems under various circumstances [23, 24], but we have not been able to show that it lies
in a Banach space (except for one with uniform norm). I hope to overcome this difficulty by performing
more involved cluster expansions. My more ambitious goal is to prove actual Gâteaux differentiability
(or even Fréchet differentiability) of the renormalization group transformation, which would require ex-
amining higher order expansion terms. Another possible generalization is in the context of Potts models
on hierarchical lattices [20]. Working with transmissivities rather than coupling constants, similar exis-
tence results as in the Ising case are expected. My future plans also include verifying the existence of
the renormalization group map under more relaxed conditions, so that it can be defined iteratively, as
widely assumed in physics [21].

(2) Concerning random graphs: The main hope for progress in network analysis seems to lie in formu-
lating a model based on some alternative ensemble of graph structures. I am studying a group of papers
on graphs uniformly distributed with a given degree sequence [2, 7] and hope they would provide some
inspiration. Chatterjee and Diaconis [6] suggested that models with repulsion quite generally exhibit
a transition qualitatively like the solid/fluid transition, in which one phase has nontrivial structure, as
distinguished from the disordered Erdős-Rényi graphs [10], which have independent edges. The existence
of such a transition in 2-parameter models has been proved by Aristoff and Radin [1] and Yin [28]. Some
progress has recently been made in the asymptotic region [26]. However, the network structure below
the transition line is still not well understood. I hope to resolve this issue and make some headway in the
sparse case using methods from [3]. I would also like to explore other notions of convergence besides the
graphon convergence, examine the connections between random graphs and Ising models more in-depth,
and use renormalization group analysis to study random graph models.

(3) New lines of research: My research focus, statistical physics, aims at describing large scale prop-
erties of physical systems based on models which specify interactions at the atomic level. We typically
model physical systems by random combinatorial structures, such as graphs and lattices. Tools used
come from a wide range of areas: analysis, combinatorics, discrete geometry, probability, mathematical
physics, and discrete math. Because of their strong resonance with the intertwined concepts of confor-
mality and universality, isoradial graphs (as coined by Kenyon [14]) give, for many models of statistical
physics, the right framework for studying models at criticality. I am interested to expand my research
towards this area. The worlds of discrete and continuous math are not very far apart, and I have been
thinking about applying renormalization group ideas to differential equations. One direction [19] is to
derive exact differential renormalization flow equations and then analyze its solution about the local
fixed point. Another direction [5] is to study large time behavior of solutions to nonlinear parabolic
equations by perturbative epsilon expansion.

(4) Vertical integration: I am a believer in the philosophy of vertical integration, in which the
research enterprise is shared among undergrads, grad students, postdocs, and faculty. In this spirit I am
attracted to the idea of designing an independent study project for an appropriate student. For instance,
it could be a year-long project involving random graph theory and applications. The first semester I
would familiarize the student with background material. The second semester I would help the student
choose a project and get a start on research. This would culminate in a report or paper that explains
the material and presents the results of the research. There are many possible approaches, depending
on the interests and level of preparation of the student. These range from exploration via computer
visualization to rigorous probability to modeling in the context of a particular application. Thus the
subject has appeal that works on all levels of the vertical integration framework.
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